#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for MAX_DMA_PFN */ #include #include #include #include #include #include #include /* * We need to define the tracepoints somewhere, and tlb.c * is only compiled when SMP=y. */ #include #include "mm_internal.h" /* * Tables translating between page_cache_type_t and pte encoding. * * The default values are defined statically as minimal supported mode; * WC and WT fall back to UC-. pat_init() updates these values to support * more cache modes, WC and WT, when it is safe to do so. See pat_init() * for the details. Note, __early_ioremap() used during early boot-time * takes pgprot_t (pte encoding) and does not use these tables. * * Index into __cachemode2pte_tbl[] is the cachemode. * * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. */ static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { [_PAGE_CACHE_MODE_WB ] = 0 | 0 , [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, }; unsigned long cachemode2protval(enum page_cache_mode pcm) { if (likely(pcm == 0)) return 0; return __cachemode2pte_tbl[pcm]; } EXPORT_SYMBOL(cachemode2protval); static uint8_t __pte2cachemode_tbl[8] = { [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, }; /* * Check that the write-protect PAT entry is set for write-protect. * To do this without making assumptions how PAT has been set up (Xen has * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache * mode via the __cachemode2pte_tbl[] into protection bits (those protection * bits will select a cache mode of WP or better), and then translate the * protection bits back into the cache mode using __pte2cm_idx() and the * __pte2cachemode_tbl[] array. This will return the really used cache mode. */ bool x86_has_pat_wp(void) { uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; } enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) { unsigned long masked; masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; if (likely(masked == 0)) return 0; return __pte2cachemode_tbl[__pte2cm_idx(masked)]; } static unsigned long __initdata pgt_buf_start; static unsigned long __initdata pgt_buf_end; static unsigned long __initdata pgt_buf_top; static unsigned long min_pfn_mapped; static bool __initdata can_use_brk_pgt = true; /* * Pages returned are already directly mapped. * * Changing that is likely to break Xen, see commit: * * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve * * for detailed information. */ __ref void *alloc_low_pages(unsigned int num) { unsigned long pfn; int i; if (after_bootmem) { unsigned int order; order = get_order((unsigned long)num << PAGE_SHIFT); return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); } if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { unsigned long ret = 0; if (min_pfn_mapped < max_pfn_mapped) { ret = memblock_phys_alloc_range( PAGE_SIZE * num, PAGE_SIZE, min_pfn_mapped << PAGE_SHIFT, max_pfn_mapped << PAGE_SHIFT); } if (!ret && can_use_brk_pgt) ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); if (!ret) panic("alloc_low_pages: can not alloc memory"); pfn = ret >> PAGE_SHIFT; } else { pfn = pgt_buf_end; pgt_buf_end += num; } for (i = 0; i < num; i++) { void *adr; adr = __va((pfn + i) << PAGE_SHIFT); clear_page(adr); } return __va(pfn << PAGE_SHIFT); } /* * By default need to be able to allocate page tables below PGD firstly for * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. * With KASLR memory randomization, depending on the machine e820 memory and the * PUD alignment, twice that many pages may be needed when KASLR memory * randomization is enabled. */ #ifndef CONFIG_X86_5LEVEL #define INIT_PGD_PAGE_TABLES 3 #else #define INIT_PGD_PAGE_TABLES 4 #endif #ifndef CONFIG_RANDOMIZE_MEMORY #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) #else #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) #endif #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); void __init early_alloc_pgt_buf(void) { unsigned long tables = INIT_PGT_BUF_SIZE; phys_addr_t base; base = __pa(extend_brk(tables, PAGE_SIZE)); pgt_buf_start = base >> PAGE_SHIFT; pgt_buf_end = pgt_buf_start; pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); } int after_bootmem; early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); struct map_range { unsigned long start; unsigned long end; unsigned page_size_mask; }; static int page_size_mask; /* * Save some of cr4 feature set we're using (e.g. Pentium 4MB * enable and PPro Global page enable), so that any CPU's that boot * up after us can get the correct flags. Invoked on the boot CPU. */ static inline void cr4_set_bits_and_update_boot(unsigned long mask) { mmu_cr4_features |= mask; if (trampoline_cr4_features) *trampoline_cr4_features = mmu_cr4_features; cr4_set_bits(mask); } static void __init probe_page_size_mask(void) { /* * For pagealloc debugging, identity mapping will use small pages. * This will simplify cpa(), which otherwise needs to support splitting * large pages into small in interrupt context, etc. */ if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) page_size_mask |= 1 << PG_LEVEL_2M; else direct_gbpages = 0; /* Enable PSE if available */ if (boot_cpu_has(X86_FEATURE_PSE)) cr4_set_bits_and_update_boot(X86_CR4_PSE); /* Enable PGE if available */ __supported_pte_mask &= ~_PAGE_GLOBAL; if (boot_cpu_has(X86_FEATURE_PGE)) { cr4_set_bits_and_update_boot(X86_CR4_PGE); __supported_pte_mask |= _PAGE_GLOBAL; } /* By the default is everything supported: */ __default_kernel_pte_mask = __supported_pte_mask; /* Except when with PTI where the kernel is mostly non-Global: */ if (cpu_feature_enabled(X86_FEATURE_PTI)) __default_kernel_pte_mask &= ~_PAGE_GLOBAL; /* Enable 1 GB linear kernel mappings if available: */ if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { printk(KERN_INFO "Using GB pages for direct mapping\n"); page_size_mask |= 1 << PG_LEVEL_1G; } else { direct_gbpages = 0; } } /* * INVLPG may not properly flush Global entries on * these CPUs. New microcode fixes the issue. */ static const struct x86_cpu_id invlpg_miss_ids[] = { X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e), X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c), X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11), X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118), X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117), X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e), {} }; static void setup_pcid(void) { const struct x86_cpu_id *invlpg_miss_match; if (!IS_ENABLED(CONFIG_X86_64)) return; if (!boot_cpu_has(X86_FEATURE_PCID)) return; invlpg_miss_match = x86_match_cpu(invlpg_miss_ids); if (invlpg_miss_match && boot_cpu_data.microcode < invlpg_miss_match->driver_data) { pr_info("Incomplete global flushes, disabling PCID"); setup_clear_cpu_cap(X86_FEATURE_PCID); return; } if (boot_cpu_has(X86_FEATURE_PGE)) { /* * This can't be cr4_set_bits_and_update_boot() -- the * trampoline code can't handle CR4.PCIDE and it wouldn't * do any good anyway. Despite the name, * cr4_set_bits_and_update_boot() doesn't actually cause * the bits in question to remain set all the way through * the secondary boot asm. * * Instead, we brute-force it and set CR4.PCIDE manually in * start_secondary(). */ cr4_set_bits(X86_CR4_PCIDE); } else { /* * flush_tlb_all(), as currently implemented, won't work if * PCID is on but PGE is not. Since that combination * doesn't exist on real hardware, there's no reason to try * to fully support it, but it's polite to avoid corrupting * data if we're on an improperly configured VM. */ setup_clear_cpu_cap(X86_FEATURE_PCID); } } #ifdef CONFIG_X86_32 #define NR_RANGE_MR 3 #else /* CONFIG_X86_64 */ #define NR_RANGE_MR 5 #endif static int __meminit save_mr(struct map_range *mr, int nr_range, unsigned long start_pfn, unsigned long end_pfn, unsigned long page_size_mask) { if (start_pfn < end_pfn) { if (nr_range >= NR_RANGE_MR) panic("run out of range for init_memory_mapping\n"); mr[nr_range].start = start_pfn<> PAGE_SHIFT) > max_low_pfn) continue; #endif if (memblock_is_region_memory(start, end - start)) mr[i].page_size_mask |= 1<page_size_mask & (1<page_size_mask & (1<page_size_mask & (1< limit_pfn) end_pfn = limit_pfn; if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); pfn = end_pfn; } /* big page (2M) range */ start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); #ifdef CONFIG_X86_32 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); #else /* CONFIG_X86_64 */ end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); #endif if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1< 1 && i < nr_range - 1; i++) { unsigned long old_start; if (mr[i].end != mr[i+1].start || mr[i].page_size_mask != mr[i+1].page_size_mask) continue; /* move it */ old_start = mr[i].start; memmove(&mr[i], &mr[i+1], (nr_range - 1 - i) * sizeof(struct map_range)); mr[i--].start = old_start; nr_range--; } for (i = 0; i < nr_range; i++) pr_debug(" [mem %#010lx-%#010lx] page %s\n", mr[i].start, mr[i].end - 1, page_size_string(&mr[i])); return nr_range; } struct range pfn_mapped[E820_MAX_ENTRIES]; int nr_pfn_mapped; static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) { nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, nr_pfn_mapped, start_pfn, end_pfn); nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); max_pfn_mapped = max(max_pfn_mapped, end_pfn); if (start_pfn < (1UL<<(32-PAGE_SHIFT))) max_low_pfn_mapped = max(max_low_pfn_mapped, min(end_pfn, 1UL<<(32-PAGE_SHIFT))); } bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) { int i; for (i = 0; i < nr_pfn_mapped; i++) if ((start_pfn >= pfn_mapped[i].start) && (end_pfn <= pfn_mapped[i].end)) return true; return false; } /* * Setup the direct mapping of the physical memory at PAGE_OFFSET. * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ unsigned long __ref init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot) { struct map_range mr[NR_RANGE_MR]; unsigned long ret = 0; int nr_range, i; pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", start, end - 1); memset(mr, 0, sizeof(mr)); nr_range = split_mem_range(mr, 0, start, end); for (i = 0; i < nr_range; i++) ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, mr[i].page_size_mask, prot); add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); return ret >> PAGE_SHIFT; } /* * We need to iterate through the E820 memory map and create direct mappings * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply * create direct mappings for all pfns from [0 to max_low_pfn) and * [4GB to max_pfn) because of possible memory holes in high addresses * that cannot be marked as UC by fixed/variable range MTRRs. * Depending on the alignment of E820 ranges, this may possibly result * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. * * init_mem_mapping() calls init_range_memory_mapping() with big range. * That range would have hole in the middle or ends, and only ram parts * will be mapped in init_range_memory_mapping(). */ static unsigned long __init init_range_memory_mapping( unsigned long r_start, unsigned long r_end) { unsigned long start_pfn, end_pfn; unsigned long mapped_ram_size = 0; int i; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); if (start >= end) continue; /* * if it is overlapping with brk pgt, we need to * alloc pgt buf from memblock instead. */ can_use_brk_pgt = max(start, (u64)pgt_buf_end<= min(end, (u64)pgt_buf_top<> PAGE_SHIFT; last_start = real_end; /* * We start from the top (end of memory) and go to the bottom. * The memblock_find_in_range() gets us a block of RAM from the * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages * for page table. */ while (last_start > map_start) { unsigned long start; if (last_start > step_size) { start = round_down(last_start - 1, step_size); if (start < map_start) start = map_start; } else start = map_start; mapped_ram_size += init_range_memory_mapping(start, last_start); last_start = start; min_pfn_mapped = last_start >> PAGE_SHIFT; if (mapped_ram_size >= step_size) step_size = get_new_step_size(step_size); } if (real_end < map_end) init_range_memory_mapping(real_end, map_end); } /** * memory_map_bottom_up - Map [map_start, map_end) bottom up * @map_start: start address of the target memory range * @map_end: end address of the target memory range * * This function will setup direct mapping for memory range * [map_start, map_end) in bottom-up. Since we have limited the * bottom-up allocation above the kernel, the page tables will * be allocated just above the kernel and we map the memory * in [map_start, map_end) in bottom-up. */ static void __init memory_map_bottom_up(unsigned long map_start, unsigned long map_end) { unsigned long next, start; unsigned long mapped_ram_size = 0; /* step_size need to be small so pgt_buf from BRK could cover it */ unsigned long step_size = PMD_SIZE; start = map_start; min_pfn_mapped = start >> PAGE_SHIFT; /* * We start from the bottom (@map_start) and go to the top (@map_end). * The memblock_find_in_range() gets us a block of RAM from the * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages * for page table. */ while (start < map_end) { if (step_size && map_end - start > step_size) { next = round_up(start + 1, step_size); if (next > map_end) next = map_end; } else { next = map_end; } mapped_ram_size += init_range_memory_mapping(start, next); start = next; if (mapped_ram_size >= step_size) step_size = get_new_step_size(step_size); } } /* * The real mode trampoline, which is required for bootstrapping CPUs * occupies only a small area under the low 1MB. See reserve_real_mode() * for details. * * If KASLR is disabled the first PGD entry of the direct mapping is copied * to map the real mode trampoline. * * If KASLR is enabled, copy only the PUD which covers the low 1MB * area. This limits the randomization granularity to 1GB for both 4-level * and 5-level paging. */ static void __init init_trampoline(void) { #ifdef CONFIG_X86_64 /* * The code below will alias kernel page-tables in the user-range of the * address space, including the Global bit. So global TLB entries will * be created when using the trampoline page-table. */ if (!kaslr_memory_enabled()) trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; else init_trampoline_kaslr(); #endif } void __init init_mem_mapping(void) { unsigned long end; pti_check_boottime_disable(); probe_page_size_mask(); setup_pcid(); #ifdef CONFIG_X86_64 end = max_pfn << PAGE_SHIFT; #else end = max_low_pfn << PAGE_SHIFT; #endif /* the ISA range is always mapped regardless of memory holes */ init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); /* Init the trampoline, possibly with KASLR memory offset */ init_trampoline(); /* * If the allocation is in bottom-up direction, we setup direct mapping * in bottom-up, otherwise we setup direct mapping in top-down. */ if (memblock_bottom_up()) { unsigned long kernel_end = __pa_symbol(_end); /* * we need two separate calls here. This is because we want to * allocate page tables above the kernel. So we first map * [kernel_end, end) to make memory above the kernel be mapped * as soon as possible. And then use page tables allocated above * the kernel to map [ISA_END_ADDRESS, kernel_end). */ memory_map_bottom_up(kernel_end, end); memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); } else { memory_map_top_down(ISA_END_ADDRESS, end); } #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { /* can we preserve max_low_pfn ?*/ max_low_pfn = max_pfn; } #else early_ioremap_page_table_range_init(); #endif load_cr3(swapper_pg_dir); __flush_tlb_all(); x86_init.hyper.init_mem_mapping(); early_memtest(0, max_pfn_mapped << PAGE_SHIFT); } /* * Initialize an mm_struct to be used during poking and a pointer to be used * during patching. */ void __init poking_init(void) { spinlock_t *ptl; pte_t *ptep; poking_mm = mm_alloc(); BUG_ON(!poking_mm); /* Xen PV guests need the PGD to be pinned. */ paravirt_enter_mmap(poking_mm); /* * Randomize the poking address, but make sure that the following page * will be mapped at the same PMD. We need 2 pages, so find space for 3, * and adjust the address if the PMD ends after the first one. */ poking_addr = TASK_UNMAPPED_BASE; if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) poking_addr += PAGE_SIZE; /* * We need to trigger the allocation of the page-tables that will be * needed for poking now. Later, poking may be performed in an atomic * section, which might cause allocation to fail. */ ptep = get_locked_pte(poking_mm, poking_addr, &ptl); BUG_ON(!ptep); pte_unmap_unlock(ptep, ptl); } /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * On x86, access has to be given to the first megabyte of RAM because that * area traditionally contains BIOS code and data regions used by X, dosemu, * and similar apps. Since they map the entire memory range, the whole range * must be allowed (for mapping), but any areas that would otherwise be * disallowed are flagged as being "zero filled" instead of rejected. * Access has to be given to non-kernel-ram areas as well, these contain the * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) != REGION_DISJOINT) { /* * For disallowed memory regions in the low 1MB range, * request that the page be shown as all zeros. */ if (pagenr < 256) return 2; return 0; } /* * This must follow RAM test, since System RAM is considered a * restricted resource under CONFIG_STRICT_DEVMEM. */ if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { /* Low 1MB bypasses iomem restrictions. */ if (pagenr < 256) return 1; return 0; } return 1; } void free_init_pages(const char *what, unsigned long begin, unsigned long end) { unsigned long begin_aligned, end_aligned; /* Make sure boundaries are page aligned */ begin_aligned = PAGE_ALIGN(begin); end_aligned = end & PAGE_MASK; if (WARN_ON(begin_aligned != begin || end_aligned != end)) { begin = begin_aligned; end = end_aligned; } if (begin >= end) return; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ if (debug_pagealloc_enabled()) { pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", begin, end - 1); /* * Inform kmemleak about the hole in the memory since the * corresponding pages will be unmapped. */ kmemleak_free_part((void *)begin, end - begin); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); } else { /* * We just marked the kernel text read only above, now that * we are going to free part of that, we need to make that * writeable and non-executable first. */ set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what); } } /* * begin/end can be in the direct map or the "high kernel mapping" * used for the kernel image only. free_init_pages() will do the * right thing for either kind of address. */ void free_kernel_image_pages(const char *what, void *begin, void *end) { unsigned long begin_ul = (unsigned long)begin; unsigned long end_ul = (unsigned long)end; unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; free_init_pages(what, begin_ul, end_ul); /* * PTI maps some of the kernel into userspace. For performance, * this includes some kernel areas that do not contain secrets. * Those areas might be adjacent to the parts of the kernel image * being freed, which may contain secrets. Remove the "high kernel * image mapping" for these freed areas, ensuring they are not even * potentially vulnerable to Meltdown regardless of the specific * optimizations PTI is currently using. * * The "noalias" prevents unmapping the direct map alias which is * needed to access the freed pages. * * This is only valid for 64bit kernels. 32bit has only one mapping * which can't be treated in this way for obvious reasons. */ if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) set_memory_np_noalias(begin_ul, len_pages); } void __ref free_initmem(void) { e820__reallocate_tables(); mem_encrypt_free_decrypted_mem(); free_kernel_image_pages("unused kernel image (initmem)", &__init_begin, &__init_end); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { /* * end could be not aligned, and We can not align that, * decompressor could be confused by aligned initrd_end * We already reserve the end partial page before in * - i386_start_kernel() * - x86_64_start_kernel() * - relocate_initrd() * So here We can do PAGE_ALIGN() safely to get partial page to be freed */ free_init_pages("initrd", start, PAGE_ALIGN(end)); } #endif void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif free_area_init(max_zone_pfns); } __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { .loaded_mm = &init_mm, .next_asid = 1, .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ }; #ifdef CONFIG_ADDRESS_MASKING DEFINE_PER_CPU(u64, tlbstate_untag_mask); EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask); #endif void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) { /* entry 0 MUST be WB (hardwired to speed up translations) */ BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); __pte2cachemode_tbl[entry] = cache; } #ifdef CONFIG_SWAP unsigned long arch_max_swapfile_size(void) { unsigned long pages; pages = generic_max_swapfile_size(); if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ unsigned long long l1tf_limit = l1tf_pfn_limit(); /* * We encode swap offsets also with 3 bits below those for pfn * which makes the usable limit higher. */ #if CONFIG_PGTABLE_LEVELS > 2 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; #endif pages = min_t(unsigned long long, l1tf_limit, pages); } return pages; } #endif #ifdef CONFIG_EXECMEM static struct execmem_info execmem_info __ro_after_init; #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX void execmem_fill_trapping_insns(void *ptr, size_t size, bool writeable) { /* fill memory with INT3 instructions */ if (writeable) memset(ptr, INT3_INSN_OPCODE, size); else text_poke_set(ptr, INT3_INSN_OPCODE, size); } #endif struct execmem_info __init *execmem_arch_setup(void) { unsigned long start, offset = 0; enum execmem_range_flags flags; pgprot_t pgprot; if (kaslr_enabled()) offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE; start = MODULES_VADDR + offset; if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) && cpu_feature_enabled(X86_FEATURE_PSE)) { pgprot = PAGE_KERNEL_ROX; flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE; } else { pgprot = PAGE_KERNEL; flags = EXECMEM_KASAN_SHADOW; } execmem_info = (struct execmem_info){ .ranges = { [EXECMEM_MODULE_TEXT] = { .flags = flags, .start = start, .end = MODULES_END, .pgprot = pgprot, .alignment = MODULE_ALIGN, }, [EXECMEM_KPROBES ... EXECMEM_BPF] = { .flags = EXECMEM_KASAN_SHADOW, .start = start, .end = MODULES_END, .pgprot = PAGE_KERNEL, .alignment = MODULE_ALIGN, }, [EXECMEM_MODULE_DATA] = { .flags = EXECMEM_KASAN_SHADOW, .start = start, .end = MODULES_END, .pgprot = PAGE_KERNEL, .alignment = MODULE_ALIGN, }, }, }; return &execmem_info; } #endif /* CONFIG_EXECMEM */