/* * AMD Memory Encryption Support * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Tom Lendacky * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Since SME related variables are set early in the boot process they must * reside in the .data section so as not to be zeroed out when the .bss * section is later cleared. */ unsigned long sme_me_mask __section(.data) = 0; EXPORT_SYMBOL_GPL(sme_me_mask); /* Buffer used for early in-place encryption by BSP, no locking needed */ static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); /* * This routine does not change the underlying encryption setting of the * page(s) that map this memory. It assumes that eventually the memory is * meant to be accessed as either encrypted or decrypted but the contents * are currently not in the desired state. * * This routine follows the steps outlined in the AMD64 Architecture * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. */ static void __init __sme_early_enc_dec(resource_size_t paddr, unsigned long size, bool enc) { void *src, *dst; size_t len; if (!sme_me_mask) return; local_flush_tlb(); wbinvd(); /* * There are limited number of early mapping slots, so map (at most) * one page at time. */ while (size) { len = min_t(size_t, sizeof(sme_early_buffer), size); /* * Create mappings for the current and desired format of * the memory. Use a write-protected mapping for the source. */ src = enc ? early_memremap_decrypted_wp(paddr, len) : early_memremap_encrypted_wp(paddr, len); dst = enc ? early_memremap_encrypted(paddr, len) : early_memremap_decrypted(paddr, len); /* * If a mapping can't be obtained to perform the operation, * then eventual access of that area in the desired mode * will cause a crash. */ BUG_ON(!src || !dst); /* * Use a temporary buffer, of cache-line multiple size, to * avoid data corruption as documented in the APM. */ memcpy(sme_early_buffer, src, len); memcpy(dst, sme_early_buffer, len); early_memunmap(dst, len); early_memunmap(src, len); paddr += len; size -= len; } } void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, true); } void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, false); } static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, bool map) { unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; pmdval_t pmd_flags, pmd; /* Use early_pmd_flags but remove the encryption mask */ pmd_flags = __sme_clr(early_pmd_flags); do { pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; __early_make_pgtable((unsigned long)vaddr, pmd); vaddr += PMD_SIZE; paddr += PMD_SIZE; size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; } while (size); __native_flush_tlb(); } void __init sme_unmap_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!sme_active()) return; /* Get the command line address before unmapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); } void __init sme_map_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!sme_active()) return; __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); /* Get the command line address after mapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); } void __init sme_early_init(void) { unsigned int i; if (!sme_me_mask) return; early_pmd_flags = __sme_set(early_pmd_flags); __supported_pte_mask = __sme_set(__supported_pte_mask); /* Update the protection map with memory encryption mask */ for (i = 0; i < ARRAY_SIZE(protection_map); i++) protection_map[i] = pgprot_encrypted(protection_map[i]); } /* Architecture __weak replacement functions */ void __init mem_encrypt_init(void) { if (!sme_me_mask) return; /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ swiotlb_update_mem_attributes(); } void swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { WARN(PAGE_ALIGN(size) != size, "size is not page-aligned (%#lx)\n", size); /* Make the SWIOTLB buffer area decrypted */ set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT); } static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start, unsigned long end) { unsigned long pgd_start, pgd_end, pgd_size; pgd_t *pgd_p; pgd_start = start & PGDIR_MASK; pgd_end = end & PGDIR_MASK; pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1); pgd_size *= sizeof(pgd_t); pgd_p = pgd_base + pgd_index(start); memset(pgd_p, 0, pgd_size); } #define PGD_FLAGS _KERNPG_TABLE_NOENC #define P4D_FLAGS _KERNPG_TABLE_NOENC #define PUD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area, unsigned long vaddr, pmdval_t pmd_val) { pgd_t *pgd_p; p4d_t *p4d_p; pud_t *pud_p; pmd_t *pmd_p; pgd_p = pgd_base + pgd_index(vaddr); if (native_pgd_val(*pgd_p)) { if (IS_ENABLED(CONFIG_X86_5LEVEL)) p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); else pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); } else { pgd_t pgd; if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_p = pgtable_area; memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D; pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS); } else { pud_p = pgtable_area; memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS); } native_set_pgd(pgd_p, pgd); } if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_p += p4d_index(vaddr); if (native_p4d_val(*p4d_p)) { pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK); } else { p4d_t p4d; pud_p = pgtable_area; memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS); native_set_p4d(p4d_p, p4d); } } pud_p += pud_index(vaddr); if (native_pud_val(*pud_p)) { if (native_pud_val(*pud_p) & _PAGE_PSE) goto out; pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK); } else { pud_t pud; pmd_p = pgtable_area; memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD; pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS); native_set_pud(pud_p, pud); } pmd_p += pmd_index(vaddr); if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE)) native_set_pmd(pmd_p, native_make_pmd(pmd_val)); out: return pgtable_area; } static unsigned long __init sme_pgtable_calc(unsigned long len) { unsigned long p4d_size, pud_size, pmd_size; unsigned long total; /* * Perform a relatively simplistic calculation of the pagetable * entries that are needed. That mappings will be covered by 2MB * PMD entries so we can conservatively calculate the required * number of P4D, PUD and PMD structures needed to perform the * mappings. Incrementing the count for each covers the case where * the addresses cross entries. */ if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } else { p4d_size = 0; pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1; pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; total = p4d_size + pud_size + pmd_size; /* * Now calculate the added pagetable structures needed to populate * the new pagetables. */ if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } else { p4d_size = 0; pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE; pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; total += p4d_size + pud_size + pmd_size; return total; } void __init sme_encrypt_kernel(void) { unsigned long workarea_start, workarea_end, workarea_len; unsigned long execute_start, execute_end, execute_len; unsigned long kernel_start, kernel_end, kernel_len; unsigned long pgtable_area_len; unsigned long paddr, pmd_flags; unsigned long decrypted_base; void *pgtable_area; pgd_t *pgd; if (!sme_active()) return; /* * Prepare for encrypting the kernel by building new pagetables with * the necessary attributes needed to encrypt the kernel in place. * * One range of virtual addresses will map the memory occupied * by the kernel as encrypted. * * Another range of virtual addresses will map the memory occupied * by the kernel as decrypted and write-protected. * * The use of write-protect attribute will prevent any of the * memory from being cached. */ /* Physical addresses gives us the identity mapped virtual addresses */ kernel_start = __pa_symbol(_text); kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); kernel_len = kernel_end - kernel_start; /* Set the encryption workarea to be immediately after the kernel */ workarea_start = kernel_end; /* * Calculate required number of workarea bytes needed: * executable encryption area size: * stack page (PAGE_SIZE) * encryption routine page (PAGE_SIZE) * intermediate copy buffer (PMD_PAGE_SIZE) * pagetable structures for the encryption of the kernel * pagetable structures for workarea (in case not currently mapped) */ execute_start = workarea_start; execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; execute_len = execute_end - execute_start; /* * One PGD for both encrypted and decrypted mappings and a set of * PUDs and PMDs for each of the encrypted and decrypted mappings. */ pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; /* PUDs and PMDs needed in the current pagetables for the workarea */ pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); /* * The total workarea includes the executable encryption area and * the pagetable area. */ workarea_len = execute_len + pgtable_area_len; workarea_end = workarea_start + workarea_len; /* * Set the address to the start of where newly created pagetable * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable * structures are created when the workarea is added to the current * pagetables and when the new encrypted and decrypted kernel * mappings are populated. */ pgtable_area = (void *)execute_end; /* * Make sure the current pagetable structure has entries for * addressing the workarea. */ pgd = (pgd_t *)native_read_cr3_pa(); paddr = workarea_start; while (paddr < workarea_end) { pgtable_area = sme_populate_pgd(pgd, pgtable_area, paddr, paddr + PMD_FLAGS); paddr += PMD_PAGE_SIZE; } /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); /* * A new pagetable structure is being built to allow for the kernel * to be encrypted. It starts with an empty PGD that will then be * populated with new PUDs and PMDs as the encrypted and decrypted * kernel mappings are created. */ pgd = pgtable_area; memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD); pgtable_area += sizeof(*pgd) * PTRS_PER_PGD; /* Add encrypted kernel (identity) mappings */ pmd_flags = PMD_FLAGS | _PAGE_ENC; paddr = kernel_start; while (paddr < kernel_end) { pgtable_area = sme_populate_pgd(pgd, pgtable_area, paddr, paddr + pmd_flags); paddr += PMD_PAGE_SIZE; } /* * A different PGD index/entry must be used to get different * pagetable entries for the decrypted mapping. Choose the next * PGD index and convert it to a virtual address to be used as * the base of the mapping. */ decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); decrypted_base <<= PGDIR_SHIFT; /* Add decrypted, write-protected kernel (non-identity) mappings */ pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT); paddr = kernel_start; while (paddr < kernel_end) { pgtable_area = sme_populate_pgd(pgd, pgtable_area, paddr + decrypted_base, paddr + pmd_flags); paddr += PMD_PAGE_SIZE; } /* Add decrypted workarea mappings to both kernel mappings */ paddr = workarea_start; while (paddr < workarea_end) { pgtable_area = sme_populate_pgd(pgd, pgtable_area, paddr, paddr + PMD_FLAGS); pgtable_area = sme_populate_pgd(pgd, pgtable_area, paddr + decrypted_base, paddr + PMD_FLAGS); paddr += PMD_PAGE_SIZE; } /* Perform the encryption */ sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, kernel_len, workarea_start, (unsigned long)pgd); /* * At this point we are running encrypted. Remove the mappings for * the decrypted areas - all that is needed for this is to remove * the PGD entry/entries. */ sme_clear_pgd(pgd, kernel_start + decrypted_base, kernel_end + decrypted_base); sme_clear_pgd(pgd, workarea_start + decrypted_base, workarea_end + decrypted_base); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); } void __init sme_enable(void) { }