// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "capabilities.h" #include "cpuid.h" #include "hyperv.h" #include "kvm_onhyperv.h" #include "irq.h" #include "kvm_cache_regs.h" #include "lapic.h" #include "mmu.h" #include "nested.h" #include "pmu.h" #include "sgx.h" #include "trace.h" #include "vmcs.h" #include "vmcs12.h" #include "vmx.h" #include "x86.h" #include "smm.h" #include "vmx_onhyperv.h" MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #ifdef MODULE static const struct x86_cpu_id vmx_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); #endif bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly enable_vnmi = 1; module_param_named(vnmi, enable_vnmi, bool, 0444); bool __read_mostly flexpriority_enabled = 1; module_param_named(flexpriority, flexpriority_enabled, bool, 0444); bool __read_mostly enable_ept = 1; module_param_named(ept, enable_ept, bool, 0444); bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, enable_unrestricted_guest, bool, 0444); bool __read_mostly enable_ept_ad_bits = 1; module_param_named(eptad, enable_ept_ad_bits, bool, 0444); static bool __read_mostly emulate_invalid_guest_state = true; module_param(emulate_invalid_guest_state, bool, 0444); static bool __read_mostly fasteoi = 1; module_param(fasteoi, bool, 0444); module_param(enable_apicv, bool, 0444); bool __read_mostly enable_ipiv = true; module_param(enable_ipiv, bool, 0444); /* * If nested=1, nested virtualization is supported, i.e., guests may use * VMX and be a hypervisor for its own guests. If nested=0, guests may not * use VMX instructions. */ static bool __read_mostly nested = 1; module_param(nested, bool, 0444); bool __read_mostly enable_pml = 1; module_param_named(pml, enable_pml, bool, 0444); static bool __read_mostly error_on_inconsistent_vmcs_config = true; module_param(error_on_inconsistent_vmcs_config, bool, 0444); static bool __read_mostly dump_invalid_vmcs = 0; module_param(dump_invalid_vmcs, bool, 0644); #define MSR_BITMAP_MODE_X2APIC 1 #define MSR_BITMAP_MODE_X2APIC_APICV 2 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ static int __read_mostly cpu_preemption_timer_multi; static bool __read_mostly enable_preemption_timer = 1; #ifdef CONFIG_X86_64 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); #endif extern bool __read_mostly allow_smaller_maxphyaddr; module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE #define KVM_VM_CR0_ALWAYS_ON \ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ RTIT_STATUS_BYTECNT)) /* * List of MSRs that can be directly passed to the guest. * In addition to these x2apic, PT and LBR MSRs are handled specially. */ static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { MSR_IA32_SPEC_CTRL, MSR_IA32_PRED_CMD, MSR_IA32_FLUSH_CMD, MSR_IA32_TSC, #ifdef CONFIG_X86_64 MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE, MSR_IA32_XFD, MSR_IA32_XFD_ERR, #endif MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_CORE_C1_RES, MSR_CORE_C3_RESIDENCY, MSR_CORE_C6_RESIDENCY, MSR_CORE_C7_RESIDENCY, }; /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * ple_gap: upper bound on the amount of time between two successive * executions of PAUSE in a loop. Also indicate if ple enabled. * According to test, this time is usually smaller than 128 cycles. * ple_window: upper bound on the amount of time a guest is allowed to execute * in a PAUSE loop. Tests indicate that most spinlocks are held for * less than 2^12 cycles * Time is measured based on a counter that runs at the same rate as the TSC, * refer SDM volume 3b section 21.6.13 & 22.1.3. */ static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; module_param(ple_gap, uint, 0444); static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; module_param(ple_window, uint, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(ple_window_grow, uint, 0444); /* Default resets per-vcpu window every exit to ple_window. */ static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(ple_window_shrink, uint, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; module_param(ple_window_max, uint, 0444); /* Default is SYSTEM mode, 1 for host-guest mode */ int __read_mostly pt_mode = PT_MODE_SYSTEM; module_param(pt_mode, int, S_IRUGO); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); static DEFINE_MUTEX(vmx_l1d_flush_mutex); /* Storage for pre module init parameter parsing */ static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; static const struct { const char *option; bool for_parse; } vmentry_l1d_param[] = { [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, [VMENTER_L1D_FLUSH_COND] = {"cond", true}, [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, }; #define L1D_CACHE_ORDER 4 static void *vmx_l1d_flush_pages; static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) { struct page *page; unsigned int i; if (!boot_cpu_has_bug(X86_BUG_L1TF)) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } if (!enable_ept) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; return 0; } if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } /* If set to auto use the default l1tf mitigation method */ if (l1tf == VMENTER_L1D_FLUSH_AUTO) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: l1tf = VMENTER_L1D_FLUSH_NEVER; break; case L1TF_MITIGATION_FLUSH_NOWARN: case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: l1tf = VMENTER_L1D_FLUSH_COND; break; case L1TF_MITIGATION_FULL: case L1TF_MITIGATION_FULL_FORCE: l1tf = VMENTER_L1D_FLUSH_ALWAYS; break; } } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { l1tf = VMENTER_L1D_FLUSH_ALWAYS; } if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { /* * This allocation for vmx_l1d_flush_pages is not tied to a VM * lifetime and so should not be charged to a memcg. */ page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); if (!page) return -ENOMEM; vmx_l1d_flush_pages = page_address(page); /* * Initialize each page with a different pattern in * order to protect against KSM in the nested * virtualization case. */ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, PAGE_SIZE); } } l1tf_vmx_mitigation = l1tf; if (l1tf != VMENTER_L1D_FLUSH_NEVER) static_branch_enable(&vmx_l1d_should_flush); else static_branch_disable(&vmx_l1d_should_flush); if (l1tf == VMENTER_L1D_FLUSH_COND) static_branch_enable(&vmx_l1d_flush_cond); else static_branch_disable(&vmx_l1d_flush_cond); return 0; } static int vmentry_l1d_flush_parse(const char *s) { unsigned int i; if (s) { for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { if (vmentry_l1d_param[i].for_parse && sysfs_streq(s, vmentry_l1d_param[i].option)) return i; } } return -EINVAL; } static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) { int l1tf, ret; l1tf = vmentry_l1d_flush_parse(s); if (l1tf < 0) return l1tf; if (!boot_cpu_has(X86_BUG_L1TF)) return 0; /* * Has vmx_init() run already? If not then this is the pre init * parameter parsing. In that case just store the value and let * vmx_init() do the proper setup after enable_ept has been * established. */ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { vmentry_l1d_flush_param = l1tf; return 0; } mutex_lock(&vmx_l1d_flush_mutex); ret = vmx_setup_l1d_flush(l1tf); mutex_unlock(&vmx_l1d_flush_mutex); return ret; } static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) { if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) return sysfs_emit(s, "???\n"); return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); } static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) { u64 msr; if (!vmx->disable_fb_clear) return; msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); msr |= FB_CLEAR_DIS; native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); /* Cache the MSR value to avoid reading it later */ vmx->msr_ia32_mcu_opt_ctrl = msr; } static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) { if (!vmx->disable_fb_clear) return; vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); } static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) { /* * Disable VERW's behavior of clearing CPU buffers for the guest if the * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled * the mitigation. Disabling the clearing behavior provides a * performance boost for guests that aren't aware that manually clearing * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry * and VM-Exit. */ vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && !boot_cpu_has_bug(X86_BUG_MDS) && !boot_cpu_has_bug(X86_BUG_TAA); /* * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS * at VMEntry. Skip the MSR read/write when a guest has no use case to * execute VERW. */ if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) vmx->disable_fb_clear = false; } static const struct kernel_param_ops vmentry_l1d_flush_ops = { .set = vmentry_l1d_flush_set, .get = vmentry_l1d_flush_get, }; module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); static u32 vmx_segment_access_rights(struct kvm_segment *var); void vmx_vmexit(void); #define vmx_insn_failed(fmt...) \ do { \ WARN_ONCE(1, fmt); \ pr_warn_ratelimited(fmt); \ } while (0) noinline void vmread_error(unsigned long field) { vmx_insn_failed("vmread failed: field=%lx\n", field); } #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT noinstr void vmread_error_trampoline2(unsigned long field, bool fault) { if (fault) { kvm_spurious_fault(); } else { instrumentation_begin(); vmread_error(field); instrumentation_end(); } } #endif noinline void vmwrite_error(unsigned long field, unsigned long value) { vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) { vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) { vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) { vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", ext, vpid, gva); } noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) { vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", ext, eptp, gpa); } static DEFINE_PER_CPU(struct vmcs *, vmxarea); DEFINE_PER_CPU(struct vmcs *, current_vmcs); /* * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. */ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); static DEFINE_SPINLOCK(vmx_vpid_lock); struct vmcs_config vmcs_config __ro_after_init; struct vmx_capability vmx_capability __ro_after_init; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static const struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) { vmx->segment_cache.bitmask = 0; } static unsigned long host_idt_base; #if IS_ENABLED(CONFIG_HYPERV) static struct kvm_x86_ops vmx_x86_ops __initdata; static bool __read_mostly enlightened_vmcs = true; module_param(enlightened_vmcs, bool, 0444); static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) { struct hv_enlightened_vmcs *evmcs; hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); if (partition_assist_page == INVALID_PAGE) return -ENOMEM; evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; evmcs->partition_assist_page = partition_assist_page; evmcs->hv_vm_id = (unsigned long)vcpu->kvm; evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; return 0; } static __init void hv_init_evmcs(void) { int cpu; if (!enlightened_vmcs) return; /* * Enlightened VMCS usage should be recommended and the host needs * to support eVMCS v1 or above. */ if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= KVM_EVMCS_VERSION) { /* Check that we have assist pages on all online CPUs */ for_each_online_cpu(cpu) { if (!hv_get_vp_assist_page(cpu)) { enlightened_vmcs = false; break; } } if (enlightened_vmcs) { pr_info("Using Hyper-V Enlightened VMCS\n"); static_branch_enable(&__kvm_is_using_evmcs); } if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) vmx_x86_ops.enable_l2_tlb_flush = hv_enable_l2_tlb_flush; } else { enlightened_vmcs = false; } } static void hv_reset_evmcs(void) { struct hv_vp_assist_page *vp_ap; if (!kvm_is_using_evmcs()) return; /* * KVM should enable eVMCS if and only if all CPUs have a VP assist * page, and should reject CPU onlining if eVMCS is enabled the CPU * doesn't have a VP assist page allocated. */ vp_ap = hv_get_vp_assist_page(smp_processor_id()); if (WARN_ON_ONCE(!vp_ap)) return; /* * Reset everything to support using non-enlightened VMCS access later * (e.g. when we reload the module with enlightened_vmcs=0) */ vp_ap->nested_control.features.directhypercall = 0; vp_ap->current_nested_vmcs = 0; vp_ap->enlighten_vmentry = 0; } #else /* IS_ENABLED(CONFIG_HYPERV) */ static void hv_init_evmcs(void) {} static void hv_reset_evmcs(void) {} #endif /* IS_ENABLED(CONFIG_HYPERV) */ /* * Comment's format: document - errata name - stepping - processor name. * Refer from * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp */ static u32 vmx_preemption_cpu_tfms[] = { /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 0x000206E6, /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020652, /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020655, /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ /* * 320767.pdf - AAP86 - B1 - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile */ 0x000106E5, /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 0x000106A0, /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 0x000106A1, /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 0x000106A4, /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 0x000106A5, /* Xeon E3-1220 V2 */ 0x000306A8, }; static inline bool cpu_has_broken_vmx_preemption_timer(void) { u32 eax = cpuid_eax(0x00000001), i; /* Clear the reserved bits */ eax &= ~(0x3U << 14 | 0xfU << 28); for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) if (eax == vmx_preemption_cpu_tfms[i]) return true; return false; } static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) { return flexpriority_enabled && lapic_in_kernel(vcpu); } static int vmx_get_passthrough_msr_slot(u32 msr) { int i; switch (msr) { case 0x800 ... 0x8ff: /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ return -ENOENT; case MSR_IA32_RTIT_STATUS: case MSR_IA32_RTIT_OUTPUT_BASE: case MSR_IA32_RTIT_OUTPUT_MASK: case MSR_IA32_RTIT_CR3_MATCH: case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ case MSR_LBR_SELECT: case MSR_LBR_TOS: case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ return -ENOENT; } for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { if (vmx_possible_passthrough_msrs[i] == msr) return i; } WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); return -ENOENT; } struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) { int i; i = kvm_find_user_return_msr(msr); if (i >= 0) return &vmx->guest_uret_msrs[i]; return NULL; } static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, struct vmx_uret_msr *msr, u64 data) { unsigned int slot = msr - vmx->guest_uret_msrs; int ret = 0; if (msr->load_into_hardware) { preempt_disable(); ret = kvm_set_user_return_msr(slot, data, msr->mask); preempt_enable(); } if (!ret) msr->data = data; return ret; } /* * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) * * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to * atomically track post-VMXON state, e.g. this may be called in NMI context. * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. * faults are guaranteed to be due to the !post-VMXON check unless the CPU is * magically in RM, VM86, compat mode, or at CPL>0. */ static int kvm_cpu_vmxoff(void) { asm goto("1: vmxoff\n\t" _ASM_EXTABLE(1b, %l[fault]) ::: "cc", "memory" : fault); cr4_clear_bits(X86_CR4_VMXE); return 0; fault: cr4_clear_bits(X86_CR4_VMXE); return -EIO; } static void vmx_emergency_disable(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v; kvm_rebooting = true; /* * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be * set in task context. If this races with VMX is disabled by an NMI, * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to * kvm_rebooting set. */ if (!(__read_cr4() & X86_CR4_VMXE)) return; list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) vmcs_clear(v->vmcs); kvm_cpu_vmxoff(); } static void __loaded_vmcs_clear(void *arg) { struct loaded_vmcs *loaded_vmcs = arg; int cpu = raw_smp_processor_id(); if (loaded_vmcs->cpu != cpu) return; /* vcpu migration can race with cpu offline */ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) per_cpu(current_vmcs, cpu) = NULL; vmcs_clear(loaded_vmcs->vmcs); if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) vmcs_clear(loaded_vmcs->shadow_vmcs); list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); /* * Ensure all writes to loaded_vmcs, including deleting it from its * current percpu list, complete before setting loaded_vmcs->cpu to * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first * and add loaded_vmcs to its percpu list before it's deleted from this * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). */ smp_wmb(); loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; } void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) { int cpu = loaded_vmcs->cpu; if (cpu != -1) smp_call_function_single(cpu, __loaded_vmcs_clear, loaded_vmcs, 1); } static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, unsigned field) { bool ret; u32 mask = 1 << (seg * SEG_FIELD_NR + field); if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); vmx->segment_cache.bitmask = 0; } ret = vmx->segment_cache.bitmask & mask; vmx->segment_cache.bitmask |= mask; return ret; } static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) { u16 *p = &vmx->segment_cache.seg[seg].selector; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); return *p; } static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) { ulong *p = &vmx->segment_cache.seg[seg].base; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); return *p; } static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].limit; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); return *p; } static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].ar; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); return *p; } void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) { u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) eb |= (1u << GP_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) eb |= 1u << BP_VECTOR; if (to_vmx(vcpu)->rmode.vm86_active) eb = ~0; if (!vmx_need_pf_intercept(vcpu)) eb &= ~(1u << PF_VECTOR); /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass * them to L1. When running L2, we will only handle the exceptions * specified above if L1 did not want them. */ if (is_guest_mode(vcpu)) eb |= get_vmcs12(vcpu)->exception_bitmap; else { int mask = 0, match = 0; if (enable_ept && (eb & (1u << PF_VECTOR))) { /* * If EPT is enabled, #PF is currently only intercepted * if MAXPHYADDR is smaller on the guest than on the * host. In that case we only care about present, * non-reserved faults. For vmcs02, however, PFEC_MASK * and PFEC_MATCH are set in prepare_vmcs02_rare. */ mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; match = PFERR_PRESENT_MASK; } vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); } /* * Disabling xfd interception indicates that dynamic xfeatures * might be used in the guest. Always trap #NM in this case * to save guest xfd_err timely. */ if (vcpu->arch.xfd_no_write_intercept) eb |= (1u << NM_VECTOR); vmcs_write32(EXCEPTION_BITMAP, eb); } /* * Check if MSR is intercepted for currently loaded MSR bitmap. */ static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) { if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) return true; return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); } unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) { unsigned int flags = 0; if (vmx->loaded_vmcs->launched) flags |= VMX_RUN_VMRESUME; /* * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free * to change it directly without causing a vmexit. In that case read * it after vmexit and store it in vmx->spec_ctrl. */ if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) flags |= VMX_RUN_SAVE_SPEC_CTRL; return flags; } static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit) { vm_entry_controls_clearbit(vmx, entry); vm_exit_controls_clearbit(vmx, exit); } int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) { unsigned int i; for (i = 0; i < m->nr; ++i) { if (m->val[i].index == msr) return i; } return -ENOENT; } static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) { int i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); return; } break; } i = vmx_find_loadstore_msr_slot(&m->guest, msr); if (i < 0) goto skip_guest; --m->guest.nr; m->guest.val[i] = m->guest.val[m->guest.nr]; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); skip_guest: i = vmx_find_loadstore_msr_slot(&m->host, msr); if (i < 0) return; --m->host.nr; m->host.val[i] = m->host.val[m->host.nr]; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit, unsigned long guest_val_vmcs, unsigned long host_val_vmcs, u64 guest_val, u64 host_val) { vmcs_write64(guest_val_vmcs, guest_val); if (host_val_vmcs != HOST_IA32_EFER) vmcs_write64(host_val_vmcs, host_val); vm_entry_controls_setbit(vmx, entry); vm_exit_controls_setbit(vmx, exit); } static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, u64 guest_val, u64 host_val, bool entry_only) { int i, j = 0; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER, GUEST_IA32_EFER, HOST_IA32_EFER, guest_val, host_val); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, GUEST_IA32_PERF_GLOBAL_CTRL, HOST_IA32_PERF_GLOBAL_CTRL, guest_val, host_val); return; } break; case MSR_IA32_PEBS_ENABLE: /* PEBS needs a quiescent period after being disabled (to write * a record). Disabling PEBS through VMX MSR swapping doesn't * provide that period, so a CPU could write host's record into * guest's memory. */ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } i = vmx_find_loadstore_msr_slot(&m->guest, msr); if (!entry_only) j = vmx_find_loadstore_msr_slot(&m->host, msr); if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { printk_once(KERN_WARNING "Not enough msr switch entries. " "Can't add msr %x\n", msr); return; } if (i < 0) { i = m->guest.nr++; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); } m->guest.val[i].index = msr; m->guest.val[i].value = guest_val; if (entry_only) return; if (j < 0) { j = m->host.nr++; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } m->host.val[j].index = msr; m->host.val[j].value = host_val; } static bool update_transition_efer(struct vcpu_vmx *vmx) { u64 guest_efer = vmx->vcpu.arch.efer; u64 ignore_bits = 0; int i; /* Shadow paging assumes NX to be available. */ if (!enable_ept) guest_efer |= EFER_NX; /* * LMA and LME handled by hardware; SCE meaningless outside long mode. */ ignore_bits |= EFER_SCE; #ifdef CONFIG_X86_64 ignore_bits |= EFER_LMA | EFER_LME; /* SCE is meaningful only in long mode on Intel */ if (guest_efer & EFER_LMA) ignore_bits &= ~(u64)EFER_SCE; #endif /* * On EPT, we can't emulate NX, so we must switch EFER atomically. * On CPUs that support "load IA32_EFER", always switch EFER * atomically, since it's faster than switching it manually. */ if (cpu_has_load_ia32_efer() || (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { if (!(guest_efer & EFER_LMA)) guest_efer &= ~EFER_LME; if (guest_efer != host_efer) add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer, false); else clear_atomic_switch_msr(vmx, MSR_EFER); return false; } i = kvm_find_user_return_msr(MSR_EFER); if (i < 0) return false; clear_atomic_switch_msr(vmx, MSR_EFER); guest_efer &= ~ignore_bits; guest_efer |= host_efer & ignore_bits; vmx->guest_uret_msrs[i].data = guest_efer; vmx->guest_uret_msrs[i].mask = ~ignore_bits; return true; } #ifdef CONFIG_X86_32 /* * On 32-bit kernels, VM exits still load the FS and GS bases from the * VMCS rather than the segment table. KVM uses this helper to figure * out the current bases to poke them into the VMCS before entry. */ static unsigned long segment_base(u16 selector) { struct desc_struct *table; unsigned long v; if (!(selector & ~SEGMENT_RPL_MASK)) return 0; table = get_current_gdt_ro(); if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { u16 ldt_selector = kvm_read_ldt(); if (!(ldt_selector & ~SEGMENT_RPL_MASK)) return 0; table = (struct desc_struct *)segment_base(ldt_selector); } v = get_desc_base(&table[selector >> 3]); return v; } #endif static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) { return vmx_pt_mode_is_host_guest() && !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); } static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) { /* The base must be 128-byte aligned and a legal physical address. */ return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); } static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) { u32 i; wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); for (i = 0; i < addr_range; i++) { wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); } } static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) { u32 i; rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); for (i = 0; i < addr_range; i++) { rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); } } static void pt_guest_enter(struct vcpu_vmx *vmx) { if (vmx_pt_mode_is_system()) return; /* * GUEST_IA32_RTIT_CTL is already set in the VMCS. * Save host state before VM entry. */ rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { wrmsrl(MSR_IA32_RTIT_CTL, 0); pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); } } static void pt_guest_exit(struct vcpu_vmx *vmx) { if (vmx_pt_mode_is_system()) return; if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); } /* * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. */ if (vmx->pt_desc.host.ctl) wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); } void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, unsigned long fs_base, unsigned long gs_base) { if (unlikely(fs_sel != host->fs_sel)) { if (!(fs_sel & 7)) vmcs_write16(HOST_FS_SELECTOR, fs_sel); else vmcs_write16(HOST_FS_SELECTOR, 0); host->fs_sel = fs_sel; } if (unlikely(gs_sel != host->gs_sel)) { if (!(gs_sel & 7)) vmcs_write16(HOST_GS_SELECTOR, gs_sel); else vmcs_write16(HOST_GS_SELECTOR, 0); host->gs_sel = gs_sel; } if (unlikely(fs_base != host->fs_base)) { vmcs_writel(HOST_FS_BASE, fs_base); host->fs_base = fs_base; } if (unlikely(gs_base != host->gs_base)) { vmcs_writel(HOST_GS_BASE, gs_base); host->gs_base = gs_base; } } void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs_host_state *host_state; #ifdef CONFIG_X86_64 int cpu = raw_smp_processor_id(); #endif unsigned long fs_base, gs_base; u16 fs_sel, gs_sel; int i; /* * Note that guest MSRs to be saved/restored can also be changed * when guest state is loaded. This happens when guest transitions * to/from long-mode by setting MSR_EFER.LMA. */ if (!vmx->guest_uret_msrs_loaded) { vmx->guest_uret_msrs_loaded = true; for (i = 0; i < kvm_nr_uret_msrs; ++i) { if (!vmx->guest_uret_msrs[i].load_into_hardware) continue; kvm_set_user_return_msr(i, vmx->guest_uret_msrs[i].data, vmx->guest_uret_msrs[i].mask); } } if (vmx->nested.need_vmcs12_to_shadow_sync) nested_sync_vmcs12_to_shadow(vcpu); if (vmx->guest_state_loaded) return; host_state = &vmx->loaded_vmcs->host_state; /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ host_state->ldt_sel = kvm_read_ldt(); #ifdef CONFIG_X86_64 savesegment(ds, host_state->ds_sel); savesegment(es, host_state->es_sel); gs_base = cpu_kernelmode_gs_base(cpu); if (likely(is_64bit_mm(current->mm))) { current_save_fsgs(); fs_sel = current->thread.fsindex; gs_sel = current->thread.gsindex; fs_base = current->thread.fsbase; vmx->msr_host_kernel_gs_base = current->thread.gsbase; } else { savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = read_msr(MSR_FS_BASE); vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); } wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #else savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = segment_base(fs_sel); gs_base = segment_base(gs_sel); #endif vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); vmx->guest_state_loaded = true; } static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) { struct vmcs_host_state *host_state; if (!vmx->guest_state_loaded) return; host_state = &vmx->loaded_vmcs->host_state; ++vmx->vcpu.stat.host_state_reload; #ifdef CONFIG_X86_64 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (host_state->ldt_sel || (host_state->gs_sel & 7)) { kvm_load_ldt(host_state->ldt_sel); #ifdef CONFIG_X86_64 load_gs_index(host_state->gs_sel); #else loadsegment(gs, host_state->gs_sel); #endif } if (host_state->fs_sel & 7) loadsegment(fs, host_state->fs_sel); #ifdef CONFIG_X86_64 if (unlikely(host_state->ds_sel | host_state->es_sel)) { loadsegment(ds, host_state->ds_sel); loadsegment(es, host_state->es_sel); } #endif invalidate_tss_limit(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif load_fixmap_gdt(raw_smp_processor_id()); vmx->guest_state_loaded = false; vmx->guest_uret_msrs_loaded = false; } #ifdef CONFIG_X86_64 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) { preempt_disable(); if (vmx->guest_state_loaded) rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); preempt_enable(); return vmx->msr_guest_kernel_gs_base; } static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) { preempt_disable(); if (vmx->guest_state_loaded) wrmsrl(MSR_KERNEL_GS_BASE, data); preempt_enable(); vmx->msr_guest_kernel_gs_base = data; } #endif void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, struct loaded_vmcs *buddy) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool already_loaded = vmx->loaded_vmcs->cpu == cpu; struct vmcs *prev; if (!already_loaded) { loaded_vmcs_clear(vmx->loaded_vmcs); local_irq_disable(); /* * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to * this cpu's percpu list, otherwise it may not yet be deleted * from its previous cpu's percpu list. Pairs with the * smb_wmb() in __loaded_vmcs_clear(). */ smp_rmb(); list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, &per_cpu(loaded_vmcss_on_cpu, cpu)); local_irq_enable(); } prev = per_cpu(current_vmcs, cpu); if (prev != vmx->loaded_vmcs->vmcs) { per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; vmcs_load(vmx->loaded_vmcs->vmcs); /* * No indirect branch prediction barrier needed when switching * the active VMCS within a vCPU, unless IBRS is advertised to * the vCPU. To minimize the number of IBPBs executed, KVM * performs IBPB on nested VM-Exit (a single nested transition * may switch the active VMCS multiple times). */ if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) indirect_branch_prediction_barrier(); } if (!already_loaded) { void *gdt = get_current_gdt_ro(); /* * Flush all EPTP/VPID contexts, the new pCPU may have stale * TLB entries from its previous association with the vCPU. */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. See 22.2.4. */ vmcs_writel(HOST_TR_BASE, (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { /* 22.2.3 */ vmcs_writel(HOST_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); } vmx->loaded_vmcs->cpu = cpu; } } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmx_vcpu_load_vmcs(vcpu, cpu, NULL); vmx_vcpu_pi_load(vcpu, cpu); vmx->host_debugctlmsr = get_debugctlmsr(); } static void vmx_vcpu_put(struct kvm_vcpu *vcpu) { vmx_vcpu_pi_put(vcpu); vmx_prepare_switch_to_host(to_vmx(vcpu)); } bool vmx_emulation_required(struct kvm_vcpu *vcpu) { return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); } unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long rflags, save_rflags; if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); rflags = vmcs_readl(GUEST_RFLAGS); if (vmx->rmode.vm86_active) { rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; save_rflags = vmx->rmode.save_rflags; rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; } vmx->rflags = rflags; } return vmx->rflags; } void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long old_rflags; /* * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU * is an unrestricted guest in order to mark L2 as needing emulation * if L1 runs L2 as a restricted guest. */ if (is_unrestricted_guest(vcpu)) { kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); vmx->rflags = rflags; vmcs_writel(GUEST_RFLAGS, rflags); return; } old_rflags = vmx_get_rflags(vcpu); vmx->rflags = rflags; if (vmx->rmode.vm86_active) { vmx->rmode.save_rflags = rflags; rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; } vmcs_writel(GUEST_RFLAGS, rflags); if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) vmx->emulation_required = vmx_emulation_required(vcpu); } static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) { return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; } u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) { u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); int ret = 0; if (interruptibility & GUEST_INTR_STATE_STI) ret |= KVM_X86_SHADOW_INT_STI; if (interruptibility & GUEST_INTR_STATE_MOV_SS) ret |= KVM_X86_SHADOW_INT_MOV_SS; return ret; } void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); u32 interruptibility = interruptibility_old; interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); if (mask & KVM_X86_SHADOW_INT_MOV_SS) interruptibility |= GUEST_INTR_STATE_MOV_SS; else if (mask & KVM_X86_SHADOW_INT_STI) interruptibility |= GUEST_INTR_STATE_STI; if ((interruptibility != interruptibility_old)) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); } static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long value; /* * Any MSR write that attempts to change bits marked reserved will * case a #GP fault. */ if (data & vmx->pt_desc.ctl_bitmask) return 1; /* * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will * result in a #GP unless the same write also clears TraceEn. */ if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) return 1; /* * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit * and FabricEn would cause #GP, if * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 */ if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && !(data & RTIT_CTL_FABRIC_EN) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; /* * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that * utilize encodings marked reserved will cause a #GP fault. */ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && !test_bit((data & RTIT_CTL_MTC_RANGE) >> RTIT_CTL_MTC_RANGE_OFFSET, &value)) return 1; value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cycle_thresholds); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && !test_bit((data & RTIT_CTL_CYC_THRESH) >> RTIT_CTL_CYC_THRESH_OFFSET, &value)) return 1; value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && !test_bit((data & RTIT_CTL_PSB_FREQ) >> RTIT_CTL_PSB_FREQ_OFFSET, &value)) return 1; /* * If ADDRx_CFG is reserved or the encodings is >2 will * cause a #GP fault. */ value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) return 1; return 0; } static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len) { /* * Emulation of instructions in SGX enclaves is impossible as RIP does * not point at the failing instruction, and even if it did, the code * stream is inaccessible. Inject #UD instead of exiting to userspace * so that guest userspace can't DoS the guest simply by triggering * emulation (enclaves are CPL3 only). */ if (to_vmx(vcpu)->exit_reason.enclave_mode) { kvm_queue_exception(vcpu, UD_VECTOR); return X86EMUL_PROPAGATE_FAULT; } return X86EMUL_CONTINUE; } static int skip_emulated_instruction(struct kvm_vcpu *vcpu) { union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; unsigned long rip, orig_rip; u32 instr_len; /* * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on * undefined behavior: Intel's SDM doesn't mandate the VMCS field be * set when EPT misconfig occurs. In practice, real hardware updates * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors * (namely Hyper-V) don't set it due to it being undefined behavior, * i.e. we end up advancing IP with some random value. */ if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); /* * Emulating an enclave's instructions isn't supported as KVM * cannot access the enclave's memory or its true RIP, e.g. the * vmcs.GUEST_RIP points at the exit point of the enclave, not * the RIP that actually triggered the VM-Exit. But, because * most instructions that cause VM-Exit will #UD in an enclave, * most instruction-based VM-Exits simply do not occur. * * There are a few exceptions, notably the debug instructions * INT1ICEBRK and INT3, as they are allowed in debug enclaves * and generate #DB/#BP as expected, which KVM might intercept. * But again, the CPU does the dirty work and saves an instr * length of zero so VMMs don't shoot themselves in the foot. * WARN if KVM tries to skip a non-zero length instruction on * a VM-Exit from an enclave. */ if (!instr_len) goto rip_updated; WARN_ONCE(exit_reason.enclave_mode, "skipping instruction after SGX enclave VM-Exit"); orig_rip = kvm_rip_read(vcpu); rip = orig_rip + instr_len; #ifdef CONFIG_X86_64 /* * We need to mask out the high 32 bits of RIP if not in 64-bit * mode, but just finding out that we are in 64-bit mode is * quite expensive. Only do it if there was a carry. */ if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) rip = (u32)rip; #endif kvm_rip_write(vcpu, rip); } else { if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) return 0; } rip_updated: /* skipping an emulated instruction also counts */ vmx_set_interrupt_shadow(vcpu, 0); return 1; } /* * Recognizes a pending MTF VM-exit and records the nested state for later * delivery. */ static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); if (!is_guest_mode(vcpu)) return; /* * Per the SDM, MTF takes priority over debug-trap exceptions besides * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps * or ICEBP (in the emulator proper), and skipping of ICEBP after an * intercepted #DB deliberately avoids single-step #DB and MTF updates * as ICEBP is higher priority than both. As instruction emulation is * completed at this point (i.e. KVM is at the instruction boundary), * any #DB exception pending delivery must be a debug-trap of lower * priority than MTF. Record the pending MTF state to be delivered in * vmx_check_nested_events(). */ if (nested_cpu_has_mtf(vmcs12) && (!vcpu->arch.exception.pending || vcpu->arch.exception.vector == DB_VECTOR) && (!vcpu->arch.exception_vmexit.pending || vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { vmx->nested.mtf_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); } else { vmx->nested.mtf_pending = false; } } static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) { vmx_update_emulated_instruction(vcpu); return skip_emulated_instruction(vcpu); } static void vmx_clear_hlt(struct kvm_vcpu *vcpu) { /* * Ensure that we clear the HLT state in the VMCS. We don't need to * explicitly skip the instruction because if the HLT state is set, * then the instruction is already executing and RIP has already been * advanced. */ if (kvm_hlt_in_guest(vcpu->kvm) && vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); } static void vmx_inject_exception(struct kvm_vcpu *vcpu) { struct kvm_queued_exception *ex = &vcpu->arch.exception; u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; struct vcpu_vmx *vmx = to_vmx(vcpu); kvm_deliver_exception_payload(vcpu, ex); if (ex->has_error_code) { /* * Despite the error code being architecturally defined as 32 * bits, and the VMCS field being 32 bits, Intel CPUs and thus * VMX don't actually supporting setting bits 31:16. Hardware * will (should) never provide a bogus error code, but AMD CPUs * do generate error codes with bits 31:16 set, and so KVM's * ABI lets userspace shove in arbitrary 32-bit values. Drop * the upper bits to avoid VM-Fail, losing information that * doesn't really exist is preferable to killing the VM. */ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (vmx->rmode.vm86_active) { int inc_eip = 0; if (kvm_exception_is_soft(ex->vector)) inc_eip = vcpu->arch.event_exit_inst_len; kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); return; } WARN_ON_ONCE(vmx->emulation_required); if (kvm_exception_is_soft(ex->vector)) { vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); intr_info |= INTR_TYPE_SOFT_EXCEPTION; } else intr_info |= INTR_TYPE_HARD_EXCEPTION; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); vmx_clear_hlt(vcpu); } static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, bool load_into_hardware) { struct vmx_uret_msr *uret_msr; uret_msr = vmx_find_uret_msr(vmx, msr); if (!uret_msr) return; uret_msr->load_into_hardware = load_into_hardware; } /* * Configuring user return MSRs to automatically save, load, and restore MSRs * that need to be shoved into hardware when running the guest. Note, omitting * an MSR here does _NOT_ mean it's not emulated, only that it will not be * loaded into hardware when running the guest. */ static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) { #ifdef CONFIG_X86_64 bool load_syscall_msrs; /* * The SYSCALL MSRs are only needed on long mode guests, and only * when EFER.SCE is set. */ load_syscall_msrs = is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE); vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); #endif vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); vmx_setup_uret_msr(vmx, MSR_TSC_AUX, guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); /* * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new * kernel and old userspace. If those guests run on a tsx=off host, do * allow guests to use TSX_CTRL, but don't change the value in hardware * so that TSX remains always disabled. */ vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); /* * The set of MSRs to load may have changed, reload MSRs before the * next VM-Enter. */ vmx->guest_uret_msrs_loaded = false; } u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) return vmcs12->tsc_offset; return 0; } u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) return vmcs12->tsc_multiplier; return kvm_caps.default_tsc_scaling_ratio; } static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) { vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); } static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) { vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); } /* * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain * backwards compatibility even though KVM doesn't support emulating SMX. And * because userspace set "VMX in SMX", the guest must also be allowed to set it, * e.g. if the MSR is left unlocked and the guest does a RMW operation. */ #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ FEAT_CTL_SGX_LC_ENABLED | \ FEAT_CTL_SGX_ENABLED | \ FEAT_CTL_LMCE_ENABLED) static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, struct msr_data *msr) { uint64_t valid_bits; /* * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are * exposed to the guest. */ WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & ~KVM_SUPPORTED_FEATURE_CONTROL); if (!msr->host_initiated && (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) return false; if (msr->host_initiated) valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; else valid_bits = vmx->msr_ia32_feature_control_valid_bits; return !(msr->data & ~valid_bits); } static int vmx_get_msr_feature(struct kvm_msr_entry *msr) { switch (msr->index) { case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!nested) return 1; return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); default: return KVM_MSR_RET_INVALID; } } /* * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_uret_msr *msr; u32 index; switch (msr_info->index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: msr_info->data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: msr_info->data = vmcs_readl(GUEST_GS_BASE); break; case MSR_KERNEL_GS_BASE: msr_info->data = vmx_read_guest_kernel_gs_base(vmx); break; #endif case MSR_EFER: return kvm_get_msr_common(vcpu, msr_info); case MSR_IA32_TSX_CTRL: if (!msr_info->host_initiated && !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) return 1; goto find_uret_msr; case MSR_IA32_UMWAIT_CONTROL: if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) return 1; msr_info->data = vmx->msr_ia32_umwait_control; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; msr_info->data = to_vmx(vcpu)->spec_ctrl; break; case MSR_IA32_SYSENTER_CS: msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; msr_info->data = vmcs_read64(GUEST_BNDCFGS); break; case MSR_IA32_MCG_EXT_CTL: if (!msr_info->host_initiated && !(vmx->msr_ia32_feature_control & FEAT_CTL_LMCE_ENABLED)) return 1; msr_info->data = vcpu->arch.mcg_ext_ctl; break; case MSR_IA32_FEAT_CTL: msr_info->data = vmx->msr_ia32_feature_control; break; case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) return 1; msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; break; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!guest_can_use(vcpu, X86_FEATURE_VMX)) return 1; if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, &msr_info->data)) return 1; #ifdef CONFIG_KVM_HYPERV /* * Enlightened VMCS v1 doesn't have certain VMCS fields but * instead of just ignoring the features, different Hyper-V * versions are either trying to use them and fail or do some * sanity checking and refuse to boot. Filter all unsupported * features out. */ if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) nested_evmcs_filter_control_msr(vcpu, msr_info->index, &msr_info->data); #endif break; case MSR_IA32_RTIT_CTL: if (!vmx_pt_mode_is_host_guest()) return 1; msr_info->data = vmx->pt_desc.guest.ctl; break; case MSR_IA32_RTIT_STATUS: if (!vmx_pt_mode_is_host_guest()) return 1; msr_info->data = vmx->pt_desc.guest.status; break; case MSR_IA32_RTIT_CR3_MATCH: if (!vmx_pt_mode_is_host_guest() || !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) return 1; msr_info->data = vmx->pt_desc.guest.cr3_match; break; case MSR_IA32_RTIT_OUTPUT_BASE: if (!vmx_pt_mode_is_host_guest() || (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output))) return 1; msr_info->data = vmx->pt_desc.guest.output_base; break; case MSR_IA32_RTIT_OUTPUT_MASK: if (!vmx_pt_mode_is_host_guest() || (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output))) return 1; msr_info->data = vmx->pt_desc.guest.output_mask; break; case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; if (!vmx_pt_mode_is_host_guest() || (index >= 2 * vmx->pt_desc.num_address_ranges)) return 1; if (index % 2) msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; else msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; break; case MSR_IA32_DEBUGCTLMSR: msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); break; default: find_uret_msr: msr = vmx_find_uret_msr(vmx, msr_info->index); if (msr) { msr_info->data = msr->data; break; } return kvm_get_msr_common(vcpu, msr_info); } return 0; } static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, u64 data) { #ifdef CONFIG_X86_64 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) return (u32)data; #endif return (unsigned long)data; } static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) { u64 debugctl = 0; if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; return debugctl; } /* * Writes msr value into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_uret_msr *msr; int ret = 0; u32 msr_index = msr_info->index; u64 data = msr_info->data; u32 index; switch (msr_index) { case MSR_EFER: ret = kvm_set_msr_common(vcpu, msr_info); break; #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_GS_BASE, data); break; case MSR_KERNEL_GS_BASE: vmx_write_guest_kernel_gs_base(vmx, data); break; case MSR_IA32_XFD: ret = kvm_set_msr_common(vcpu, msr_info); /* * Always intercepting WRMSR could incur non-negligible * overhead given xfd might be changed frequently in * guest context switch. Disable write interception * upon the first write with a non-zero value (indicating * potential usage on dynamic xfeatures). Also update * exception bitmap to trap #NM for proper virtualization * of guest xfd_err. */ if (!ret && data) { vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW); vcpu->arch.xfd_no_write_intercept = true; vmx_update_exception_bitmap(vcpu); } break; #endif case MSR_IA32_SYSENTER_CS: if (is_guest_mode(vcpu)) get_vmcs12(vcpu)->guest_sysenter_cs = data; vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: if (is_guest_mode(vcpu)) { data = nested_vmx_truncate_sysenter_addr(vcpu, data); get_vmcs12(vcpu)->guest_sysenter_eip = data; } vmcs_writel(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: if (is_guest_mode(vcpu)) { data = nested_vmx_truncate_sysenter_addr(vcpu, data); get_vmcs12(vcpu)->guest_sysenter_esp = data; } vmcs_writel(GUEST_SYSENTER_ESP, data); break; case MSR_IA32_DEBUGCTLMSR: { u64 invalid; invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); } if (invalid) return 1; if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) get_vmcs12(vcpu)->guest_ia32_debugctl = data; vmcs_write64(GUEST_IA32_DEBUGCTL, data); if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && (data & DEBUGCTLMSR_LBR)) intel_pmu_create_guest_lbr_event(vcpu); return 0; } case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; if (is_noncanonical_address(data & PAGE_MASK, vcpu) || (data & MSR_IA32_BNDCFGS_RSVD)) return 1; if (is_guest_mode(vcpu) && ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) get_vmcs12(vcpu)->guest_bndcfgs = data; vmcs_write64(GUEST_BNDCFGS, data); break; case MSR_IA32_UMWAIT_CONTROL: if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) return 1; /* The reserved bit 1 and non-32 bit [63:32] should be zero */ if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) return 1; vmx->msr_ia32_umwait_control = data; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; if (kvm_spec_ctrl_test_value(data)) return 1; vmx->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_prepare_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. We update the vmcs01 here for L1 as well * since it will end up touching the MSR anyway now. */ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); break; case MSR_IA32_TSX_CTRL: if (!msr_info->host_initiated && !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) return 1; if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) return 1; goto find_uret_msr; case MSR_IA32_CR_PAT: ret = kvm_set_msr_common(vcpu, msr_info); if (ret) break; if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) get_vmcs12(vcpu)->guest_ia32_pat = data; if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, data); break; case MSR_IA32_MCG_EXT_CTL: if ((!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEAT_CTL_LMCE_ENABLED)) || (data & ~MCG_EXT_CTL_LMCE_EN)) return 1; vcpu->arch.mcg_ext_ctl = data; break; case MSR_IA32_FEAT_CTL: if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) return 1; vmx->msr_ia32_feature_control = data; if (msr_info->host_initiated && data == 0) vmx_leave_nested(vcpu); /* SGX may be enabled/disabled by guest's firmware */ vmx_write_encls_bitmap(vcpu, NULL); break; case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: /* * On real hardware, the LE hash MSRs are writable before * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), * at which point SGX related bits in IA32_FEATURE_CONTROL * become writable. * * KVM does not emulate SGX activation for simplicity, so * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL * is unlocked. This is technically not architectural * behavior, but it's close enough. */ if (!msr_info->host_initiated && (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) return 1; vmx->msr_ia32_sgxlepubkeyhash [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; break; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!msr_info->host_initiated) return 1; /* they are read-only */ if (!guest_can_use(vcpu, X86_FEATURE_VMX)) return 1; return vmx_set_vmx_msr(vcpu, msr_index, data); case MSR_IA32_RTIT_CTL: if (!vmx_pt_mode_is_host_guest() || vmx_rtit_ctl_check(vcpu, data) || vmx->nested.vmxon) return 1; vmcs_write64(GUEST_IA32_RTIT_CTL, data); vmx->pt_desc.guest.ctl = data; pt_update_intercept_for_msr(vcpu); break; case MSR_IA32_RTIT_STATUS: if (!pt_can_write_msr(vmx)) return 1; if (data & MSR_IA32_RTIT_STATUS_MASK) return 1; vmx->pt_desc.guest.status = data; break; case MSR_IA32_RTIT_CR3_MATCH: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) return 1; vmx->pt_desc.guest.cr3_match = data; break; case MSR_IA32_RTIT_OUTPUT_BASE: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; if (!pt_output_base_valid(vcpu, data)) return 1; vmx->pt_desc.guest.output_base = data; break; case MSR_IA32_RTIT_OUTPUT_MASK: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; vmx->pt_desc.guest.output_mask = data; break; case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: if (!pt_can_write_msr(vmx)) return 1; index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; if (index >= 2 * vmx->pt_desc.num_address_ranges) return 1; if (is_noncanonical_address(data, vcpu)) return 1; if (index % 2) vmx->pt_desc.guest.addr_b[index / 2] = data; else vmx->pt_desc.guest.addr_a[index / 2] = data; break; case MSR_IA32_PERF_CAPABILITIES: if (data && !vcpu_to_pmu(vcpu)->version) return 1; if (data & PMU_CAP_LBR_FMT) { if ((data & PMU_CAP_LBR_FMT) != (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) return 1; if (!cpuid_model_is_consistent(vcpu)) return 1; } if (data & PERF_CAP_PEBS_FORMAT) { if ((data & PERF_CAP_PEBS_MASK) != (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) return 1; if (!cpuid_model_is_consistent(vcpu)) return 1; } ret = kvm_set_msr_common(vcpu, msr_info); break; default: find_uret_msr: msr = vmx_find_uret_msr(vmx, msr_index); if (msr) ret = vmx_set_guest_uret_msr(vmx, msr, data); else ret = kvm_set_msr_common(vcpu, msr_info); } /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ if (msr_index == MSR_IA32_ARCH_CAPABILITIES) vmx_update_fb_clear_dis(vcpu, vmx); return ret; } static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { unsigned long guest_owned_bits; kvm_register_mark_available(vcpu, reg); switch (reg) { case VCPU_REGS_RSP: vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); break; case VCPU_REGS_RIP: vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); break; case VCPU_EXREG_PDPTR: if (enable_ept) ept_save_pdptrs(vcpu); break; case VCPU_EXREG_CR0: guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; vcpu->arch.cr0 &= ~guest_owned_bits; vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; break; case VCPU_EXREG_CR3: /* * When intercepting CR3 loads, e.g. for shadowing paging, KVM's * CR3 is loaded into hardware, not the guest's CR3. */ if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); break; case VCPU_EXREG_CR4: guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; vcpu->arch.cr4 &= ~guest_owned_bits; vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; break; default: KVM_BUG_ON(1, vcpu->kvm); break; } } /* * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID * directly instead of going through cpu_has(), to ensure KVM is trapping * ENCLS whenever it's supported in hardware. It does not matter whether * the host OS supports or has enabled SGX. */ static bool cpu_has_sgx(void) { return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); } /* * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they * can't be used due to errata where VM Exit may incorrectly clear * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. */ static bool cpu_has_perf_global_ctrl_bug(void) { if (boot_cpu_data.x86 == 0x6) { switch (boot_cpu_data.x86_model) { case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ case INTEL_FAM6_NEHALEM: /* AAP115 */ case INTEL_FAM6_WESTMERE: /* AAT100 */ case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ case INTEL_FAM6_NEHALEM_EX: /* BA97 */ return true; default: break; } } return false; } static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) { u32 vmx_msr_low, vmx_msr_high; u32 ctl = ctl_min | ctl_opt; rdmsr(msr, vmx_msr_low, vmx_msr_high); ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ /* Ensure minimum (required) set of control bits are supported. */ if (ctl_min & ~ctl) return -EIO; *result = ctl; return 0; } static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) { u64 allowed; rdmsrl(msr, allowed); return ctl_opt & allowed; } static int setup_vmcs_config(struct vmcs_config *vmcs_conf, struct vmx_capability *vmx_cap) { u32 vmx_msr_low, vmx_msr_high; u32 _pin_based_exec_control = 0; u32 _cpu_based_exec_control = 0; u32 _cpu_based_2nd_exec_control = 0; u64 _cpu_based_3rd_exec_control = 0; u32 _vmexit_control = 0; u32 _vmentry_control = 0; u64 misc_msr; int i; /* * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always * intercepts writes to PAT and EFER, i.e. never enables those controls. */ struct { u32 entry_control; u32 exit_control; } const vmcs_entry_exit_pairs[] = { { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, }; memset(vmcs_conf, 0, sizeof(*vmcs_conf)); if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS, &_cpu_based_exec_control)) return -EIO; if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS2, &_cpu_based_2nd_exec_control)) return -EIO; } #ifndef CONFIG_X86_64 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; #endif if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_2nd_exec_control &= ~( SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, &vmx_cap->ept, &vmx_cap->vpid); if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && vmx_cap->ept) { pr_warn_once("EPT CAP should not exist if not support " "1-setting enable EPT VM-execution control\n"); if (error_on_inconsistent_vmcs_config) return -EIO; vmx_cap->ept = 0; } if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && vmx_cap->vpid) { pr_warn_once("VPID CAP should not exist if not support " "1-setting enable VPID VM-execution control\n"); if (error_on_inconsistent_vmcs_config) return -EIO; vmx_cap->vpid = 0; } if (!cpu_has_sgx()) _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) _cpu_based_3rd_exec_control = adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS3); if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, MSR_IA32_VMX_EXIT_CTLS, &_vmexit_control)) return -EIO; if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, MSR_IA32_VMX_PINBASED_CTLS, &_pin_based_exec_control)) return -EIO; if (cpu_has_broken_vmx_preemption_timer()) _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, MSR_IA32_VMX_ENTRY_CTLS, &_vmentry_control)) return -EIO; for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) continue; pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); if (error_on_inconsistent_vmcs_config) return -EIO; _vmentry_control &= ~n_ctrl; _vmexit_control &= ~x_ctrl; } rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) return -EIO; #ifdef CONFIG_X86_64 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ if (vmx_msr_high & (1u<<16)) return -EIO; #endif /* Require Write-Back (WB) memory type for VMCS accesses. */ if (((vmx_msr_high >> 18) & 15) != 6) return -EIO; rdmsrl(MSR_IA32_VMX_MISC, misc_msr); vmcs_conf->size = vmx_msr_high & 0x1fff; vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; vmcs_conf->revision_id = vmx_msr_low; vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; vmcs_conf->vmexit_ctrl = _vmexit_control; vmcs_conf->vmentry_ctrl = _vmentry_control; vmcs_conf->misc = misc_msr; #if IS_ENABLED(CONFIG_HYPERV) if (enlightened_vmcs) evmcs_sanitize_exec_ctrls(vmcs_conf); #endif return 0; } static bool __kvm_is_vmx_supported(void) { int cpu = smp_processor_id(); if (!(cpuid_ecx(1) & feature_bit(VMX))) { pr_err("VMX not supported by CPU %d\n", cpu); return false; } if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || !this_cpu_has(X86_FEATURE_VMX)) { pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); return false; } return true; } static bool kvm_is_vmx_supported(void) { bool supported; migrate_disable(); supported = __kvm_is_vmx_supported(); migrate_enable(); return supported; } static int vmx_check_processor_compat(void) { int cpu = raw_smp_processor_id(); struct vmcs_config vmcs_conf; struct vmx_capability vmx_cap; if (!__kvm_is_vmx_supported()) return -EIO; if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { pr_err("Failed to setup VMCS config on CPU %d\n", cpu); return -EIO; } if (nested) nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { pr_err("Inconsistent VMCS config on CPU %d\n", cpu); return -EIO; } return 0; } static int kvm_cpu_vmxon(u64 vmxon_pointer) { u64 msr; cr4_set_bits(X86_CR4_VMXE); asm goto("1: vmxon %[vmxon_pointer]\n\t" _ASM_EXTABLE(1b, %l[fault]) : : [vmxon_pointer] "m"(vmxon_pointer) : : fault); return 0; fault: WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); cr4_clear_bits(X86_CR4_VMXE); return -EFAULT; } static int vmx_hardware_enable(void) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); int r; if (cr4_read_shadow() & X86_CR4_VMXE) return -EBUSY; /* * This can happen if we hot-added a CPU but failed to allocate * VP assist page for it. */ if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) return -EFAULT; intel_pt_handle_vmx(1); r = kvm_cpu_vmxon(phys_addr); if (r) { intel_pt_handle_vmx(0); return r; } if (enable_ept) ept_sync_global(); return 0; } static void vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v, *n; list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) __loaded_vmcs_clear(v); } static void vmx_hardware_disable(void) { vmclear_local_loaded_vmcss(); if (kvm_cpu_vmxoff()) kvm_spurious_fault(); hv_reset_evmcs(); intel_pt_handle_vmx(0); } struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = __alloc_pages_node(node, flags, 0); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmcs_config.size); /* KVM supports Enlightened VMCS v1 only */ if (kvm_is_using_evmcs()) vmcs->hdr.revision_id = KVM_EVMCS_VERSION; else vmcs->hdr.revision_id = vmcs_config.revision_id; if (shadow) vmcs->hdr.shadow_vmcs = 1; return vmcs; } void free_vmcs(struct vmcs *vmcs) { free_page((unsigned long)vmcs); } /* * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded */ void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { if (!loaded_vmcs->vmcs) return; loaded_vmcs_clear(loaded_vmcs); free_vmcs(loaded_vmcs->vmcs); loaded_vmcs->vmcs = NULL; if (loaded_vmcs->msr_bitmap) free_page((unsigned long)loaded_vmcs->msr_bitmap); WARN_ON(loaded_vmcs->shadow_vmcs != NULL); } int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { loaded_vmcs->vmcs = alloc_vmcs(false); if (!loaded_vmcs->vmcs) return -ENOMEM; vmcs_clear(loaded_vmcs->vmcs); loaded_vmcs->shadow_vmcs = NULL; loaded_vmcs->hv_timer_soft_disabled = false; loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; if (cpu_has_vmx_msr_bitmap()) { loaded_vmcs->msr_bitmap = (unsigned long *) __get_free_page(GFP_KERNEL_ACCOUNT); if (!loaded_vmcs->msr_bitmap) goto out_vmcs; memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); } memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); memset(&loaded_vmcs->controls_shadow, 0, sizeof(struct vmcs_controls_shadow)); return 0; out_vmcs: free_loaded_vmcs(loaded_vmcs); return -ENOMEM; } static void free_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { free_vmcs(per_cpu(vmxarea, cpu)); per_cpu(vmxarea, cpu) = NULL; } } static __init int alloc_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); if (!vmcs) { free_kvm_area(); return -ENOMEM; } /* * When eVMCS is enabled, alloc_vmcs_cpu() sets * vmcs->revision_id to KVM_EVMCS_VERSION instead of * revision_id reported by MSR_IA32_VMX_BASIC. * * However, even though not explicitly documented by * TLFS, VMXArea passed as VMXON argument should * still be marked with revision_id reported by * physical CPU. */ if (kvm_is_using_evmcs()) vmcs->hdr.revision_id = vmcs_config.revision_id; per_cpu(vmxarea, cpu) = vmcs; } return 0; } static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save) { if (!emulate_invalid_guest_state) { /* * CS and SS RPL should be equal during guest entry according * to VMX spec, but in reality it is not always so. Since vcpu * is in the middle of the transition from real mode to * protected mode it is safe to assume that RPL 0 is a good * default value. */ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) save->selector &= ~SEGMENT_RPL_MASK; save->dpl = save->selector & SEGMENT_RPL_MASK; save->s = 1; } __vmx_set_segment(vcpu, save, seg); } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Update real mode segment cache. It may be not up-to-date if segment * register was written while vcpu was in a guest mode. */ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 0; __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); flags = vmcs_readl(GUEST_RFLAGS); flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); vmx_update_exception_bitmap(vcpu); fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); } static void fix_rmode_seg(int seg, struct kvm_segment *save) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; struct kvm_segment var = *save; var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; if (!emulate_invalid_guest_state) { var.selector = var.base >> 4; var.base = var.base & 0xffff0; var.limit = 0xffff; var.g = 0; var.db = 0; var.present = 1; var.s = 1; var.l = 0; var.unusable = 0; var.type = 0x3; var.avl = 0; if (save->base & 0xf) pr_warn_once("segment base is not paragraph aligned " "when entering protected mode (seg=%d)", seg); } vmcs_write16(sf->selector, var.selector); vmcs_writel(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); /* * KVM should never use VM86 to virtualize Real Mode when L2 is active, * as using VM86 is unnecessary if unrestricted guest is enabled, and * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 * should VM-Fail and KVM should reject userspace attempts to stuff * CR0.PG=0 when L2 is active. */ WARN_ON_ONCE(is_guest_mode(vcpu)); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 1; vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vmx->rmode.save_rflags = flags; flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); vmx_update_exception_bitmap(vcpu); fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); } int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* Nothing to do if hardware doesn't support EFER. */ if (!vmx_find_uret_msr(vmx, MSR_EFER)) return 0; vcpu->arch.efer = efer; #ifdef CONFIG_X86_64 if (efer & EFER_LMA) vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); else vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); #else if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) return 1; #endif vmx_setup_uret_msrs(vmx); return 0; } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; vmx_segment_cache_clear(to_vmx(vcpu)); guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { pr_debug_ratelimited("%s: tss fixup for long mode. \n", __func__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~VMX_AR_TYPE_MASK) | VMX_AR_TYPE_BUSY_64_TSS); } vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); } static void exit_lmode(struct kvm_vcpu *vcpu) { vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); } #endif static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * INVEPT must be issued when EPT is enabled, irrespective of VPID, as * the CPU is not required to invalidate guest-physical mappings on * VM-Entry, even if VPID is disabled. Guest-physical mappings are * associated with the root EPT structure and not any particular VPID * (INVVPID also isn't required to invalidate guest-physical mappings). */ if (enable_ept) { ept_sync_global(); } else if (enable_vpid) { if (cpu_has_vmx_invvpid_global()) { vpid_sync_vcpu_global(); } else { vpid_sync_vcpu_single(vmx->vpid); vpid_sync_vcpu_single(vmx->nested.vpid02); } } } static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) return nested_get_vpid02(vcpu); return to_vmx(vcpu)->vpid; } static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.mmu; u64 root_hpa = mmu->root.hpa; /* No flush required if the current context is invalid. */ if (!VALID_PAGE(root_hpa)) return; if (enable_ept) ept_sync_context(construct_eptp(vcpu, root_hpa, mmu->root_role.level)); else vpid_sync_context(vmx_get_current_vpid(vcpu)); } static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) { /* * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in * vmx_flush_tlb_guest() for an explanation of why this is ok. */ vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); } static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) { /* * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are * required to flush GVA->{G,H}PA mappings from the TLB if vpid is * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), * i.e. no explicit INVVPID is necessary. */ vpid_sync_context(vmx_get_current_vpid(vcpu)); } void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) return; if (is_pae_paging(vcpu)) { vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); } } void ept_save_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (WARN_ON_ONCE(!is_pae_paging(vcpu))) return; mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); } #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ CPU_BASED_CR3_STORE_EXITING) static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (is_guest_mode(vcpu)) return nested_guest_cr0_valid(vcpu, cr0); if (to_vmx(vcpu)->nested.vmxon) return nested_host_cr0_valid(vcpu, cr0); return true; } void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr0, old_cr0_pg; u32 tmp; old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); if (enable_unrestricted_guest) hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; else { hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; if (!enable_ept) hw_cr0 |= X86_CR0_WP; if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) enter_pmode(vcpu); if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) enter_rmode(vcpu); } vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!old_cr0_pg && (cr0 & X86_CR0_PG)) enter_lmode(vcpu); else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) exit_lmode(vcpu); } #endif if (enable_ept && !enable_unrestricted_guest) { /* * Ensure KVM has an up-to-date snapshot of the guest's CR3. If * the below code _enables_ CR3 exiting, vmx_cache_reg() will * (correctly) stop reading vmcs.GUEST_CR3 because it thinks * KVM's CR3 is installed. */ if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) vmx_cache_reg(vcpu, VCPU_EXREG_CR3); /* * When running with EPT but not unrestricted guest, KVM must * intercept CR3 accesses when paging is _disabled_. This is * necessary because restricted guests can't actually run with * paging disabled, and so KVM stuffs its own CR3 in order to * run the guest when identity mapped page tables. * * Do _NOT_ check the old CR0.PG, e.g. to optimize away the * update, it may be stale with respect to CR3 interception, * e.g. after nested VM-Enter. * * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or * stores to forward them to L1, even if KVM does not need to * intercept them to preserve its identity mapped page tables. */ if (!(cr0 & X86_CR0_PG)) { exec_controls_setbit(vmx, CR3_EXITING_BITS); } else if (!is_guest_mode(vcpu)) { exec_controls_clearbit(vmx, CR3_EXITING_BITS); } else { tmp = exec_controls_get(vmx); tmp &= ~CR3_EXITING_BITS; tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; exec_controls_set(vmx, tmp); } /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ if ((old_cr0_pg ^ cr0) & X86_CR0_PG) vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); /* * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. */ if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); } /* depends on vcpu->arch.cr0 to be set to a new value */ vmx->emulation_required = vmx_emulation_required(vcpu); } static int vmx_get_max_ept_level(void) { if (cpu_has_vmx_ept_5levels()) return 5; return 4; } u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) { u64 eptp = VMX_EPTP_MT_WB; eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; if (enable_ept_ad_bits && (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) eptp |= VMX_EPTP_AD_ENABLE_BIT; eptp |= root_hpa; return eptp; } static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) { struct kvm *kvm = vcpu->kvm; bool update_guest_cr3 = true; unsigned long guest_cr3; u64 eptp; if (enable_ept) { eptp = construct_eptp(vcpu, root_hpa, root_level); vmcs_write64(EPT_POINTER, eptp); hv_track_root_tdp(vcpu, root_hpa); if (!enable_unrestricted_guest && !is_paging(vcpu)) guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) guest_cr3 = vcpu->arch.cr3; else /* vmcs.GUEST_CR3 is already up-to-date. */ update_guest_cr3 = false; vmx_ept_load_pdptrs(vcpu); } else { guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | kvm_get_active_cr3_lam_bits(vcpu); } if (update_guest_cr3) vmcs_writel(GUEST_CR3, guest_cr3); } static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { /* * We operate under the default treatment of SMM, so VMX cannot be * enabled under SMM. Note, whether or not VMXE is allowed at all, * i.e. is a reserved bit, is handled by common x86 code. */ if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) return false; if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) return false; return true; } void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long old_cr4 = kvm_read_cr4(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr4; /* * Pass through host's Machine Check Enable value to hw_cr4, which * is in force while we are in guest mode. Do not let guests control * this bit, even if host CR4.MCE == 0. */ hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); if (enable_unrestricted_guest) hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; else if (vmx->rmode.vm86_active) hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; else hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; if (vmx_umip_emulated()) { if (cr4 & X86_CR4_UMIP) { secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); hw_cr4 &= ~X86_CR4_UMIP; } else if (!is_guest_mode(vcpu) || !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); } } vcpu->arch.cr4 = cr4; kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); if (!enable_unrestricted_guest) { if (enable_ept) { if (!is_paging(vcpu)) { hw_cr4 &= ~X86_CR4_PAE; hw_cr4 |= X86_CR4_PSE; } else if (!(cr4 & X86_CR4_PAE)) { hw_cr4 &= ~X86_CR4_PAE; } } /* * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in * hardware. To emulate this behavior, SMEP/SMAP/PKU needs * to be manually disabled when guest switches to non-paging * mode. * * If !enable_unrestricted_guest, the CPU is always running * with CR0.PG=1 and CR4 needs to be modified. * If enable_unrestricted_guest, the CPU automatically * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. */ if (!is_paging(vcpu)) hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); } vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, hw_cr4); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) kvm_update_cpuid_runtime(vcpu); } void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 ar; if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { *var = vmx->rmode.segs[seg]; if (seg == VCPU_SREG_TR || var->selector == vmx_read_guest_seg_selector(vmx, seg)) return; var->base = vmx_read_guest_seg_base(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); return; } var->base = vmx_read_guest_seg_base(vmx, seg); var->limit = vmx_read_guest_seg_limit(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); ar = vmx_read_guest_seg_ar(vmx, seg); var->unusable = (ar >> 16) & 1; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; /* * Some userspaces do not preserve unusable property. Since usable * segment has to be present according to VMX spec we can use present * property to amend userspace bug by making unusable segment always * nonpresent. vmx_segment_access_rights() already marks nonpresent * segment as unusable. */ var->present = !var->unusable; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; } static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment s; if (to_vmx(vcpu)->rmode.vm86_active) { vmx_get_segment(vcpu, &s, seg); return s.base; } return vmx_read_guest_seg_base(to_vmx(vcpu), seg); } int vmx_get_cpl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (unlikely(vmx->rmode.vm86_active)) return 0; else { int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); return VMX_AR_DPL(ar); } } static u32 vmx_segment_access_rights(struct kvm_segment *var) { u32 ar; ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; ar |= (var->unusable || !var->present) << 16; return ar; } void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmx_segment_cache_clear(vmx); if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { vmx->rmode.segs[seg] = *var; if (seg == VCPU_SREG_TR) vmcs_write16(sf->selector, var->selector); else if (var->s) fix_rmode_seg(seg, &vmx->rmode.segs[seg]); return; } vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); /* * Fix the "Accessed" bit in AR field of segment registers for older * qemu binaries. * IA32 arch specifies that at the time of processor reset the * "Accessed" bit in the AR field of segment registers is 1. And qemu * is setting it to 0 in the userland code. This causes invalid guest * state vmexit when "unrestricted guest" mode is turned on. * Fix for this setup issue in cpu_reset is being pushed in the qemu * tree. Newer qemu binaries with that qemu fix would not need this * kvm hack. */ if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) var->type |= 0x1; /* Accessed */ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); } static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { __vmx_set_segment(vcpu, var, seg); to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); } static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_IDTR_LIMIT); dt->address = vmcs_readl(GUEST_IDTR_BASE); } static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->size); vmcs_writel(GUEST_IDTR_BASE, dt->address); } static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_GDTR_LIMIT); dt->address = vmcs_readl(GUEST_GDTR_BASE); } static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->size); vmcs_writel(GUEST_GDTR_BASE, dt->address); } static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; u32 ar; vmx_get_segment(vcpu, &var, seg); var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; ar = vmx_segment_access_rights(&var); if (var.base != (var.selector << 4)) return false; if (var.limit != 0xffff) return false; if (ar != 0xf3) return false; return true; } static bool code_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment cs; unsigned int cs_rpl; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); cs_rpl = cs.selector & SEGMENT_RPL_MASK; if (cs.unusable) return false; if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) return false; if (!cs.s) return false; if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { if (cs.dpl > cs_rpl) return false; } else { if (cs.dpl != cs_rpl) return false; } if (!cs.present) return false; /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ return true; } static bool stack_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ss; unsigned int ss_rpl; vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ss_rpl = ss.selector & SEGMENT_RPL_MASK; if (ss.unusable) return true; if (ss.type != 3 && ss.type != 7) return false; if (!ss.s) return false; if (ss.dpl != ss_rpl) /* DPL != RPL */ return false; if (!ss.present) return false; return true; } static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; unsigned int rpl; vmx_get_segment(vcpu, &var, seg); rpl = var.selector & SEGMENT_RPL_MASK; if (var.unusable) return true; if (!var.s) return false; if (!var.present) return false; if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { if (var.dpl < rpl) /* DPL < RPL */ return false; } /* TODO: Add other members to kvm_segment_field to allow checking for other access * rights flags */ return true; } static bool tr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment tr; vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); if (tr.unusable) return false; if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ return false; if (!tr.present) return false; return true; } static bool ldtr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ldtr; vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); if (ldtr.unusable) return true; if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (ldtr.type != 2) return false; if (!ldtr.present) return false; return true; } static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ss; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); return ((cs.selector & SEGMENT_RPL_MASK) == (ss.selector & SEGMENT_RPL_MASK)); } /* * Check if guest state is valid. Returns true if valid, false if * not. * We assume that registers are always usable */ bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) { /* real mode guest state checks */ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) return false; } else { /* protected mode guest state checks */ if (!cs_ss_rpl_check(vcpu)) return false; if (!code_segment_valid(vcpu)) return false; if (!stack_segment_valid(vcpu)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_GS)) return false; if (!tr_valid(vcpu)) return false; if (!ldtr_valid(vcpu)) return false; } /* TODO: * - Add checks on RIP * - Add checks on RFLAGS */ return true; } static int init_rmode_tss(struct kvm *kvm, void __user *ua) { const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); u16 data; int i; for (i = 0; i < 3; i++) { if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) return -EFAULT; } data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) return -EFAULT; data = ~0; if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) return -EFAULT; return 0; } static int init_rmode_identity_map(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); int i, r = 0; void __user *uaddr; u32 tmp; /* Protect kvm_vmx->ept_identity_pagetable_done. */ mutex_lock(&kvm->slots_lock); if (likely(kvm_vmx->ept_identity_pagetable_done)) goto out; if (!kvm_vmx->ept_identity_map_addr) kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; uaddr = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, kvm_vmx->ept_identity_map_addr, PAGE_SIZE); if (IS_ERR(uaddr)) { r = PTR_ERR(uaddr); goto out; } /* Set up identity-mapping pagetable for EPT in real mode */ for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { r = -EFAULT; goto out; } } kvm_vmx->ept_identity_pagetable_done = true; out: mutex_unlock(&kvm->slots_lock); return r; } static void seg_setup(int seg) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; unsigned int ar; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); ar = 0x93; if (seg == VCPU_SREG_CS) ar |= 0x08; /* code segment */ vmcs_write32(sf->ar_bytes, ar); } int allocate_vpid(void) { int vpid; if (!enable_vpid) return 0; spin_lock(&vmx_vpid_lock); vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); if (vpid < VMX_NR_VPIDS) __set_bit(vpid, vmx_vpid_bitmap); else vpid = 0; spin_unlock(&vmx_vpid_lock); return vpid; } void free_vpid(int vpid) { if (!enable_vpid || vpid == 0) return; spin_lock(&vmx_vpid_lock); __clear_bit(vpid, vmx_vpid_bitmap); spin_unlock(&vmx_vpid_lock); } static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) { /* * When KVM is a nested hypervisor on top of Hyper-V and uses * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR * bitmap has changed. */ if (kvm_is_using_evmcs()) { struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; if (evmcs->hv_enlightenments_control.msr_bitmap) evmcs->hv_clean_fields &= ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; } vmx->nested.force_msr_bitmap_recalc = true; } void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; int idx; if (!cpu_has_vmx_msr_bitmap()) return; vmx_msr_bitmap_l01_changed(vmx); /* * Mark the desired intercept state in shadow bitmap, this is needed * for resync when the MSR filters change. */ idx = vmx_get_passthrough_msr_slot(msr); if (idx >= 0) { if (type & MSR_TYPE_R) clear_bit(idx, vmx->shadow_msr_intercept.read); if (type & MSR_TYPE_W) clear_bit(idx, vmx->shadow_msr_intercept.write); } if ((type & MSR_TYPE_R) && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { vmx_set_msr_bitmap_read(msr_bitmap, msr); type &= ~MSR_TYPE_R; } if ((type & MSR_TYPE_W) && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { vmx_set_msr_bitmap_write(msr_bitmap, msr); type &= ~MSR_TYPE_W; } if (type & MSR_TYPE_R) vmx_clear_msr_bitmap_read(msr_bitmap, msr); if (type & MSR_TYPE_W) vmx_clear_msr_bitmap_write(msr_bitmap, msr); } void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; int idx; if (!cpu_has_vmx_msr_bitmap()) return; vmx_msr_bitmap_l01_changed(vmx); /* * Mark the desired intercept state in shadow bitmap, this is needed * for resync when the MSR filter changes. */ idx = vmx_get_passthrough_msr_slot(msr); if (idx >= 0) { if (type & MSR_TYPE_R) set_bit(idx, vmx->shadow_msr_intercept.read); if (type & MSR_TYPE_W) set_bit(idx, vmx->shadow_msr_intercept.write); } if (type & MSR_TYPE_R) vmx_set_msr_bitmap_read(msr_bitmap, msr); if (type & MSR_TYPE_W) vmx_set_msr_bitmap_write(msr_bitmap, msr); } static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) { /* * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. */ const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; const int write_idx = read_idx + (0x800 / sizeof(u64)); struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; u8 mode; if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) return; if (cpu_has_secondary_exec_ctrls() && (secondary_exec_controls_get(vmx) & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { mode = MSR_BITMAP_MODE_X2APIC; if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) mode |= MSR_BITMAP_MODE_X2APIC_APICV; } else { mode = 0; } if (mode == vmx->x2apic_msr_bitmap_mode) return; vmx->x2apic_msr_bitmap_mode = mode; /* * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended * registers (0x840 and above) intercepted, KVM doesn't support them. * Intercept all writes by default and poke holes as needed. Pass * through reads for all valid registers by default in x2APIC+APICv * mode, only the current timer count needs on-demand emulation by KVM. */ if (mode & MSR_BITMAP_MODE_X2APIC_APICV) msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); else msr_bitmap[read_idx] = ~0ull; msr_bitmap[write_idx] = ~0ull; /* * TPR reads and writes can be virtualized even if virtual interrupt * delivery is not in use. */ vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, !(mode & MSR_BITMAP_MODE_X2APIC)); if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); if (enable_ipiv) vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); } } void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); u32 i; vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); } } static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); void *vapic_page; u32 vppr; int rvi; if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || !nested_cpu_has_vid(get_vmcs12(vcpu)) || WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) return false; rvi = vmx_get_rvi(); vapic_page = vmx->nested.virtual_apic_map.hva; vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); return ((rvi & 0xf0) > (vppr & 0xf0)); } static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 i; if (!cpu_has_vmx_msr_bitmap()) return; /* * Redo intercept permissions for MSRs that KVM is passing through to * the guest. Disabling interception will check the new MSR filter and * ensure that KVM enables interception if usersepace wants to filter * the MSR. MSRs that KVM is already intercepting don't need to be * refreshed since KVM is going to intercept them regardless of what * userspace wants. */ for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { u32 msr = vmx_possible_passthrough_msrs[i]; if (!test_bit(i, vmx->shadow_msr_intercept.read)) vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); if (!test_bit(i, vmx->shadow_msr_intercept.write)) vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); } /* PT MSRs can be passed through iff PT is exposed to the guest. */ if (vmx_pt_mode_is_host_guest()) pt_update_intercept_for_msr(vcpu); } static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, int pi_vec) { #ifdef CONFIG_SMP if (vcpu->mode == IN_GUEST_MODE) { /* * The vector of the virtual has already been set in the PIR. * Send a notification event to deliver the virtual interrupt * unless the vCPU is the currently running vCPU, i.e. the * event is being sent from a fastpath VM-Exit handler, in * which case the PIR will be synced to the vIRR before * re-entering the guest. * * When the target is not the running vCPU, the following * possibilities emerge: * * Case 1: vCPU stays in non-root mode. Sending a notification * event posts the interrupt to the vCPU. * * Case 2: vCPU exits to root mode and is still runnable. The * PIR will be synced to the vIRR before re-entering the guest. * Sending a notification event is ok as the host IRQ handler * will ignore the spurious event. * * Case 3: vCPU exits to root mode and is blocked. vcpu_block() * has already synced PIR to vIRR and never blocks the vCPU if * the vIRR is not empty. Therefore, a blocked vCPU here does * not wait for any requested interrupts in PIR, and sending a * notification event also results in a benign, spurious event. */ if (vcpu != kvm_get_running_vcpu()) __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); return; } #endif /* * The vCPU isn't in the guest; wake the vCPU in case it is blocking, * otherwise do nothing as KVM will grab the highest priority pending * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). */ kvm_vcpu_wake_up(vcpu); } static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu) && vector == vmx->nested.posted_intr_nv) { /* * If a posted intr is not recognized by hardware, * we will accomplish it in the next vmentry. */ vmx->nested.pi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); /* * This pairs with the smp_mb_*() after setting vcpu->mode in * vcpu_enter_guest() to guarantee the vCPU sees the event * request if triggering a posted interrupt "fails" because * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as * the smb_wmb() in kvm_make_request() only ensures everything * done before making the request is visible when the request * is visible, it doesn't ensure ordering between the store to * vcpu->requests and the load from vcpu->mode. */ smp_mb__after_atomic(); /* the PIR and ON have been set by L1. */ kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); return 0; } return -1; } /* * Send interrupt to vcpu via posted interrupt way. * 1. If target vcpu is running(non-root mode), send posted interrupt * notification to vcpu and hardware will sync PIR to vIRR atomically. * 2. If target vcpu isn't running(root mode), kick it to pick up the * interrupt from PIR in next vmentry. */ static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = vmx_deliver_nested_posted_interrupt(vcpu, vector); if (!r) return 0; /* Note, this is called iff the local APIC is in-kernel. */ if (!vcpu->arch.apic->apicv_active) return -1; if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return 0; /* If a previous notification has sent the IPI, nothing to do. */ if (pi_test_and_set_on(&vmx->pi_desc)) return 0; /* * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. */ kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); return 0; } static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, int trig_mode, int vector) { struct kvm_vcpu *vcpu = apic->vcpu; if (vmx_deliver_posted_interrupt(vcpu, vector)) { kvm_lapic_set_irr(vector, apic); kvm_make_request(KVM_REQ_EVENT, vcpu); kvm_vcpu_kick(vcpu); } else { trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); } } /* * Set up the vmcs's constant host-state fields, i.e., host-state fields that * will not change in the lifetime of the guest. * Note that host-state that does change is set elsewhere. E.g., host-state * that is set differently for each CPU is set in vmx_vcpu_load(), not here. */ void vmx_set_constant_host_state(struct vcpu_vmx *vmx) { u32 low32, high32; unsigned long tmpl; unsigned long cr0, cr3, cr4; cr0 = read_cr0(); WARN_ON(cr0 & X86_CR0_TS); vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ /* * Save the most likely value for this task's CR3 in the VMCS. * We can't use __get_current_cr3_fast() because we're not atomic. */ cr3 = __read_cr3(); vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ vmx->loaded_vmcs->host_state.cr3 = cr3; /* Save the most likely value for this task's CR4 in the VMCS. */ cr4 = cr4_read_shadow(); vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ vmx->loaded_vmcs->host_state.cr4 = cr4; vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ #ifdef CONFIG_X86_64 /* * Load null selectors, so we can avoid reloading them in * vmx_prepare_switch_to_host(), in case userspace uses * the null selectors too (the expected case). */ vmcs_write16(HOST_DS_SELECTOR, 0); vmcs_write16(HOST_ES_SELECTOR, 0); #else vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #endif vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); vmcs_write32(HOST_IA32_SYSENTER_CS, low32); /* * SYSENTER is used for 32-bit system calls on either 32-bit or * 64-bit kernels. It is always zero If neither is allowed, otherwise * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may * have already done so!). */ if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { rdmsr(MSR_IA32_CR_PAT, low32, high32); vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); } if (cpu_has_load_ia32_efer()) vmcs_write64(HOST_IA32_EFER, host_efer); } void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & ~vcpu->arch.cr4_guest_rsvd_bits; if (!enable_ept) { vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; } if (is_guest_mode(&vmx->vcpu)) vcpu->arch.cr4_guest_owned_bits &= ~get_vmcs12(vcpu)->cr4_guest_host_mask; vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); } static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) { u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; if (!enable_vnmi) pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; if (!enable_preemption_timer) pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; return pin_based_exec_ctrl; } static u32 vmx_vmentry_ctrl(void) { u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; if (vmx_pt_mode_is_system()) vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL); /* * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. */ vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER | VM_ENTRY_IA32E_MODE); if (cpu_has_perf_global_ctrl_bug()) vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; return vmentry_ctrl; } static u32 vmx_vmexit_ctrl(void) { u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; /* * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for * nested virtualization and thus allowed to be set in vmcs12. */ vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); if (vmx_pt_mode_is_system()) vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL); if (cpu_has_perf_global_ctrl_bug()) vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ return vmexit_ctrl & ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); } static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu)) { vmx->nested.update_vmcs01_apicv_status = true; return; } pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); if (kvm_vcpu_apicv_active(vcpu)) { secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); if (enable_ipiv) tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); } else { secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); if (enable_ipiv) tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); } vmx_update_msr_bitmap_x2apic(vcpu); } static u32 vmx_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_exec_ctrl; /* * Not used by KVM, but fully supported for nesting, i.e. are allowed in * vmcs12 and propagated to vmcs02 when set in vmcs12. */ exec_control &= ~(CPU_BASED_RDTSC_EXITING | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | CPU_BASED_PAUSE_EXITING); /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING); if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) exec_control &= ~CPU_BASED_MOV_DR_EXITING; if (!cpu_need_tpr_shadow(&vmx->vcpu)) exec_control &= ~CPU_BASED_TPR_SHADOW; #ifdef CONFIG_X86_64 if (exec_control & CPU_BASED_TPR_SHADOW) exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING); else exec_control |= CPU_BASED_CR8_STORE_EXITING | CPU_BASED_CR8_LOAD_EXITING; #endif /* No need to intercept CR3 access or INVPLG when using EPT. */ if (enable_ept) exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_INVLPG_EXITING); if (kvm_mwait_in_guest(vmx->vcpu.kvm)) exec_control &= ~(CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING); if (kvm_hlt_in_guest(vmx->vcpu.kvm)) exec_control &= ~CPU_BASED_HLT_EXITING; return exec_control; } static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) { u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; /* * IPI virtualization relies on APICv. Disable IPI virtualization if * APICv is inhibited. */ if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) exec_control &= ~TERTIARY_EXEC_IPI_VIRT; return exec_control; } /* * Adjust a single secondary execution control bit to intercept/allow an * instruction in the guest. This is usually done based on whether or not a * feature has been exposed to the guest in order to correctly emulate faults. */ static inline void vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, u32 control, bool enabled, bool exiting) { /* * If the control is for an opt-in feature, clear the control if the * feature is not exposed to the guest, i.e. not enabled. If the * control is opt-out, i.e. an exiting control, clear the control if * the feature _is_ exposed to the guest, i.e. exiting/interception is * disabled for the associated instruction. Note, the caller is * responsible presetting exec_control to set all supported bits. */ if (enabled == exiting) *exec_control &= ~control; /* * Update the nested MSR settings so that a nested VMM can/can't set * controls for features that are/aren't exposed to the guest. */ if (nested) { /* * All features that can be added or removed to VMX MSRs must * be supported in the first place for nested virtualization. */ if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) enabled = false; if (enabled) vmx->nested.msrs.secondary_ctls_high |= control; else vmx->nested.msrs.secondary_ctls_high &= ~control; } } /* * Wrapper macro for the common case of adjusting a secondary execution control * based on a single guest CPUID bit, with a dedicated feature bit. This also * verifies that the control is actually supported by KVM and hardware. */ #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ ({ \ struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ bool __enabled; \ \ if (cpu_has_vmx_##name()) { \ if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ else \ __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ __enabled, exiting); \ } \ }) /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; if (vmx_pt_mode_is_system()) exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); if (!cpu_need_virtualize_apic_accesses(vcpu)) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; if (vmx->vpid == 0) exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; if (!enable_ept) { exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; enable_unrestricted_guest = 0; } if (!enable_unrestricted_guest) exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (kvm_pause_in_guest(vmx->vcpu.kvm)) exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; if (!kvm_vcpu_apicv_active(vcpu)) exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; /* * KVM doesn't support VMFUNC for L1, but the control is set in KVM's * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. */ exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, * in vmx_set_cr4. */ exec_control &= ~SECONDARY_EXEC_DESC; /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD (handle_vmptrld). We can NOT enable shadow_vmcs here because we don't have yet a current VMCS12 */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; /* * PML is enabled/disabled when dirty logging of memsmlots changes, but * it needs to be set here when dirty logging is already active, e.g. * if this vCPU was created after dirty logging was enabled. */ if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) exec_control &= ~SECONDARY_EXEC_ENABLE_PML; vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); /* * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either * feature is exposed to the guest. This creates a virtualization hole * if both are supported in hardware but only one is exposed to the * guest, but letting the guest execute RDTSCP or RDPID when either one * is advertised is preferable to emulating the advertised instruction * in KVM on #UD, and obviously better than incorrectly injecting #UD. */ if (cpu_has_vmx_rdtscp()) { bool rdpid_or_rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || guest_cpuid_has(vcpu, X86_FEATURE_RDPID); vmx_adjust_secondary_exec_control(vmx, &exec_control, SECONDARY_EXEC_ENABLE_RDTSCP, rdpid_or_rdtscp_enabled, false); } vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, ENABLE_USR_WAIT_PAUSE, false); if (!vcpu->kvm->arch.bus_lock_detection_enabled) exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; if (!kvm_notify_vmexit_enabled(vcpu->kvm)) exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; return exec_control; } static inline int vmx_get_pid_table_order(struct kvm *kvm) { return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); } static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) { struct page *pages; struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); if (!irqchip_in_kernel(kvm) || !enable_ipiv) return 0; if (kvm_vmx->pid_table) return 0; pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, vmx_get_pid_table_order(kvm)); if (!pages) return -ENOMEM; kvm_vmx->pid_table = (void *)page_address(pages); return 0; } static int vmx_vcpu_precreate(struct kvm *kvm) { return vmx_alloc_ipiv_pid_table(kvm); } #define VMX_XSS_EXIT_BITMAP 0 static void init_vmcs(struct vcpu_vmx *vmx) { struct kvm *kvm = vmx->vcpu.kvm; struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); if (nested) nested_vmx_set_vmcs_shadowing_bitmap(); if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ /* Control */ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); exec_controls_set(vmx, vmx_exec_control(vmx)); if (cpu_has_secondary_exec_ctrls()) secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); if (cpu_has_tertiary_exec_ctrls()) tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { vmcs_write64(EOI_EXIT_BITMAP0, 0); vmcs_write64(EOI_EXIT_BITMAP1, 0); vmcs_write64(EOI_EXIT_BITMAP2, 0); vmcs_write64(EOI_EXIT_BITMAP3, 0); vmcs_write16(GUEST_INTR_STATUS, 0); vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); } if (vmx_can_use_ipiv(&vmx->vcpu)) { vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); } if (!kvm_pause_in_guest(kvm)) { vmcs_write32(PLE_GAP, ple_gap); vmx->ple_window = ple_window; vmx->ple_window_dirty = true; } if (kvm_notify_vmexit_enabled(kvm)) vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ vmx_set_constant_host_state(vmx); vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ if (cpu_has_vmx_vmfunc()) vmcs_write64(VM_FUNCTION_CONTROL, 0); vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); /* 22.2.1, 20.8.1 */ vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); set_cr4_guest_host_mask(vmx); if (vmx->vpid != 0) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); if (cpu_has_vmx_xsaves()) vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); if (enable_pml) { vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } vmx_write_encls_bitmap(&vmx->vcpu, NULL); if (vmx_pt_mode_is_host_guest()) { memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); /* Bit[6~0] are forced to 1, writes are ignored. */ vmx->pt_desc.guest.output_mask = 0x7F; vmcs_write64(GUEST_IA32_RTIT_CTL, 0); } vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); if (cpu_has_vmx_tpr_shadow()) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); if (cpu_need_tpr_shadow(&vmx->vcpu)) vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, __pa(vmx->vcpu.arch.apic->regs)); vmcs_write32(TPR_THRESHOLD, 0); } vmx_setup_uret_msrs(vmx); } static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); init_vmcs(vmx); if (nested) memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); vcpu_setup_sgx_lepubkeyhash(vcpu); vmx->nested.posted_intr_nv = -1; vmx->nested.vmxon_ptr = INVALID_GPA; vmx->nested.current_vmptr = INVALID_GPA; #ifdef CONFIG_KVM_HYPERV vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; #endif vcpu->arch.microcode_version = 0x100000000ULL; vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; /* * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR * or POSTED_INTR_WAKEUP_VECTOR. */ vmx->pi_desc.nv = POSTED_INTR_VECTOR; vmx->pi_desc.sn = 1; } static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!init_event) __vmx_vcpu_reset(vcpu); vmx->rmode.vm86_active = 0; vmx->spec_ctrl = 0; vmx->msr_ia32_umwait_control = 0; vmx->hv_deadline_tsc = -1; kvm_set_cr8(vcpu, 0); vmx_segment_cache_clear(vmx); kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); seg_setup(VCPU_SREG_CS); vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); if (kvm_mpx_supported()) vmcs_write64(GUEST_BNDCFGS, 0); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); vpid_sync_context(vmx->vpid); vmx_update_fb_clear_dis(vcpu, vmx); } static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) { exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); } static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) { if (!enable_vnmi || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { vmx_enable_irq_window(vcpu); return; } exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); } static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) { struct vcpu_vmx *vmx = to_vmx(vcpu); uint32_t intr; int irq = vcpu->arch.interrupt.nr; trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); ++vcpu->stat.irq_injections; if (vmx->rmode.vm86_active) { int inc_eip = 0; if (vcpu->arch.interrupt.soft) inc_eip = vcpu->arch.event_exit_inst_len; kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); return; } intr = irq | INTR_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { intr |= INTR_TYPE_SOFT_INTR; vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); } else intr |= INTR_TYPE_EXT_INTR; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); vmx_clear_hlt(vcpu); } static void vmx_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { /* * Tracking the NMI-blocked state in software is built upon * finding the next open IRQ window. This, in turn, depends on * well-behaving guests: They have to keep IRQs disabled at * least as long as the NMI handler runs. Otherwise we may * cause NMI nesting, maybe breaking the guest. But as this is * highly unlikely, we can live with the residual risk. */ vmx->loaded_vmcs->soft_vnmi_blocked = 1; vmx->loaded_vmcs->vnmi_blocked_time = 0; } ++vcpu->stat.nmi_injections; vmx->loaded_vmcs->nmi_known_unmasked = false; if (vmx->rmode.vm86_active) { kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); vmx_clear_hlt(vcpu); } bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool masked; if (!enable_vnmi) return vmx->loaded_vmcs->soft_vnmi_blocked; if (vmx->loaded_vmcs->nmi_known_unmasked) return false; masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; vmx->loaded_vmcs->nmi_known_unmasked = !masked; return masked; } void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { vmx->loaded_vmcs->soft_vnmi_blocked = masked; vmx->loaded_vmcs->vnmi_blocked_time = 0; } } else { vmx->loaded_vmcs->nmi_known_unmasked = !masked; if (masked) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); } } bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) return false; if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) return true; return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | GUEST_INTR_STATE_NMI)); } static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) return -EBUSY; return !vmx_nmi_blocked(vcpu); } bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) return false; return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); } static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) { if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; /* * An IRQ must not be injected into L2 if it's supposed to VM-Exit, * e.g. if the IRQ arrived asynchronously after checking nested events. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) return -EBUSY; return !vmx_interrupt_blocked(vcpu); } static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) { void __user *ret; if (enable_unrestricted_guest) return 0; mutex_lock(&kvm->slots_lock); ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, PAGE_SIZE * 3); mutex_unlock(&kvm->slots_lock); if (IS_ERR(ret)) return PTR_ERR(ret); to_kvm_vmx(kvm)->tss_addr = addr; return init_rmode_tss(kvm, ret); } static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; return 0; } static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) { switch (vec) { case BP_VECTOR: /* * Update instruction length as we may reinject the exception * from user space while in guest debugging mode. */ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; fallthrough; case DB_VECTOR: return !(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); case DE_VECTOR: case OF_VECTOR: case BR_VECTOR: case UD_VECTOR: case DF_VECTOR: case SS_VECTOR: case GP_VECTOR: case MF_VECTOR: return true; } return false; } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { /* * Instruction with address size override prefix opcode 0x67 * Cause the #SS fault with 0 error code in VM86 mode. */ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { if (kvm_emulate_instruction(vcpu, 0)) { if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_emulate_halt_noskip(vcpu); } return 1; } return 0; } /* * Forward all other exceptions that are valid in real mode. * FIXME: Breaks guest debugging in real mode, needs to be fixed with * the required debugging infrastructure rework. */ kvm_queue_exception(vcpu, vec); return 1; } static int handle_machine_check(struct kvm_vcpu *vcpu) { /* handled by vmx_vcpu_run() */ return 1; } /* * If the host has split lock detection disabled, then #AC is * unconditionally injected into the guest, which is the pre split lock * detection behaviour. * * If the host has split lock detection enabled then #AC is * only injected into the guest when: * - Guest CPL == 3 (user mode) * - Guest has #AC detection enabled in CR0 * - Guest EFLAGS has AC bit set */ bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) { if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) return true; return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); } static int handle_exception_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 intr_info, ex_no, error_code; unsigned long cr2, dr6; u32 vect_info; vect_info = vmx->idt_vectoring_info; intr_info = vmx_get_intr_info(vcpu); /* * Machine checks are handled by handle_exception_irqoff(), or by * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by * vmx_vcpu_enter_exit(). */ if (is_machine_check(intr_info) || is_nmi(intr_info)) return 1; /* * Queue the exception here instead of in handle_nm_fault_irqoff(). * This ensures the nested_vmx check is not skipped so vmexit can * be reflected to L1 (when it intercepts #NM) before reaching this * point. */ if (is_nm_fault(intr_info)) { kvm_queue_exception(vcpu, NM_VECTOR); return 1; } if (is_invalid_opcode(intr_info)) return handle_ud(vcpu); error_code = 0; if (intr_info & INTR_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { WARN_ON_ONCE(!enable_vmware_backdoor); /* * VMware backdoor emulation on #GP interception only handles * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero * error code on #GP. */ if (error_code) { kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); } /* * The #PF with PFEC.RSVD = 1 indicates the guest is accessing * MMIO, it is better to report an internal error. * See the comments in vmx_handle_exit. */ if ((vect_info & VECTORING_INFO_VALID_MASK) && !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; vcpu->run->internal.ndata = 4; vcpu->run->internal.data[0] = vect_info; vcpu->run->internal.data[1] = intr_info; vcpu->run->internal.data[2] = error_code; vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; return 0; } if (is_page_fault(intr_info)) { cr2 = vmx_get_exit_qual(vcpu); if (enable_ept && !vcpu->arch.apf.host_apf_flags) { /* * EPT will cause page fault only if we need to * detect illegal GPAs. */ WARN_ON_ONCE(!allow_smaller_maxphyaddr); kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); return 1; } else return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); } ex_no = intr_info & INTR_INFO_VECTOR_MASK; if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) return handle_rmode_exception(vcpu, ex_no, error_code); switch (ex_no) { case DB_VECTOR: dr6 = vmx_get_exit_qual(vcpu); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { /* * If the #DB was due to ICEBP, a.k.a. INT1, skip the * instruction. ICEBP generates a trap-like #DB, but * despite its interception control being tied to #DB, * is an instruction intercept, i.e. the VM-Exit occurs * on the ICEBP itself. Use the inner "skip" helper to * avoid single-step #DB and MTF updates, as ICEBP is * higher priority. Note, skipping ICEBP still clears * STI and MOVSS blocking. * * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS * if single-step is enabled in RFLAGS and STI or MOVSS * blocking is active, as the CPU doesn't set the bit * on VM-Exit due to #DB interception. VM-Entry has a * consistency check that a single-step #DB is pending * in this scenario as the previous instruction cannot * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV * don't modify RFLAGS), therefore the one instruction * delay when activating single-step breakpoints must * have already expired. Note, the CPU sets/clears BS * as appropriate for all other VM-Exits types. */ if (is_icebp(intr_info)) WARN_ON(!skip_emulated_instruction(vcpu)); else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); return 1; } kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); fallthrough; case BP_VECTOR: /* * Update instruction length as we may reinject #BP from * user space while in guest debugging mode. Reading it for * #DB as well causes no harm, it is not used in that case. */ vmx->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); kvm_run->debug.arch.exception = ex_no; break; case AC_VECTOR: if (vmx_guest_inject_ac(vcpu)) { kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); return 1; } /* * Handle split lock. Depending on detection mode this will * either warn and disable split lock detection for this * task or force SIGBUS on it. */ if (handle_guest_split_lock(kvm_rip_read(vcpu))) return 1; fallthrough; default: kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = ex_no; kvm_run->ex.error_code = error_code; break; } return 0; } static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int handle_triple_fault(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; vcpu->mmio_needed = 0; return 0; } static int handle_io(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int size, in, string; unsigned port; exit_qualification = vmx_get_exit_qual(vcpu); string = (exit_qualification & 16) != 0; ++vcpu->stat.io_exits; if (string) return kvm_emulate_instruction(vcpu, 0); port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; in = (exit_qualification & 8) != 0; return kvm_fast_pio(vcpu, size, port, in); } static void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xc1; } /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* * We get here when L2 changed cr0 in a way that did not change * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), * but did change L0 shadowed bits. So we first calculate the * effective cr0 value that L1 would like to write into the * hardware. It consists of the L2-owned bits from the new * value combined with the L1-owned bits from L1's guest_cr0. */ val = (val & ~vmcs12->cr0_guest_host_mask) | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); if (kvm_set_cr0(vcpu, val)) return 1; vmcs_writel(CR0_READ_SHADOW, orig_val); return 0; } else { return kvm_set_cr0(vcpu, val); } } static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* analogously to handle_set_cr0 */ val = (val & ~vmcs12->cr4_guest_host_mask) | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); if (kvm_set_cr4(vcpu, val)) return 1; vmcs_writel(CR4_READ_SHADOW, orig_val); return 0; } else return kvm_set_cr4(vcpu, val); } static int handle_desc(struct kvm_vcpu *vcpu) { /* * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this * and other code needs to be updated if UMIP can be guest owned. */ BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); return kvm_emulate_instruction(vcpu, 0); } static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; int cr; int reg; int err; int ret; exit_qualification = vmx_get_exit_qual(vcpu); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ val = kvm_register_read(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: err = handle_set_cr0(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 3: WARN_ON_ONCE(enable_unrestricted_guest); err = kvm_set_cr3(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 4: err = handle_set_cr4(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 8: { u8 cr8_prev = kvm_get_cr8(vcpu); u8 cr8 = (u8)val; err = kvm_set_cr8(vcpu, cr8); ret = kvm_complete_insn_gp(vcpu, err); if (lapic_in_kernel(vcpu)) return ret; if (cr8_prev <= cr8) return ret; /* * TODO: we might be squashing a * KVM_GUESTDBG_SINGLESTEP-triggered * KVM_EXIT_DEBUG here. */ vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } } break; case 2: /* clts */ KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); return -EIO; case 1: /*mov from cr*/ switch (cr) { case 3: WARN_ON_ONCE(enable_unrestricted_guest); val = kvm_read_cr3(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); case 8: val = kvm_get_cr8(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); } break; case 3: /* lmsw */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); kvm_lmsw(vcpu, val); return kvm_skip_emulated_instruction(vcpu); default: break; } vcpu->run->exit_reason = 0; vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int dr, dr7, reg; int err = 1; exit_qualification = vmx_get_exit_qual(vcpu); dr = exit_qualification & DEBUG_REG_ACCESS_NUM; /* First, if DR does not exist, trigger UD */ if (!kvm_require_dr(vcpu, dr)) return 1; if (vmx_get_cpl(vcpu) > 0) goto out; dr7 = vmcs_readl(GUEST_DR7); if (dr7 & DR7_GD) { /* * As the vm-exit takes precedence over the debug trap, we * need to emulate the latter, either for the host or the * guest debugging itself. */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; vcpu->run->debug.arch.dr7 = dr7; vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); vcpu->run->debug.arch.exception = DB_VECTOR; vcpu->run->exit_reason = KVM_EXIT_DEBUG; return 0; } else { kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); return 1; } } if (vcpu->guest_debug == 0) { exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } reg = DEBUG_REG_ACCESS_REG(exit_qualification); if (exit_qualification & TYPE_MOV_FROM_DR) { kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); err = 0; } else { err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); } out: return kvm_complete_insn_gp(vcpu, err); } static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); get_debugreg(vcpu->arch.dr6, 6); vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); /* * exc_debug expects dr6 to be cleared after it runs, avoid that it sees * a stale dr6 from the guest. */ set_debugreg(DR6_RESERVED, 6); } static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) { vmcs_writel(GUEST_DR7, val); } static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { kvm_apic_update_ppr(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); kvm_make_request(KVM_REQ_EVENT, vcpu); ++vcpu->stat.irq_window_exits; return 1; } static int handle_invlpg(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); kvm_mmu_invlpg(vcpu, exit_qualification); return kvm_skip_emulated_instruction(vcpu); } static int handle_apic_access(struct kvm_vcpu *vcpu) { if (likely(fasteoi)) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); int access_type, offset; access_type = exit_qualification & APIC_ACCESS_TYPE; offset = exit_qualification & APIC_ACCESS_OFFSET; /* * Sane guest uses MOV to write EOI, with written value * not cared. So make a short-circuit here by avoiding * heavy instruction emulation. */ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && (offset == APIC_EOI)) { kvm_lapic_set_eoi(vcpu); return kvm_skip_emulated_instruction(vcpu); } } return kvm_emulate_instruction(vcpu, 0); } static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); int vector = exit_qualification & 0xff; /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ kvm_apic_set_eoi_accelerated(vcpu, vector); return 1; } static int handle_apic_write(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); /* * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and * hardware has done any necessary aliasing, offset adjustments, etc... * for the access. I.e. the correct value has already been written to * the vAPIC page for the correct 16-byte chunk. KVM needs only to * retrieve the register value and emulate the access. */ u32 offset = exit_qualification & 0xff0; kvm_apic_write_nodecode(vcpu, offset); return 1; } static int handle_task_switch(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification; bool has_error_code = false; u32 error_code = 0; u16 tss_selector; int reason, type, idt_v, idt_index; idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); exit_qualification = vmx_get_exit_qual(vcpu); reason = (u32)exit_qualification >> 30; if (reason == TASK_SWITCH_GATE && idt_v) { switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = false; vmx_set_nmi_mask(vcpu, true); break; case INTR_TYPE_EXT_INTR: case INTR_TYPE_SOFT_INTR: kvm_clear_interrupt_queue(vcpu); break; case INTR_TYPE_HARD_EXCEPTION: if (vmx->idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { has_error_code = true; error_code = vmcs_read32(IDT_VECTORING_ERROR_CODE); } fallthrough; case INTR_TYPE_SOFT_EXCEPTION: kvm_clear_exception_queue(vcpu); break; default: break; } } tss_selector = exit_qualification; if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && type != INTR_TYPE_EXT_INTR && type != INTR_TYPE_NMI_INTR)) WARN_ON(!skip_emulated_instruction(vcpu)); /* * TODO: What about debug traps on tss switch? * Are we supposed to inject them and update dr6? */ return kvm_task_switch(vcpu, tss_selector, type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, has_error_code, error_code); } static int handle_ept_violation(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; gpa_t gpa; u64 error_code; exit_qualification = vmx_get_exit_qual(vcpu); /* * EPT violation happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. * There are errata that may cause this bit to not be set: * AAK134, BY25. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(vcpu, gpa, exit_qualification); /* Is it a read fault? */ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) ? PFERR_USER_MASK : 0; /* Is it a write fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) ? PFERR_WRITE_MASK : 0; /* Is it a fetch fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) ? PFERR_FETCH_MASK : 0; /* ept page table entry is present? */ error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) ? PFERR_PRESENT_MASK : 0; error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; vcpu->arch.exit_qualification = exit_qualification; /* * Check that the GPA doesn't exceed physical memory limits, as that is * a guest page fault. We have to emulate the instruction here, because * if the illegal address is that of a paging structure, then * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we * would also use advanced VM-exit information for EPT violations to * reconstruct the page fault error code. */ if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) return kvm_emulate_instruction(vcpu, 0); return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); } static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { gpa_t gpa; if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) return 1; /* * A nested guest cannot optimize MMIO vmexits, because we have an * nGPA here instead of the required GPA. */ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); if (!is_guest_mode(vcpu) && !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { trace_kvm_fast_mmio(gpa); return kvm_skip_emulated_instruction(vcpu); } return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); } static int handle_nmi_window(struct kvm_vcpu *vcpu) { if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) return -EIO; exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); return vmx->emulation_required && !vmx->rmode.vm86_active && (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); } static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool intr_window_requested; unsigned count = 130; intr_window_requested = exec_controls_get(vmx) & CPU_BASED_INTR_WINDOW_EXITING; while (vmx->emulation_required && count-- != 0) { if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) return handle_interrupt_window(&vmx->vcpu); if (kvm_test_request(KVM_REQ_EVENT, vcpu)) return 1; if (!kvm_emulate_instruction(vcpu, 0)) return 0; if (vmx_emulation_required_with_pending_exception(vcpu)) { kvm_prepare_emulation_failure_exit(vcpu); return 0; } if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_emulate_halt_noskip(vcpu); } /* * Note, return 1 and not 0, vcpu_run() will invoke * xfer_to_guest_mode() which will create a proper return * code. */ if (__xfer_to_guest_mode_work_pending()) return 1; } return 1; } static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) { if (vmx_emulation_required_with_pending_exception(vcpu)) { kvm_prepare_emulation_failure_exit(vcpu); return 0; } return 1; } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned int old = vmx->ple_window; vmx->ple_window = __grow_ple_window(old, ple_window, ple_window_grow, ple_window_max); if (vmx->ple_window != old) { vmx->ple_window_dirty = true; trace_kvm_ple_window_update(vcpu->vcpu_id, vmx->ple_window, old); } } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned int old = vmx->ple_window; vmx->ple_window = __shrink_ple_window(old, ple_window, ple_window_shrink, ple_window); if (vmx->ple_window != old) { vmx->ple_window_dirty = true; trace_kvm_ple_window_update(vcpu->vcpu_id, vmx->ple_window, old); } } /* * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE * exiting, so only get here on cpu with PAUSE-Loop-Exiting. */ static int handle_pause(struct kvm_vcpu *vcpu) { if (!kvm_pause_in_guest(vcpu->kvm)) grow_ple_window(vcpu); /* * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" * VM-execution control is ignored if CPL > 0. OTOH, KVM * never set PAUSE_EXITING and just set PLE if supported, * so the vcpu must be CPL=0 if it gets a PAUSE exit. */ kvm_vcpu_on_spin(vcpu, true); return kvm_skip_emulated_instruction(vcpu); } static int handle_monitor_trap(struct kvm_vcpu *vcpu) { return 1; } static int handle_invpcid(struct kvm_vcpu *vcpu) { u32 vmx_instruction_info; unsigned long type; gva_t gva; struct { u64 pcid; u64 gla; } operand; int gpr_index; if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); type = kvm_register_read(vcpu, gpr_index); /* According to the Intel instruction reference, the memory operand * is read even if it isn't needed (e.g., for type==all) */ if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), vmx_instruction_info, false, sizeof(operand), &gva)) return 1; return kvm_handle_invpcid(vcpu, type, gva); } static int handle_pml_full(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; trace_kvm_pml_full(vcpu->vcpu_id); exit_qualification = vmx_get_exit_qual(vcpu); /* * PML buffer FULL happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); /* * PML buffer already flushed at beginning of VMEXIT. Nothing to do * here.., and there's no userspace involvement needed for PML. */ return 1; } static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * In the *extremely* unlikely scenario that this is a spurious VM-Exit * due to the timer expiring while it was "soft" disabled, just eat the * exit and re-enter the guest. */ if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) return EXIT_FASTPATH_REENTER_GUEST; /* * If the timer expired because KVM used it to force an immediate exit, * then mission accomplished. */ if (force_immediate_exit) return EXIT_FASTPATH_EXIT_HANDLED; /* * If L2 is active, go down the slow path as emulating the guest timer * expiration likely requires synthesizing a nested VM-Exit. */ if (is_guest_mode(vcpu)) return EXIT_FASTPATH_NONE; kvm_lapic_expired_hv_timer(vcpu); return EXIT_FASTPATH_REENTER_GUEST; } static int handle_preemption_timer(struct kvm_vcpu *vcpu) { /* * This non-fastpath handler is reached if and only if the preemption * timer was being used to emulate a guest timer while L2 is active. * All other scenarios are supposed to be handled in the fastpath. */ WARN_ON_ONCE(!is_guest_mode(vcpu)); kvm_lapic_expired_hv_timer(vcpu); return 1; } /* * When nested=0, all VMX instruction VM Exits filter here. The handlers * are overwritten by nested_vmx_setup() when nested=1. */ static int handle_vmx_instruction(struct kvm_vcpu *vcpu) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } #ifndef CONFIG_X86_SGX_KVM static int handle_encls(struct kvm_vcpu *vcpu) { /* * SGX virtualization is disabled. There is no software enable bit for * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent * the guest from executing ENCLS (when SGX is supported by hardware). */ kvm_queue_exception(vcpu, UD_VECTOR); return 1; } #endif /* CONFIG_X86_SGX_KVM */ static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) { /* * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK * VM-Exits. Unconditionally set the flag here and leave the handling to * vmx_handle_exit(). */ to_vmx(vcpu)->exit_reason.bus_lock_detected = true; return 1; } static int handle_notify(struct kvm_vcpu *vcpu) { unsigned long exit_qual = vmx_get_exit_qual(vcpu); bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; ++vcpu->stat.notify_window_exits; /* * Notify VM exit happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || context_invalid) { vcpu->run->exit_reason = KVM_EXIT_NOTIFY; vcpu->run->notify.flags = context_invalid ? KVM_NOTIFY_CONTEXT_INVALID : 0; return 0; } return 1; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = kvm_emulate_cpuid, [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, [EXIT_REASON_HLT] = kvm_emulate_halt, [EXIT_REASON_INVD] = kvm_emulate_invd, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, [EXIT_REASON_VMPTRST] = handle_vmx_instruction, [EXIT_REASON_VMREAD] = handle_vmx_instruction, [EXIT_REASON_VMRESUME] = handle_vmx_instruction, [EXIT_REASON_VMWRITE] = handle_vmx_instruction, [EXIT_REASON_VMOFF] = handle_vmx_instruction, [EXIT_REASON_VMON] = handle_vmx_instruction, [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, [EXIT_REASON_APIC_ACCESS] = handle_apic_access, [EXIT_REASON_APIC_WRITE] = handle_apic_write, [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, [EXIT_REASON_TASK_SWITCH] = handle_task_switch, [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, [EXIT_REASON_GDTR_IDTR] = handle_desc, [EXIT_REASON_LDTR_TR] = handle_desc, [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, [EXIT_REASON_INVEPT] = handle_vmx_instruction, [EXIT_REASON_INVVPID] = handle_vmx_instruction, [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, [EXIT_REASON_PML_FULL] = handle_pml_full, [EXIT_REASON_INVPCID] = handle_invpcid, [EXIT_REASON_VMFUNC] = handle_vmx_instruction, [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, [EXIT_REASON_ENCLS] = handle_encls, [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, [EXIT_REASON_NOTIFY] = handle_notify, }; static const int kvm_vmx_max_exit_handlers = ARRAY_SIZE(kvm_vmx_exit_handlers); static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) { struct vcpu_vmx *vmx = to_vmx(vcpu); *reason = vmx->exit_reason.full; *info1 = vmx_get_exit_qual(vcpu); if (!(vmx->exit_reason.failed_vmentry)) { *info2 = vmx->idt_vectoring_info; *intr_info = vmx_get_intr_info(vcpu); if (is_exception_with_error_code(*intr_info)) *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); else *error_code = 0; } else { *info2 = 0; *intr_info = 0; *error_code = 0; } } static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) { if (vmx->pml_pg) { __free_page(vmx->pml_pg); vmx->pml_pg = NULL; } } static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *pml_buf; u16 pml_idx; pml_idx = vmcs_read16(GUEST_PML_INDEX); /* Do nothing if PML buffer is empty */ if (pml_idx == (PML_ENTITY_NUM - 1)) return; /* PML index always points to next available PML buffer entity */ if (pml_idx >= PML_ENTITY_NUM) pml_idx = 0; else pml_idx++; pml_buf = page_address(vmx->pml_pg); for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { u64 gpa; gpa = pml_buf[pml_idx]; WARN_ON(gpa & (PAGE_SIZE - 1)); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } /* reset PML index */ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", name, vmcs_read16(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); } static void vmx_dump_dtsel(char *name, uint32_t limit) { pr_err("%s limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(limit), vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); } static void vmx_dump_msrs(char *name, struct vmx_msrs *m) { unsigned int i; struct vmx_msr_entry *e; pr_err("MSR %s:\n", name); for (i = 0, e = m->val; i < m->nr; ++i, ++e) pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); } void dump_vmcs(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmentry_ctl, vmexit_ctl; u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; u64 tertiary_exec_control; unsigned long cr4; int efer_slot; if (!dump_invalid_vmcs) { pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); return; } vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); cr4 = vmcs_readl(GUEST_CR4); if (cpu_has_secondary_exec_ctrls()) secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); else secondary_exec_control = 0; if (cpu_has_tertiary_exec_ctrls()) tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); else tertiary_exec_control = 0; pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); pr_err("*** Guest State ***\n"); pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), vmcs_readl(CR0_GUEST_HOST_MASK)); pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); if (cpu_has_vmx_ept()) { pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); } pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(GUEST_SYSENTER_ESP), vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); else if (efer_slot >= 0) pr_err("EFER= 0x%016llx (autoload)\n", vmx->msr_autoload.guest.val[efer_slot].value); else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) pr_err("EFER= 0x%016llx (effective)\n", vcpu->arch.efer | (EFER_LMA | EFER_LME)); else pr_err("EFER= 0x%016llx (effective)\n", vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", vmcs_read64(GUEST_IA32_DEBUGCTL), vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); if (cpu_has_load_perf_global_ctrl() && vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); pr_err("Interruptibility = %08x ActivityState = %08x\n", vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), vmcs_read32(GUEST_ACTIVITY_STATE)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) pr_err("InterruptStatus = %04x\n", vmcs_read16(GUEST_INTR_STATUS)); if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); pr_err("*** Host State ***\n"); pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), vmcs_read16(HOST_TR_SELECTOR)); pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), vmcs_readl(HOST_TR_BASE)); pr_err("GDTBase=%016lx IDTBase=%016lx\n", vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), vmcs_readl(HOST_CR4)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(HOST_IA32_SYSENTER_ESP), vmcs_read32(HOST_IA32_SYSENTER_CS), vmcs_readl(HOST_IA32_SYSENTER_EIP)); if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); if (cpu_has_load_perf_global_ctrl() && vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); pr_err("*** Control State ***\n"); pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", vmcs_read32(EXCEPTION_BITMAP), vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_EXIT_INTR_INFO), vmcs_read32(VM_EXIT_INTR_ERROR_CODE), vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); pr_err(" reason=%08x qualification=%016lx\n", vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); pr_err("IDTVectoring: info=%08x errcode=%08x\n", vmcs_read32(IDT_VECTORING_INFO_FIELD), vmcs_read32(IDT_VECTORING_ERROR_CODE)); pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) pr_err("TSC Multiplier = 0x%016llx\n", vmcs_read64(TSC_MULTIPLIER)); if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { u16 status = vmcs_read16(GUEST_INTR_STATUS); pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); } pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); } if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) pr_err("PLE Gap=%08x Window=%08x\n", vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) pr_err("Virtual processor ID = 0x%04x\n", vmcs_read16(VIRTUAL_PROCESSOR_ID)); } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { struct vcpu_vmx *vmx = to_vmx(vcpu); union vmx_exit_reason exit_reason = vmx->exit_reason; u32 vectoring_info = vmx->idt_vectoring_info; u16 exit_handler_index; /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before * querying dirty_bitmap, we only need to kick all vcpus out of guest * mode as if vcpus is in root mode, the PML buffer must has been * flushed already. Note, PML is never enabled in hardware while * running L2. */ if (enable_pml && !is_guest_mode(vcpu)) vmx_flush_pml_buffer(vcpu); /* * KVM should never reach this point with a pending nested VM-Enter. * More specifically, short-circuiting VM-Entry to emulate L2 due to * invalid guest state should never happen as that means KVM knowingly * allowed a nested VM-Enter with an invalid vmcs12. More below. */ if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) return -EIO; if (is_guest_mode(vcpu)) { /* * PML is never enabled when running L2, bail immediately if a * PML full exit occurs as something is horribly wrong. */ if (exit_reason.basic == EXIT_REASON_PML_FULL) goto unexpected_vmexit; /* * The host physical addresses of some pages of guest memory * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC * Page). The CPU may write to these pages via their host * physical address while L2 is running, bypassing any * address-translation-based dirty tracking (e.g. EPT write * protection). * * Mark them dirty on every exit from L2 to prevent them from * getting out of sync with dirty tracking. */ nested_mark_vmcs12_pages_dirty(vcpu); /* * Synthesize a triple fault if L2 state is invalid. In normal * operation, nested VM-Enter rejects any attempt to enter L2 * with invalid state. However, those checks are skipped if * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If * L2 state is invalid, it means either L1 modified SMRAM state * or userspace provided bad state. Synthesize TRIPLE_FAULT as * doing so is architecturally allowed in the RSM case, and is * the least awful solution for the userspace case without * risking false positives. */ if (vmx->emulation_required) { nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); return 1; } if (nested_vmx_reflect_vmexit(vcpu)) return 1; } /* If guest state is invalid, start emulating. L2 is handled above. */ if (vmx->emulation_required) return handle_invalid_guest_state(vcpu); if (exit_reason.failed_vmentry) { dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full; vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; return 0; } if (unlikely(vmx->fail)) { dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = vmcs_read32(VM_INSTRUCTION_ERROR); vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; return 0; } /* * Note: * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by * delivery event since it indicates guest is accessing MMIO. * The vm-exit can be triggered again after return to guest that * will cause infinite loop. */ if ((vectoring_info & VECTORING_INFO_VALID_MASK) && (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && exit_reason.basic != EXIT_REASON_EPT_VIOLATION && exit_reason.basic != EXIT_REASON_PML_FULL && exit_reason.basic != EXIT_REASON_APIC_ACCESS && exit_reason.basic != EXIT_REASON_TASK_SWITCH && exit_reason.basic != EXIT_REASON_NOTIFY)) { int ndata = 3; vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; vcpu->run->internal.data[0] = vectoring_info; vcpu->run->internal.data[1] = exit_reason.full; vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu); if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { vcpu->run->internal.data[ndata++] = vmcs_read64(GUEST_PHYSICAL_ADDRESS); } vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; vcpu->run->internal.ndata = ndata; return 0; } if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) { if (!vmx_interrupt_blocked(vcpu)) { vmx->loaded_vmcs->soft_vnmi_blocked = 0; } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && vcpu->arch.nmi_pending) { /* * This CPU don't support us in finding the end of an * NMI-blocked window if the guest runs with IRQs * disabled. So we pull the trigger after 1 s of * futile waiting, but inform the user about this. */ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " "state on VCPU %d after 1 s timeout\n", __func__, vcpu->vcpu_id); vmx->loaded_vmcs->soft_vnmi_blocked = 0; } } if (exit_fastpath != EXIT_FASTPATH_NONE) return 1; if (exit_reason.basic >= kvm_vmx_max_exit_handlers) goto unexpected_vmexit; #ifdef CONFIG_MITIGATION_RETPOLINE if (exit_reason.basic == EXIT_REASON_MSR_WRITE) return kvm_emulate_wrmsr(vcpu); else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) return handle_preemption_timer(vcpu); else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) return handle_interrupt_window(vcpu); else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) return handle_external_interrupt(vcpu); else if (exit_reason.basic == EXIT_REASON_HLT) return kvm_emulate_halt(vcpu); else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) return handle_ept_misconfig(vcpu); #endif exit_handler_index = array_index_nospec((u16)exit_reason.basic, kvm_vmx_max_exit_handlers); if (!kvm_vmx_exit_handlers[exit_handler_index]) goto unexpected_vmexit; return kvm_vmx_exit_handlers[exit_handler_index](vcpu); unexpected_vmexit: vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason.full); dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = exit_reason.full; vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; return 0; } static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { int ret = __vmx_handle_exit(vcpu, exit_fastpath); /* * Exit to user space when bus lock detected to inform that there is * a bus lock in guest. */ if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { if (ret > 0) vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; return 0; } return ret; } /* * Software based L1D cache flush which is used when microcode providing * the cache control MSR is not loaded. * * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to * flush it is required to read in 64 KiB because the replacement algorithm * is not exactly LRU. This could be sized at runtime via topology * information but as all relevant affected CPUs have 32KiB L1D cache size * there is no point in doing so. */ static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) { int size = PAGE_SIZE << L1D_CACHE_ORDER; /* * This code is only executed when the flush mode is 'cond' or * 'always' */ if (static_branch_likely(&vmx_l1d_flush_cond)) { bool flush_l1d; /* * Clear the per-vcpu flush bit, it gets set again * either from vcpu_run() or from one of the unsafe * VMEXIT handlers. */ flush_l1d = vcpu->arch.l1tf_flush_l1d; vcpu->arch.l1tf_flush_l1d = false; /* * Clear the per-cpu flush bit, it gets set again from * the interrupt handlers. */ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); kvm_clear_cpu_l1tf_flush_l1d(); if (!flush_l1d) return; } vcpu->stat.l1d_flush++; if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); return; } asm volatile( /* First ensure the pages are in the TLB */ "xorl %%eax, %%eax\n" ".Lpopulate_tlb:\n\t" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $4096, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lpopulate_tlb\n\t" "xorl %%eax, %%eax\n\t" "cpuid\n\t" /* Now fill the cache */ "xorl %%eax, %%eax\n" ".Lfill_cache:\n" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $64, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lfill_cache\n\t" "lfence\n" :: [flush_pages] "r" (vmx_l1d_flush_pages), [size] "r" (size) : "eax", "ebx", "ecx", "edx"); } static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); int tpr_threshold; if (is_guest_mode(vcpu) && nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return; tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; if (is_guest_mode(vcpu)) to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; else vmcs_write32(TPR_THRESHOLD, tpr_threshold); } void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 sec_exec_control; if (!lapic_in_kernel(vcpu)) return; if (!flexpriority_enabled && !cpu_has_vmx_virtualize_x2apic_mode()) return; /* Postpone execution until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { vmx->nested.change_vmcs01_virtual_apic_mode = true; return; } sec_exec_control = secondary_exec_controls_get(vmx); sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); switch (kvm_get_apic_mode(vcpu)) { case LAPIC_MODE_INVALID: WARN_ONCE(true, "Invalid local APIC state"); break; case LAPIC_MODE_DISABLED: break; case LAPIC_MODE_XAPIC: if (flexpriority_enabled) { sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); /* * Flush the TLB, reloading the APIC access page will * only do so if its physical address has changed, but * the guest may have inserted a non-APIC mapping into * the TLB while the APIC access page was disabled. */ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); } break; case LAPIC_MODE_X2APIC: if (cpu_has_vmx_virtualize_x2apic_mode()) sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; break; } secondary_exec_controls_set(vmx, sec_exec_control); vmx_update_msr_bitmap_x2apic(vcpu); } static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) { const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *slot; unsigned long mmu_seq; kvm_pfn_t pfn; /* Defer reload until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; return; } if (!(secondary_exec_controls_get(to_vmx(vcpu)) & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) return; /* * Explicitly grab the memslot using KVM's internal slot ID to ensure * KVM doesn't unintentionally grab a userspace memslot. It _should_ * be impossible for userspace to create a memslot for the APIC when * APICv is enabled, but paranoia won't hurt in this case. */ slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); if (!slot || slot->flags & KVM_MEMSLOT_INVALID) return; /* * Ensure that the mmu_notifier sequence count is read before KVM * retrieves the pfn from the primary MMU. Note, the memslot is * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() * in kvm_mmu_invalidate_end(). */ mmu_seq = kvm->mmu_invalidate_seq; smp_rmb(); /* * No need to retry if the memslot does not exist or is invalid. KVM * controls the APIC-access page memslot, and only deletes the memslot * if APICv is permanently inhibited, i.e. the memslot won't reappear. */ pfn = gfn_to_pfn_memslot(slot, gfn); if (is_error_noslot_pfn(pfn)) return; read_lock(&vcpu->kvm->mmu_lock); if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); read_unlock(&vcpu->kvm->mmu_lock); goto out; } vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); read_unlock(&vcpu->kvm->mmu_lock); /* * No need for a manual TLB flush at this point, KVM has already done a * flush if there were SPTEs pointing at the previous page. */ out: /* * Do not pin apic access page in memory, the MMU notifier * will call us again if it is migrated or swapped out. */ kvm_release_pfn_clean(pfn); } static void vmx_hwapic_isr_update(int max_isr) { u16 status; u8 old; if (max_isr == -1) max_isr = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = status >> 8; if (max_isr != old) { status &= 0xff; status |= max_isr << 8; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_set_rvi(int vector) { u16 status; u8 old; if (vector == -1) vector = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = (u8)status & 0xff; if ((u8)vector != old) { status &= ~0xff; status |= (u8)vector; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) { /* * When running L2, updating RVI is only relevant when * vmcs12 virtual-interrupt-delivery enabled. * However, it can be enabled only when L1 also * intercepts external-interrupts and in that case * we should not update vmcs02 RVI but instead intercept * interrupt. Therefore, do nothing when running L2. */ if (!is_guest_mode(vcpu)) vmx_set_rvi(max_irr); } static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; bool got_posted_interrupt; if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) return -EIO; if (pi_test_on(&vmx->pi_desc)) { pi_clear_on(&vmx->pi_desc); /* * IOMMU can write to PID.ON, so the barrier matters even on UP. * But on x86 this is just a compiler barrier anyway. */ smp_mb__after_atomic(); got_posted_interrupt = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); } else { max_irr = kvm_lapic_find_highest_irr(vcpu); got_posted_interrupt = false; } /* * Newly recognized interrupts are injected via either virtual interrupt * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is * disabled in two cases: * * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected * into L2, but KVM doesn't use virtual interrupt delivery to inject * interrupts into L2, and so KVM_REQ_EVENT is again needed. * * 2) If APICv is disabled for this vCPU, assigned devices may still * attempt to post interrupts. The posted interrupt vector will cause * a VM-Exit and the subsequent entry will call sync_pir_to_irr. */ if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) vmx_set_rvi(max_irr); else if (got_posted_interrupt) kvm_make_request(KVM_REQ_EVENT, vcpu); return max_irr; } static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) return; vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); pi_clear_on(&vmx->pi_desc); memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); } void vmx_do_interrupt_irqoff(unsigned long entry); void vmx_do_nmi_irqoff(void); static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) { /* * Save xfd_err to guest_fpu before interrupt is enabled, so the * MSR value is not clobbered by the host activity before the guest * has chance to consume it. * * Do not blindly read xfd_err here, since this exception might * be caused by L1 interception on a platform which doesn't * support xfd at all. * * Do it conditionally upon guest_fpu::xfd. xfd_err matters * only when xfd contains a non-zero value. * * Queuing exception is done in vmx_handle_exit. See comment there. */ if (vcpu->arch.guest_fpu.fpstate->xfd) rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); } static void handle_exception_irqoff(struct vcpu_vmx *vmx) { u32 intr_info = vmx_get_intr_info(&vmx->vcpu); /* if exit due to PF check for async PF */ if (is_page_fault(intr_info)) vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); /* if exit due to NM, handle before interrupts are enabled */ else if (is_nm_fault(intr_info)) handle_nm_fault_irqoff(&vmx->vcpu); /* Handle machine checks before interrupts are enabled */ else if (is_machine_check(intr_info)) kvm_machine_check(); } static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) { u32 intr_info = vmx_get_intr_info(vcpu); unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, "unexpected VM-Exit interrupt info: 0x%x", intr_info)) return; kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); if (cpu_feature_enabled(X86_FEATURE_FRED)) fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); else vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); kvm_after_interrupt(vcpu); vcpu->arch.at_instruction_boundary = true; } static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (vmx->emulation_required) return; if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) handle_external_interrupt_irqoff(vcpu); else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) handle_exception_irqoff(vmx); } /* * The kvm parameter can be NULL (module initialization, or invocation before * VM creation). Be sure to check the kvm parameter before using it. */ static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) { switch (index) { case MSR_IA32_SMBASE: if (!IS_ENABLED(CONFIG_KVM_SMM)) return false; /* * We cannot do SMM unless we can run the guest in big * real mode. */ return enable_unrestricted_guest || emulate_invalid_guest_state; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: return nested; case MSR_AMD64_VIRT_SPEC_CTRL: case MSR_AMD64_TSC_RATIO: /* This is AMD only. */ return false; default: return true; } } static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) { u32 exit_intr_info; bool unblock_nmi; u8 vector; bool idtv_info_valid; idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; if (enable_vnmi) { if (vmx->loaded_vmcs->nmi_known_unmasked) return; exit_intr_info = vmx_get_intr_info(&vmx->vcpu); unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; vector = exit_intr_info & INTR_INFO_VECTOR_MASK; /* * SDM 3: 27.7.1.2 (September 2008) * Re-set bit "block by NMI" before VM entry if vmexit caused by * a guest IRET fault. * SDM 3: 23.2.2 (September 2008) * Bit 12 is undefined in any of the following cases: * If the VM exit sets the valid bit in the IDT-vectoring * information field. * If the VM exit is due to a double fault. */ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && vector != DF_VECTOR && !idtv_info_valid) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmx->loaded_vmcs->nmi_known_unmasked = !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI); } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->vnmi_blocked_time += ktime_to_ns(ktime_sub(ktime_get(), vmx->loaded_vmcs->entry_time)); } static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, u32 idt_vectoring_info, int instr_len_field, int error_code_field) { u8 vector; int type; bool idtv_info_valid; idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!idtv_info_valid) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = true; /* * SDM 3: 27.7.1.2 (September 2008) * Clear bit "block by NMI" before VM entry if a NMI * delivery faulted. */ vmx_set_nmi_mask(vcpu, false); break; case INTR_TYPE_SOFT_EXCEPTION: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); fallthrough; case INTR_TYPE_HARD_EXCEPTION: if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { u32 err = vmcs_read32(error_code_field); kvm_requeue_exception_e(vcpu, vector, err); } else kvm_requeue_exception(vcpu, vector); break; case INTR_TYPE_SOFT_INTR: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); fallthrough; case INTR_TYPE_EXT_INTR: kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); break; default: break; } } static void vmx_complete_interrupts(struct vcpu_vmx *vmx) { __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_ERROR_CODE); } static void vmx_cancel_injection(struct kvm_vcpu *vcpu) { __vmx_complete_interrupts(vcpu, vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) { int i, nr_msrs; struct perf_guest_switch_msr *msrs; struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); pmu->host_cross_mapped_mask = 0; if (pmu->pebs_enable & pmu->global_ctrl) intel_pmu_cross_mapped_check(pmu); /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); if (!msrs) return; for (i = 0; i < nr_msrs; i++) if (msrs[i].host == msrs[i].guest) clear_atomic_switch_msr(vmx, msrs[i].msr); else add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, msrs[i].host, false); } static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl; u32 delta_tsc; if (force_immediate_exit) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); vmx->loaded_vmcs->hv_timer_soft_disabled = false; } else if (vmx->hv_deadline_tsc != -1) { tscl = rdtsc(); if (vmx->hv_deadline_tsc > tscl) /* set_hv_timer ensures the delta fits in 32-bits */ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> cpu_preemption_timer_multi); else delta_tsc = 0; vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); vmx->loaded_vmcs->hv_timer_soft_disabled = false; } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); vmx->loaded_vmcs->hv_timer_soft_disabled = true; } } void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) { if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { vmx->loaded_vmcs->host_state.rsp = host_rsp; vmcs_writel(HOST_RSP, host_rsp); } } void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags) { u64 hostval = this_cpu_read(x86_spec_ctrl_current); if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) return; if (flags & VMX_RUN_SAVE_SPEC_CTRL) vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); /* * If the guest/host SPEC_CTRL values differ, restore the host value. * * For legacy IBRS, the IBRS bit always needs to be written after * transitioning from a less privileged predictor mode, regardless of * whether the guest/host values differ. */ if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || vmx->spec_ctrl != hostval) native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); barrier_nospec(); } static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, bool force_immediate_exit) { /* * If L2 is active, some VMX preemption timer exits can be handled in * the fastpath even, all other exits must use the slow path. */ if (is_guest_mode(vcpu) && to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) return EXIT_FASTPATH_NONE; switch (to_vmx(vcpu)->exit_reason.basic) { case EXIT_REASON_MSR_WRITE: return handle_fastpath_set_msr_irqoff(vcpu); case EXIT_REASON_PREEMPTION_TIMER: return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); default: return EXIT_FASTPATH_NONE; } } static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, unsigned int flags) { struct vcpu_vmx *vmx = to_vmx(vcpu); guest_state_enter_irqoff(); /* * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW * mitigation for MDS is done late in VMentry and is still * executed in spite of L1D Flush. This is because an extra VERW * should not matter much after the big hammer L1D Flush. */ if (static_branch_unlikely(&vmx_l1d_should_flush)) vmx_l1d_flush(vcpu); else if (static_branch_unlikely(&mmio_stale_data_clear) && kvm_arch_has_assigned_device(vcpu->kvm)) mds_clear_cpu_buffers(); vmx_disable_fb_clear(vmx); if (vcpu->arch.cr2 != native_read_cr2()) native_write_cr2(vcpu->arch.cr2); vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, flags); vcpu->arch.cr2 = native_read_cr2(); vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; vmx->idt_vectoring_info = 0; vmx_enable_fb_clear(vmx); if (unlikely(vmx->fail)) { vmx->exit_reason.full = 0xdead; goto out; } vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); if (likely(!vmx->exit_reason.failed_vmentry)) vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && is_nmi(vmx_get_intr_info(vcpu))) { kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); if (cpu_feature_enabled(X86_FEATURE_FRED)) fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); else vmx_do_nmi_irqoff(); kvm_after_interrupt(vcpu); } out: guest_state_exit_irqoff(); } static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long cr3, cr4; /* Record the guest's net vcpu time for enforced NMI injections. */ if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->entry_time = ktime_get(); /* * Don't enter VMX if guest state is invalid, let the exit handler * start emulation until we arrive back to a valid state. Synthesize a * consistency check VM-Exit due to invalid guest state and bail. */ if (unlikely(vmx->emulation_required)) { vmx->fail = 0; vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; vmx->exit_reason.failed_vmentry = 1; kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); vmx->exit_qualification = ENTRY_FAIL_DEFAULT; kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); vmx->exit_intr_info = 0; return EXIT_FASTPATH_NONE; } trace_kvm_entry(vcpu, force_immediate_exit); if (vmx->ple_window_dirty) { vmx->ple_window_dirty = false; vmcs_write32(PLE_WINDOW, vmx->ple_window); } /* * We did this in prepare_switch_to_guest, because it needs to * be within srcu_read_lock. */ WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); vcpu->arch.regs_dirty = 0; /* * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time * it switches back to the current->mm, which can occur in KVM context * when switching to a temporary mm to patch kernel code, e.g. if KVM * toggles a static key while handling a VM-Exit. */ cr3 = __get_current_cr3_fast(); if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { vmcs_writel(HOST_CR3, cr3); vmx->loaded_vmcs->host_state.cr3 = cr3; } cr4 = cr4_read_shadow(); if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { vmcs_writel(HOST_CR4, cr4); vmx->loaded_vmcs->host_state.cr4 = cr4; } /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) set_debugreg(vcpu->arch.dr6, 6); /* When single-stepping over STI and MOV SS, we must clear the * corresponding interruptibility bits in the guest state. Otherwise * vmentry fails as it then expects bit 14 (BS) in pending debug * exceptions being set, but that's not correct for the guest debugging * case. */ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vmx_set_interrupt_shadow(vcpu, 0); kvm_load_guest_xsave_state(vcpu); pt_guest_enter(vmx); atomic_switch_perf_msrs(vmx); if (intel_pmu_lbr_is_enabled(vcpu)) vmx_passthrough_lbr_msrs(vcpu); if (enable_preemption_timer) vmx_update_hv_timer(vcpu, force_immediate_exit); else if (force_immediate_exit) smp_send_reschedule(vcpu->cpu); kvm_wait_lapic_expire(vcpu); /* The actual VMENTER/EXIT is in the .noinstr.text section. */ vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); /* All fields are clean at this point */ if (kvm_is_using_evmcs()) { current_evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); } /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ if (vmx->host_debugctlmsr) update_debugctlmsr(vmx->host_debugctlmsr); #ifndef CONFIG_X86_64 /* * The sysexit path does not restore ds/es, so we must set them to * a reasonable value ourselves. * * We can't defer this to vmx_prepare_switch_to_host() since that * function may be executed in interrupt context, which saves and * restore segments around it, nullifying its effect. */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif pt_guest_exit(vmx); kvm_load_host_xsave_state(vcpu); if (is_guest_mode(vcpu)) { /* * Track VMLAUNCH/VMRESUME that have made past guest state * checking. */ if (vmx->nested.nested_run_pending && !vmx->exit_reason.failed_vmentry) ++vcpu->stat.nested_run; vmx->nested.nested_run_pending = 0; } if (unlikely(vmx->fail)) return EXIT_FASTPATH_NONE; if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) kvm_machine_check(); trace_kvm_exit(vcpu, KVM_ISA_VMX); if (unlikely(vmx->exit_reason.failed_vmentry)) return EXIT_FASTPATH_NONE; vmx->loaded_vmcs->launched = 1; vmx_recover_nmi_blocking(vmx); vmx_complete_interrupts(vmx); return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); } static void vmx_vcpu_free(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (enable_pml) vmx_destroy_pml_buffer(vmx); free_vpid(vmx->vpid); nested_vmx_free_vcpu(vcpu); free_loaded_vmcs(vmx->loaded_vmcs); } static int vmx_vcpu_create(struct kvm_vcpu *vcpu) { struct vmx_uret_msr *tsx_ctrl; struct vcpu_vmx *vmx; int i, err; BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); vmx = to_vmx(vcpu); INIT_LIST_HEAD(&vmx->pi_wakeup_list); err = -ENOMEM; vmx->vpid = allocate_vpid(); /* * If PML is turned on, failure on enabling PML just results in failure * of creating the vcpu, therefore we can simplify PML logic (by * avoiding dealing with cases, such as enabling PML partially on vcpus * for the guest), etc. */ if (enable_pml) { vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmx->pml_pg) goto free_vpid; } for (i = 0; i < kvm_nr_uret_msrs; ++i) vmx->guest_uret_msrs[i].mask = -1ull; if (boot_cpu_has(X86_FEATURE_RTM)) { /* * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. * Keep the host value unchanged to avoid changing CPUID bits * under the host kernel's feet. */ tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); if (tsx_ctrl) tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; } err = alloc_loaded_vmcs(&vmx->vmcs01); if (err < 0) goto free_pml; /* * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the * feature only for vmcs01, KVM currently isn't equipped to realize any * performance benefits from enabling it for vmcs02. */ if (kvm_is_using_evmcs() && (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; evmcs->hv_enlightenments_control.msr_bitmap = 1; } /* The MSR bitmap starts with all ones */ bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); #ifdef CONFIG_X86_64 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); #endif vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); if (kvm_cstate_in_guest(vcpu->kvm)) { vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); } vmx->loaded_vmcs = &vmx->vmcs01; if (cpu_need_virtualize_apic_accesses(vcpu)) { err = kvm_alloc_apic_access_page(vcpu->kvm); if (err) goto free_vmcs; } if (enable_ept && !enable_unrestricted_guest) { err = init_rmode_identity_map(vcpu->kvm); if (err) goto free_vmcs; } if (vmx_can_use_ipiv(vcpu)) WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); return 0; free_vmcs: free_loaded_vmcs(vmx->loaded_vmcs); free_pml: vmx_destroy_pml_buffer(vmx); free_vpid: free_vpid(vmx->vpid); return err; } #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" static int vmx_vm_init(struct kvm *kvm) { if (!ple_gap) kvm->arch.pause_in_guest = true; if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: case L1TF_MITIGATION_FLUSH_NOWARN: /* 'I explicitly don't care' is set */ break; case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: case L1TF_MITIGATION_FULL: /* * Warn upon starting the first VM in a potentially * insecure environment. */ if (sched_smt_active()) pr_warn_once(L1TF_MSG_SMT); if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) pr_warn_once(L1TF_MSG_L1D); break; case L1TF_MITIGATION_FULL_FORCE: /* Flush is enforced */ break; } } return 0; } static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in * memory aliases with conflicting memory types and sometimes MCEs. * We have to be careful as to what are honored and when. * * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to * UC. The effective memory type is UC or WC depending on guest PAT. * This was historically the source of MCEs and we want to be * conservative. * * When there is no need to deal with noncoherent DMA (e.g., no VT-d * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The * EPT memory type is set to WB. The effective memory type is forced * WB. * * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The * EPT memory type is used to emulate guest CD/MTRR. */ if (is_mmio) return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; else return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; } return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; } static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) { /* * These bits in the secondary execution controls field * are dynamic, the others are mostly based on the hypervisor * architecture and the guest's CPUID. Do not touch the * dynamic bits. */ u32 mask = SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_DESC; u32 cur_ctl = secondary_exec_controls_get(vmx); secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); } /* * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits * (indicating "allowed-1") if they are supported in the guest's CPUID. */ static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *entry; vmx->nested.msrs.cr0_fixed1 = 0xffffffff; vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ if (entry && (entry->_reg & (_cpuid_mask))) \ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ } while (0) entry = kvm_find_cpuid_entry(vcpu, 0x1); cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); #undef cr4_fixed1_update } static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *best = NULL; int i; for (i = 0; i < PT_CPUID_LEAVES; i++) { best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); if (!best) return; vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; } /* Get the number of configurable Address Ranges for filtering */ vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_num_address_ranges); /* Initialize and clear the no dependency bits */ vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | RTIT_CTL_BRANCH_EN); /* * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise * will inject an #GP */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; /* * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and * PSBFreq can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); /* * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | RTIT_CTL_MTC_RANGE); /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | RTIT_CTL_PTW_EN); /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; /* unmask address range configure area */ for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); } static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * XSAVES is effectively enabled if and only if XSAVE is also exposed * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be * set if and only if XSAVE is supported. */ if (boot_cpu_has(X86_FEATURE_XSAVE) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); vmx_setup_uret_msrs(vmx); if (cpu_has_secondary_exec_ctrls()) vmcs_set_secondary_exec_control(vmx, vmx_secondary_exec_control(vmx)); if (guest_can_use(vcpu, X86_FEATURE_VMX)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_VMX_ENABLED_INSIDE_SMX | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; else vmx->msr_ia32_feature_control_valid_bits &= ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); if (guest_can_use(vcpu, X86_FEATURE_VMX)) nested_vmx_cr_fixed1_bits_update(vcpu); if (boot_cpu_has(X86_FEATURE_INTEL_PT) && guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) update_intel_pt_cfg(vcpu); if (boot_cpu_has(X86_FEATURE_RTM)) { struct vmx_uret_msr *msr; msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); if (msr) { bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); } } if (kvm_cpu_cap_has(X86_FEATURE_XFD)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); if (boot_cpu_has(X86_FEATURE_IBPB)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, !guest_has_pred_cmd_msr(vcpu)); if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); set_cr4_guest_host_mask(vmx); vmx_write_encls_bitmap(vcpu, NULL); if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; else vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_LC_ENABLED; else vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_LC_ENABLED; /* Refresh #PF interception to account for MAXPHYADDR changes. */ vmx_update_exception_bitmap(vcpu); } static u64 vmx_get_perf_capabilities(void) { u64 perf_cap = PMU_CAP_FW_WRITES; struct x86_pmu_lbr lbr; u64 host_perf_cap = 0; if (!enable_pmu) return 0; if (boot_cpu_has(X86_FEATURE_PDCM)) rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { x86_perf_get_lbr(&lbr); if (lbr.nr) perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; } if (vmx_pebs_supported()) { perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) perf_cap &= ~PERF_CAP_PEBS_BASELINE; } return perf_cap; } static __init void vmx_set_cpu_caps(void) { kvm_set_cpu_caps(); /* CPUID 0x1 */ if (nested) kvm_cpu_cap_set(X86_FEATURE_VMX); /* CPUID 0x7 */ if (kvm_mpx_supported()) kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); if (!cpu_has_vmx_invpcid()) kvm_cpu_cap_clear(X86_FEATURE_INVPCID); if (vmx_pt_mode_is_host_guest()) kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); if (vmx_pebs_supported()) { kvm_cpu_cap_check_and_set(X86_FEATURE_DS); kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); } if (!enable_pmu) kvm_cpu_cap_clear(X86_FEATURE_PDCM); kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); if (!enable_sgx) { kvm_cpu_cap_clear(X86_FEATURE_SGX); kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); kvm_cpu_cap_clear(X86_FEATURE_SGX1); kvm_cpu_cap_clear(X86_FEATURE_SGX2); } if (vmx_umip_emulated()) kvm_cpu_cap_set(X86_FEATURE_UMIP); /* CPUID 0xD.1 */ kvm_caps.supported_xss = 0; if (!cpu_has_vmx_xsaves()) kvm_cpu_cap_clear(X86_FEATURE_XSAVES); /* CPUID 0x80000001 and 0x7 (RDPID) */ if (!cpu_has_vmx_rdtscp()) { kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); kvm_cpu_cap_clear(X86_FEATURE_RDPID); } if (cpu_has_vmx_waitpkg()) kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); } static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, struct x86_instruction_info *info) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned short port; bool intercept; int size; if (info->intercept == x86_intercept_in || info->intercept == x86_intercept_ins) { port = info->src_val; size = info->dst_bytes; } else { port = info->dst_val; size = info->src_bytes; } /* * If the 'use IO bitmaps' VM-execution control is 0, IO instruction * VM-exits depend on the 'unconditional IO exiting' VM-execution * control. * * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. */ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) intercept = nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); else intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; } static int vmx_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); switch (info->intercept) { /* * RDPID causes #UD if disabled through secondary execution controls. * Because it is marked as EmulateOnUD, we need to intercept it here. * Note, RDPID is hidden behind ENABLE_RDTSCP. */ case x86_intercept_rdpid: if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { exception->vector = UD_VECTOR; exception->error_code_valid = false; return X86EMUL_PROPAGATE_FAULT; } break; case x86_intercept_in: case x86_intercept_ins: case x86_intercept_out: case x86_intercept_outs: return vmx_check_intercept_io(vcpu, info); case x86_intercept_lgdt: case x86_intercept_lidt: case x86_intercept_lldt: case x86_intercept_ltr: case x86_intercept_sgdt: case x86_intercept_sidt: case x86_intercept_sldt: case x86_intercept_str: if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) return X86EMUL_CONTINUE; /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ break; case x86_intercept_pause: /* * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides * with vanilla NOPs in the emulator. Apply the interception * check only to actual PAUSE instructions. Don't check * PAUSE-loop-exiting, software can't expect a given PAUSE to * exit, i.e. KVM is within its rights to allow L2 to execute * the PAUSE. */ if ((info->rep_prefix != REPE_PREFIX) || !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) return X86EMUL_CONTINUE; break; /* TODO: check more intercepts... */ default: break; } return X86EMUL_UNHANDLEABLE; } #ifdef CONFIG_X86_64 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ static inline int u64_shl_div_u64(u64 a, unsigned int shift, u64 divisor, u64 *result) { u64 low = a << shift, high = a >> (64 - shift); /* To avoid the overflow on divq */ if (high >= divisor) return 1; /* Low hold the result, high hold rem which is discarded */ asm("divq %2\n\t" : "=a" (low), "=d" (high) : "rm" (divisor), "0" (low), "1" (high)); *result = low; return 0; } static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, bool *expired) { struct vcpu_vmx *vmx; u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; vmx = to_vmx(vcpu); tscl = rdtsc(); guest_tscl = kvm_read_l1_tsc(vcpu, tscl); delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; lapic_timer_advance_cycles = nsec_to_cycles(vcpu, ktimer->timer_advance_ns); if (delta_tsc > lapic_timer_advance_cycles) delta_tsc -= lapic_timer_advance_cycles; else delta_tsc = 0; /* Convert to host delta tsc if tsc scaling is enabled */ if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && delta_tsc && u64_shl_div_u64(delta_tsc, kvm_caps.tsc_scaling_ratio_frac_bits, vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) return -ERANGE; /* * If the delta tsc can't fit in the 32 bit after the multi shift, * we can't use the preemption timer. * It's possible that it fits on later vmentries, but checking * on every vmentry is costly so we just use an hrtimer. */ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) return -ERANGE; vmx->hv_deadline_tsc = tscl + delta_tsc; *expired = !delta_tsc; return 0; } static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->hv_deadline_tsc = -1; } #endif static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (!kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); } void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (WARN_ON_ONCE(!enable_pml)) return; if (is_guest_mode(vcpu)) { vmx->nested.update_vmcs01_cpu_dirty_logging = true; return; } /* * Note, nr_memslots_dirty_logging can be changed concurrent with this * code, but in that case another update request will be made and so * the guest will never run with a stale PML value. */ if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); else secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); } static void vmx_setup_mce(struct kvm_vcpu *vcpu) { if (vcpu->arch.mcg_cap & MCG_LMCE_P) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEAT_CTL_LMCE_ENABLED; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_LMCE_ENABLED; } #ifdef CONFIG_KVM_SMM static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { /* we need a nested vmexit to enter SMM, postpone if run is pending */ if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; return !is_smm(vcpu); } static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * TODO: Implement custom flows for forcing the vCPU out/in of L2 on * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong * SMI and RSM only modify state that is saved and restored via SMRAM. * E.g. most MSRs are left untouched, but many are modified by VM-Exit * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. */ vmx->nested.smm.guest_mode = is_guest_mode(vcpu); if (vmx->nested.smm.guest_mode) nested_vmx_vmexit(vcpu, -1, 0, 0); vmx->nested.smm.vmxon = vmx->nested.vmxon; vmx->nested.vmxon = false; vmx_clear_hlt(vcpu); return 0; } static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) { struct vcpu_vmx *vmx = to_vmx(vcpu); int ret; if (vmx->nested.smm.vmxon) { vmx->nested.vmxon = true; vmx->nested.smm.vmxon = false; } if (vmx->nested.smm.guest_mode) { ret = nested_vmx_enter_non_root_mode(vcpu, false); if (ret) return ret; vmx->nested.nested_run_pending = 1; vmx->nested.smm.guest_mode = false; } return 0; } static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) { /* RSM will cause a vmexit anyway. */ } #endif static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); } static void vmx_migrate_timers(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) { struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; if (hrtimer_try_to_cancel(timer) == 1) hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); } } static void vmx_hardware_unsetup(void) { kvm_set_posted_intr_wakeup_handler(NULL); if (nested) nested_vmx_hardware_unsetup(); free_kvm_area(); } #define VMX_REQUIRED_APICV_INHIBITS \ ( \ BIT(APICV_INHIBIT_REASON_DISABLE)| \ BIT(APICV_INHIBIT_REASON_ABSENT) | \ BIT(APICV_INHIBIT_REASON_HYPERV) | \ BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ ) static void vmx_vm_destroy(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); } /* * Note, the SDM states that the linear address is masked *after* the modified * canonicality check, whereas KVM masks (untags) the address and then performs * a "normal" canonicality check. Functionally, the two methods are identical, * and when the masking occurs relative to the canonicality check isn't visible * to software, i.e. KVM's behavior doesn't violate the SDM. */ gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) { int lam_bit; unsigned long cr3_bits; if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) return gva; if (!is_64_bit_mode(vcpu)) return gva; /* * Bit 63 determines if the address should be treated as user address * or a supervisor address. */ if (!(gva & BIT_ULL(63))) { cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) return gva; /* LAM_U48 is ignored if LAM_U57 is set. */ lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; } else { if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) return gva; lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; } /* * Untag the address by sign-extending the lam_bit, but NOT to bit 63. * Bit 63 is retained from the raw virtual address so that untagging * doesn't change a user access to a supervisor access, and vice versa. */ return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); } static struct kvm_x86_ops vmx_x86_ops __initdata = { .name = KBUILD_MODNAME, .check_processor_compatibility = vmx_check_processor_compat, .hardware_unsetup = vmx_hardware_unsetup, .hardware_enable = vmx_hardware_enable, .hardware_disable = vmx_hardware_disable, .has_emulated_msr = vmx_has_emulated_msr, .vm_size = sizeof(struct kvm_vmx), .vm_init = vmx_vm_init, .vm_destroy = vmx_vm_destroy, .vcpu_precreate = vmx_vcpu_precreate, .vcpu_create = vmx_vcpu_create, .vcpu_free = vmx_vcpu_free, .vcpu_reset = vmx_vcpu_reset, .prepare_switch_to_guest = vmx_prepare_switch_to_guest, .vcpu_load = vmx_vcpu_load, .vcpu_put = vmx_vcpu_put, .update_exception_bitmap = vmx_update_exception_bitmap, .get_msr_feature = vmx_get_msr_feature, .get_msr = vmx_get_msr, .set_msr = vmx_set_msr, .get_segment_base = vmx_get_segment_base, .get_segment = vmx_get_segment, .set_segment = vmx_set_segment, .get_cpl = vmx_get_cpl, .get_cs_db_l_bits = vmx_get_cs_db_l_bits, .is_valid_cr0 = vmx_is_valid_cr0, .set_cr0 = vmx_set_cr0, .is_valid_cr4 = vmx_is_valid_cr4, .set_cr4 = vmx_set_cr4, .set_efer = vmx_set_efer, .get_idt = vmx_get_idt, .set_idt = vmx_set_idt, .get_gdt = vmx_get_gdt, .set_gdt = vmx_set_gdt, .set_dr7 = vmx_set_dr7, .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, .cache_reg = vmx_cache_reg, .get_rflags = vmx_get_rflags, .set_rflags = vmx_set_rflags, .get_if_flag = vmx_get_if_flag, .flush_tlb_all = vmx_flush_tlb_all, .flush_tlb_current = vmx_flush_tlb_current, .flush_tlb_gva = vmx_flush_tlb_gva, .flush_tlb_guest = vmx_flush_tlb_guest, .vcpu_pre_run = vmx_vcpu_pre_run, .vcpu_run = vmx_vcpu_run, .handle_exit = vmx_handle_exit, .skip_emulated_instruction = vmx_skip_emulated_instruction, .update_emulated_instruction = vmx_update_emulated_instruction, .set_interrupt_shadow = vmx_set_interrupt_shadow, .get_interrupt_shadow = vmx_get_interrupt_shadow, .patch_hypercall = vmx_patch_hypercall, .inject_irq = vmx_inject_irq, .inject_nmi = vmx_inject_nmi, .inject_exception = vmx_inject_exception, .cancel_injection = vmx_cancel_injection, .interrupt_allowed = vmx_interrupt_allowed, .nmi_allowed = vmx_nmi_allowed, .get_nmi_mask = vmx_get_nmi_mask, .set_nmi_mask = vmx_set_nmi_mask, .enable_nmi_window = vmx_enable_nmi_window, .enable_irq_window = vmx_enable_irq_window, .update_cr8_intercept = vmx_update_cr8_intercept, .set_virtual_apic_mode = vmx_set_virtual_apic_mode, .set_apic_access_page_addr = vmx_set_apic_access_page_addr, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, .apicv_pre_state_restore = vmx_apicv_pre_state_restore, .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, .sync_pir_to_irr = vmx_sync_pir_to_irr, .deliver_interrupt = vmx_deliver_interrupt, .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, .set_tss_addr = vmx_set_tss_addr, .set_identity_map_addr = vmx_set_identity_map_addr, .get_mt_mask = vmx_get_mt_mask, .get_exit_info = vmx_get_exit_info, .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, .get_l2_tsc_offset = vmx_get_l2_tsc_offset, .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, .write_tsc_offset = vmx_write_tsc_offset, .write_tsc_multiplier = vmx_write_tsc_multiplier, .load_mmu_pgd = vmx_load_mmu_pgd, .check_intercept = vmx_check_intercept, .handle_exit_irqoff = vmx_handle_exit_irqoff, .sched_in = vmx_sched_in, .cpu_dirty_log_size = PML_ENTITY_NUM, .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, .nested_ops = &vmx_nested_ops, .pi_update_irte = vmx_pi_update_irte, .pi_start_assignment = vmx_pi_start_assignment, #ifdef CONFIG_X86_64 .set_hv_timer = vmx_set_hv_timer, .cancel_hv_timer = vmx_cancel_hv_timer, #endif .setup_mce = vmx_setup_mce, #ifdef CONFIG_KVM_SMM .smi_allowed = vmx_smi_allowed, .enter_smm = vmx_enter_smm, .leave_smm = vmx_leave_smm, .enable_smi_window = vmx_enable_smi_window, #endif .check_emulate_instruction = vmx_check_emulate_instruction, .apic_init_signal_blocked = vmx_apic_init_signal_blocked, .migrate_timers = vmx_migrate_timers, .msr_filter_changed = vmx_msr_filter_changed, .complete_emulated_msr = kvm_complete_insn_gp, .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, .get_untagged_addr = vmx_get_untagged_addr, }; static unsigned int vmx_handle_intel_pt_intr(void) { struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); /* '0' on failure so that the !PT case can use a RET0 static call. */ if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) return 0; kvm_make_request(KVM_REQ_PMI, vcpu); __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, (unsigned long *)&vcpu->arch.pmu.global_status); return 1; } static __init void vmx_setup_user_return_msrs(void) { /* * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm * will emulate SYSCALL in legacy mode if the vendor string in guest * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To * support this emulation, MSR_STAR is included in the list for i386, * but is never loaded into hardware. MSR_CSTAR is also never loaded * into hardware and is here purely for emulation purposes. */ const u32 vmx_uret_msrs_list[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, #endif MSR_EFER, MSR_TSC_AUX, MSR_STAR, MSR_IA32_TSX_CTRL, }; int i; BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) kvm_add_user_return_msr(vmx_uret_msrs_list[i]); } static void __init vmx_setup_me_spte_mask(void) { u64 me_mask = 0; /* * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use * the former to avoid exposing shadow_phys_bits. * * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to * shadow_phys_bits. On MKTME and/or TDX capable systems, * boot_cpu_data.x86_phys_bits holds the actual physical address * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR * reported by CPUID. Those bits between are KeyID bits. */ if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, kvm_get_shadow_phys_bits() - 1); /* * Unlike SME, host kernel doesn't support setting up any * MKTME KeyID on Intel platforms. No memory encryption * bits should be included into the SPTE. */ kvm_mmu_set_me_spte_mask(0, me_mask); } static struct kvm_x86_init_ops vmx_init_ops __initdata; static __init int hardware_setup(void) { unsigned long host_bndcfgs; struct desc_ptr dt; int r; store_idt(&dt); host_idt_base = dt.address; vmx_setup_user_return_msrs(); if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) return -EIO; if (cpu_has_perf_global_ctrl_bug()) pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " "does not work properly. Using workaround\n"); if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_MPX)) { rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); } if (!cpu_has_vmx_mpx()) kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) enable_vpid = 0; if (!cpu_has_vmx_ept() || !cpu_has_vmx_ept_4levels() || !cpu_has_vmx_ept_mt_wb() || !cpu_has_vmx_invept_global()) enable_ept = 0; /* NX support is required for shadow paging. */ if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { pr_err_ratelimited("NX (Execute Disable) not supported\n"); return -EOPNOTSUPP; } if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) enable_ept_ad_bits = 0; if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) enable_unrestricted_guest = 0; if (!cpu_has_vmx_flexpriority()) flexpriority_enabled = 0; if (!cpu_has_virtual_nmis()) enable_vnmi = 0; #ifdef CONFIG_X86_SGX_KVM if (!cpu_has_vmx_encls_vmexit()) enable_sgx = false; #endif /* * set_apic_access_page_addr() is used to reload apic access * page upon invalidation. No need to do anything if not * using the APIC_ACCESS_ADDR VMCS field. */ if (!flexpriority_enabled) vmx_x86_ops.set_apic_access_page_addr = NULL; if (!cpu_has_vmx_tpr_shadow()) vmx_x86_ops.update_cr8_intercept = NULL; #if IS_ENABLED(CONFIG_HYPERV) if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH && enable_ept) { vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; } #endif if (!cpu_has_vmx_ple()) { ple_gap = 0; ple_window = 0; ple_window_grow = 0; ple_window_max = 0; ple_window_shrink = 0; } if (!cpu_has_vmx_apicv()) enable_apicv = 0; if (!enable_apicv) vmx_x86_ops.sync_pir_to_irr = NULL; if (!enable_apicv || !cpu_has_vmx_ipiv()) enable_ipiv = false; if (cpu_has_vmx_tsc_scaling()) kvm_caps.has_tsc_control = true; kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; kvm_caps.tsc_scaling_ratio_frac_bits = 48; kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ if (enable_ept) kvm_mmu_set_ept_masks(enable_ept_ad_bits, cpu_has_vmx_ept_execute_only()); /* * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID * bits to shadow_zero_check. */ vmx_setup_me_spte_mask(); kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), ept_caps_to_lpage_level(vmx_capability.ept)); /* * Only enable PML when hardware supports PML feature, and both EPT * and EPT A/D bit features are enabled -- PML depends on them to work. */ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) enable_pml = 0; if (!enable_pml) vmx_x86_ops.cpu_dirty_log_size = 0; if (!cpu_has_vmx_preemption_timer()) enable_preemption_timer = false; if (enable_preemption_timer) { u64 use_timer_freq = 5000ULL * 1000 * 1000; cpu_preemption_timer_multi = vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; if (tsc_khz) use_timer_freq = (u64)tsc_khz * 1000; use_timer_freq >>= cpu_preemption_timer_multi; /* * KVM "disables" the preemption timer by setting it to its max * value. Don't use the timer if it might cause spurious exits * at a rate faster than 0.1 Hz (of uninterrupted guest time). */ if (use_timer_freq > 0xffffffffu / 10) enable_preemption_timer = false; } if (!enable_preemption_timer) { vmx_x86_ops.set_hv_timer = NULL; vmx_x86_ops.cancel_hv_timer = NULL; } kvm_caps.supported_mce_cap |= MCG_LMCE_P; kvm_caps.supported_mce_cap |= MCG_CMCI_P; if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) return -EINVAL; if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) pt_mode = PT_MODE_SYSTEM; if (pt_mode == PT_MODE_HOST_GUEST) vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; else vmx_init_ops.handle_intel_pt_intr = NULL; setup_default_sgx_lepubkeyhash(); if (nested) { nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); if (r) return r; } vmx_set_cpu_caps(); r = alloc_kvm_area(); if (r && nested) nested_vmx_hardware_unsetup(); kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); return r; } static struct kvm_x86_init_ops vmx_init_ops __initdata = { .hardware_setup = hardware_setup, .handle_intel_pt_intr = NULL, .runtime_ops = &vmx_x86_ops, .pmu_ops = &intel_pmu_ops, }; static void vmx_cleanup_l1d_flush(void) { if (vmx_l1d_flush_pages) { free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); vmx_l1d_flush_pages = NULL; } /* Restore state so sysfs ignores VMX */ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; } static void __vmx_exit(void) { allow_smaller_maxphyaddr = false; cpu_emergency_unregister_virt_callback(vmx_emergency_disable); vmx_cleanup_l1d_flush(); } static void vmx_exit(void) { kvm_exit(); kvm_x86_vendor_exit(); __vmx_exit(); } module_exit(vmx_exit); static int __init vmx_init(void) { int r, cpu; if (!kvm_is_vmx_supported()) return -EOPNOTSUPP; /* * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing * to unwind if a later step fails. */ hv_init_evmcs(); r = kvm_x86_vendor_init(&vmx_init_ops); if (r) return r; /* * Must be called after common x86 init so enable_ept is properly set * up. Hand the parameter mitigation value in which was stored in * the pre module init parser. If no parameter was given, it will * contain 'auto' which will be turned into the default 'cond' * mitigation mode. */ r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); if (r) goto err_l1d_flush; for_each_possible_cpu(cpu) { INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); pi_init_cpu(cpu); } cpu_emergency_register_virt_callback(vmx_emergency_disable); vmx_check_vmcs12_offsets(); /* * Shadow paging doesn't have a (further) performance penalty * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it * by default */ if (!enable_ept) allow_smaller_maxphyaddr = true; /* * Common KVM initialization _must_ come last, after this, /dev/kvm is * exposed to userspace! */ r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), THIS_MODULE); if (r) goto err_kvm_init; return 0; err_kvm_init: __vmx_exit(); err_l1d_flush: kvm_x86_vendor_exit(); return r; } module_init(vmx_init);