#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kvm_host.h>

#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include "smm.h"
#include "cpuid.h"
#include "pmu.h"

#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/amd-iommu.h>
#include <linux/sched.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
#include <linux/hashtable.h>
#include <linux/objtool.h>
#include <linux/psp-sev.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/rwsem.h>
#include <linux/cc_platform.h>
#include <linux/smp.h>

#include <asm/apic.h>
#include <asm/perf_event.h>
#include <asm/tlbflush.h>
#include <asm/desc.h>
#include <asm/debugreg.h>
#include <asm/kvm_para.h>
#include <asm/irq_remapping.h>
#include <asm/spec-ctrl.h>
#include <asm/cpu_device_id.h>
#include <asm/traps.h>
#include <asm/reboot.h>
#include <asm/fpu/api.h>

#include <trace/events/ipi.h>

#include "trace.h"

#include "svm.h"
#include "svm_ops.h"

#include "kvm_onhyperv.h"
#include "svm_onhyperv.h"

MODULE_AUTHOR("Qumranet");
MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
MODULE_LICENSE("GPL");

#ifdef MODULE
static const struct x86_cpu_id svm_cpu_id[] = {
	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
#endif

#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3

static bool erratum_383_found __read_mostly;

u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;

/*
 * Set osvw_len to higher value when updated Revision Guides
 * are published and we know what the new status bits are
 */
static uint64_t osvw_len = 4, osvw_status;

static DEFINE_PER_CPU(u64, current_tsc_ratio);

#define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))

static const struct svm_direct_access_msrs {
	u32 index;   /* Index of the MSR */
	bool always; /* True if intercept is initially cleared */
} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
	{ .index = MSR_STAR,				.always = true  },
	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
#ifdef CONFIG_X86_64
	{ .index = MSR_GS_BASE,				.always = true  },
	{ .index = MSR_FS_BASE,				.always = true  },
	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
	{ .index = MSR_LSTAR,				.always = true  },
	{ .index = MSR_CSTAR,				.always = true  },
	{ .index = MSR_SYSCALL_MASK,			.always = true  },
#endif
	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
	{ .index = MSR_IA32_PRED_CMD,			.always = false },
	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
	{ .index = MSR_IA32_DEBUGCTLMSR,		.always = false },
	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
	{ .index = MSR_IA32_XSS,			.always = false },
	{ .index = MSR_EFER,				.always = false },
	{ .index = MSR_IA32_CR_PAT,			.always = false },
	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
	{ .index = MSR_TSC_AUX,				.always = false },
	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },

	/*
	 * Note:
	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
	 * the AVIC hardware would generate GP fault. Therefore, always
	 * intercept the MSR 0x832, and do not setup direct_access_msr.
	 */
	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
	{ .index = MSR_INVALID,				.always = false },
};

/*
 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 * pause_filter_count: On processors that support Pause filtering(indicated
 *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 *	count value. On VMRUN this value is loaded into an internal counter.
 *	Each time a pause instruction is executed, this counter is decremented
 *	until it reaches zero at which time a #VMEXIT is generated if pause
 *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 *	Intercept Filtering for more details.
 *	This also indicate if ple logic enabled.
 *
 * pause_filter_thresh: In addition, some processor families support advanced
 *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 *	the amount of time a guest is allowed to execute in a pause loop.
 *	In this mode, a 16-bit pause filter threshold field is added in the
 *	VMCB. The threshold value is a cycle count that is used to reset the
 *	pause counter. As with simple pause filtering, VMRUN loads the pause
 *	count value from VMCB into an internal counter. Then, on each pause
 *	instruction the hardware checks the elapsed number of cycles since
 *	the most recent pause instruction against the pause filter threshold.
 *	If the elapsed cycle count is greater than the pause filter threshold,
 *	then the internal pause count is reloaded from the VMCB and execution
 *	continues. If the elapsed cycle count is less than the pause filter
 *	threshold, then the internal pause count is decremented. If the count
 *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 *	triggered. If advanced pause filtering is supported and pause filter
 *	threshold field is set to zero, the filter will operate in the simpler,
 *	count only mode.
 */

static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
module_param(pause_filter_thresh, ushort, 0444);

static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
module_param(pause_filter_count, ushort, 0444);

/* Default doubles per-vcpu window every exit. */
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
module_param(pause_filter_count_grow, ushort, 0444);

/* Default resets per-vcpu window every exit to pause_filter_count. */
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
module_param(pause_filter_count_shrink, ushort, 0444);

/* Default is to compute the maximum so we can never overflow. */
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
module_param(pause_filter_count_max, ushort, 0444);

/*
 * Use nested page tables by default.  Note, NPT may get forced off by
 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
 */
bool npt_enabled = true;
module_param_named(npt, npt_enabled, bool, 0444);

/* allow nested virtualization in KVM/SVM */
static int nested = true;
module_param(nested, int, 0444);

/* enable/disable Next RIP Save */
int nrips = true;
module_param(nrips, int, 0444);

/* enable/disable Virtual VMLOAD VMSAVE */
static int vls = true;
module_param(vls, int, 0444);

/* enable/disable Virtual GIF */
int vgif = true;
module_param(vgif, int, 0444);

/* enable/disable LBR virtualization */
int lbrv = true;
module_param(lbrv, int, 0444);

static int tsc_scaling = true;
module_param(tsc_scaling, int, 0444);

/*
 * enable / disable AVIC.  Because the defaults differ for APICv
 * support between VMX and SVM we cannot use module_param_named.
 */
static bool avic;
module_param(avic, bool, 0444);

bool __read_mostly dump_invalid_vmcb;
module_param(dump_invalid_vmcb, bool, 0644);


bool intercept_smi = true;
module_param(intercept_smi, bool, 0444);

bool vnmi = true;
module_param(vnmi, bool, 0444);

static bool svm_gp_erratum_intercept = true;

static u8 rsm_ins_bytes[] = "\x0f\xaa";

static unsigned long iopm_base;

DEFINE_PER_CPU(struct svm_cpu_data, svm_data);

/*
 * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
 *
 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
 * defer the restoration of TSC_AUX until the CPU returns to userspace.
 */
static int tsc_aux_uret_slot __read_mostly = -1;

static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};

#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)

u32 svm_msrpm_offset(u32 msr)
{
	u32 offset;
	int i;

	for (i = 0; i < NUM_MSR_MAPS; i++) {
		if (msr < msrpm_ranges[i] ||
		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
			continue;

		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */

		/* Now we have the u8 offset - but need the u32 offset */
		return offset / 4;
	}

	/* MSR not in any range */
	return MSR_INVALID;
}

static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);

static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
#else
	return PT32E_ROOT_LEVEL;
#endif
}

int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 old_efer = vcpu->arch.efer;
	vcpu->arch.efer = efer;

	if (!npt_enabled) {
		/* Shadow paging assumes NX to be available.  */
		efer |= EFER_NX;

		if (!(efer & EFER_LMA))
			efer &= ~EFER_LME;
	}

	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
		if (!(efer & EFER_SVME)) {
			svm_leave_nested(vcpu);
			svm_set_gif(svm, true);
			/* #GP intercept is still needed for vmware backdoor */
			if (!enable_vmware_backdoor)
				clr_exception_intercept(svm, GP_VECTOR);

			/*
			 * Free the nested guest state, unless we are in SMM.
			 * In this case we will return to the nested guest
			 * as soon as we leave SMM.
			 */
			if (!is_smm(vcpu))
				svm_free_nested(svm);

		} else {
			int ret = svm_allocate_nested(svm);

			if (ret) {
				vcpu->arch.efer = old_efer;
				return ret;
			}

			/*
			 * Never intercept #GP for SEV guests, KVM can't
			 * decrypt guest memory to workaround the erratum.
			 */
			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
				set_exception_intercept(svm, GP_VECTOR);
		}
	}

	svm->vmcb->save.efer = efer | EFER_SVME;
	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
	return 0;
}

static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 ret = 0;

	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
	return ret;
}

static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (mask == 0)
		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
	else
		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;

}

static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
					   bool commit_side_effects)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long old_rflags;

	/*
	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
	 * the type of exit and the #VC handler in the guest.
	 */
	if (sev_es_guest(vcpu->kvm))
		goto done;

	if (nrips && svm->vmcb->control.next_rip != 0) {
		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
		svm->next_rip = svm->vmcb->control.next_rip;
	}

	if (!svm->next_rip) {
		if (unlikely(!commit_side_effects))
			old_rflags = svm->vmcb->save.rflags;

		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
			return 0;

		if (unlikely(!commit_side_effects))
			svm->vmcb->save.rflags = old_rflags;
	} else {
		kvm_rip_write(vcpu, svm->next_rip);
	}

done:
	if (likely(commit_side_effects))
		svm_set_interrupt_shadow(vcpu, 0);

	return 1;
}

static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
	return __svm_skip_emulated_instruction(vcpu, true);
}

static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
{
	unsigned long rip, old_rip = kvm_rip_read(vcpu);
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * Due to architectural shortcomings, the CPU doesn't always provide
	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
	 * the instruction even if NextRIP is supported to acquire the next
	 * RIP so that it can be shoved into the NextRIP field, otherwise
	 * hardware will fail to advance guest RIP during event injection.
	 * Drop the exception/interrupt if emulation fails and effectively
	 * retry the instruction, it's the least awful option.  If NRIPS is
	 * in use, the skip must not commit any side effects such as clearing
	 * the interrupt shadow or RFLAGS.RF.
	 */
	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
		return -EIO;

	rip = kvm_rip_read(vcpu);

	/*
	 * Save the injection information, even when using next_rip, as the
	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
	 * doesn't complete due to a VM-Exit occurring while the CPU is
	 * vectoring the event.   Decoding the instruction isn't guaranteed to
	 * work as there may be no backing instruction, e.g. if the event is
	 * being injected by L1 for L2, or if the guest is patching INT3 into
	 * a different instruction.
	 */
	svm->soft_int_injected = true;
	svm->soft_int_csbase = svm->vmcb->save.cs.base;
	svm->soft_int_old_rip = old_rip;
	svm->soft_int_next_rip = rip;

	if (nrips)
		kvm_rip_write(vcpu, old_rip);

	if (static_cpu_has(X86_FEATURE_NRIPS))
		svm->vmcb->control.next_rip = rip;

	return 0;
}

static void svm_inject_exception(struct kvm_vcpu *vcpu)
{
	struct kvm_queued_exception *ex = &vcpu->arch.exception;
	struct vcpu_svm *svm = to_svm(vcpu);

	kvm_deliver_exception_payload(vcpu, ex);

	if (kvm_exception_is_soft(ex->vector) &&
	    svm_update_soft_interrupt_rip(vcpu))
		return;

	svm->vmcb->control.event_inj = ex->vector
		| SVM_EVTINJ_VALID
		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
		| SVM_EVTINJ_TYPE_EXEPT;
	svm->vmcb->control.event_inj_err = ex->error_code;
}

static void svm_init_erratum_383(void)
{
	u32 low, high;
	int err;
	u64 val;

	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
		return;

	/* Use _safe variants to not break nested virtualization */
	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
	if (err)
		return;

	val |= (1ULL << 47);

	low  = lower_32_bits(val);
	high = upper_32_bits(val);

	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);

	erratum_383_found = true;
}

static void svm_init_osvw(struct kvm_vcpu *vcpu)
{
	/*
	 * Guests should see errata 400 and 415 as fixed (assuming that
	 * HLT and IO instructions are intercepted).
	 */
	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
	vcpu->arch.osvw.status = osvw_status & ~(6ULL);

	/*
	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
	 * all osvw.status bits inside that length, including bit 0 (which is
	 * reserved for erratum 298), are valid. However, if host processor's
	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
	 * be conservative here and therefore we tell the guest that erratum 298
	 * is present (because we really don't know).
	 */
	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
		vcpu->arch.osvw.status |= 1;
}

static bool __kvm_is_svm_supported(void)
{
	int cpu = smp_processor_id();
	struct cpuinfo_x86 *c = &cpu_data(cpu);

	if (c->x86_vendor != X86_VENDOR_AMD &&
	    c->x86_vendor != X86_VENDOR_HYGON) {
		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
		return false;
	}

	if (!cpu_has(c, X86_FEATURE_SVM)) {
		pr_err("SVM not supported by CPU %d\n", cpu);
		return false;
	}

	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
		pr_info("KVM is unsupported when running as an SEV guest\n");
		return false;
	}

	return true;
}

static bool kvm_is_svm_supported(void)
{
	bool supported;

	migrate_disable();
	supported = __kvm_is_svm_supported();
	migrate_enable();

	return supported;
}

static int svm_check_processor_compat(void)
{
	if (!__kvm_is_svm_supported())
		return -EIO;

	return 0;
}

static void __svm_write_tsc_multiplier(u64 multiplier)
{
	if (multiplier == __this_cpu_read(current_tsc_ratio))
		return;

	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
	__this_cpu_write(current_tsc_ratio, multiplier);
}

static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
{
	return &sd->save_area->host_sev_es_save;
}

static inline void kvm_cpu_svm_disable(void)
{
	uint64_t efer;

	wrmsrl(MSR_VM_HSAVE_PA, 0);
	rdmsrl(MSR_EFER, efer);
	if (efer & EFER_SVME) {
		/*
		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
		 * NMI aren't blocked.
		 */
		stgi();
		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
	}
}

static void svm_emergency_disable_virtualization_cpu(void)
{
	kvm_rebooting = true;

	kvm_cpu_svm_disable();
}

static void svm_disable_virtualization_cpu(void)
{
	/* Make sure we clean up behind us */
	if (tsc_scaling)
		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);

	kvm_cpu_svm_disable();

	amd_pmu_disable_virt();
}

static int svm_enable_virtualization_cpu(void)
{

	struct svm_cpu_data *sd;
	uint64_t efer;
	int me = raw_smp_processor_id();

	rdmsrl(MSR_EFER, efer);
	if (efer & EFER_SVME)
		return -EBUSY;

	sd = per_cpu_ptr(&svm_data, me);
	sd->asid_generation = 1;
	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
	sd->next_asid = sd->max_asid + 1;
	sd->min_asid = max_sev_asid + 1;

	wrmsrl(MSR_EFER, efer | EFER_SVME);

	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);

	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		/*
		 * Set the default value, even if we don't use TSC scaling
		 * to avoid having stale value in the msr
		 */
		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
	}


	/*
	 * Get OSVW bits.
	 *
	 * Note that it is possible to have a system with mixed processor
	 * revisions and therefore different OSVW bits. If bits are not the same
	 * on different processors then choose the worst case (i.e. if erratum
	 * is present on one processor and not on another then assume that the
	 * erratum is present everywhere).
	 */
	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
		uint64_t len, status = 0;
		int err;

		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
		if (!err)
			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
						      &err);

		if (err)
			osvw_status = osvw_len = 0;
		else {
			if (len < osvw_len)
				osvw_len = len;
			osvw_status |= status;
			osvw_status &= (1ULL << osvw_len) - 1;
		}
	} else
		osvw_status = osvw_len = 0;

	svm_init_erratum_383();

	amd_pmu_enable_virt();

	/*
	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
	 * Since Linux does not change the value of TSC_AUX once set, prime the
	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
	 */
	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
		u32 __maybe_unused msr_hi;

		rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
	}

	return 0;
}

static void svm_cpu_uninit(int cpu)
{
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);

	if (!sd->save_area)
		return;

	kfree(sd->sev_vmcbs);
	__free_page(__sme_pa_to_page(sd->save_area_pa));
	sd->save_area_pa = 0;
	sd->save_area = NULL;
}

static int svm_cpu_init(int cpu)
{
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
	struct page *save_area_page;
	int ret = -ENOMEM;

	memset(sd, 0, sizeof(struct svm_cpu_data));
	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
	if (!save_area_page)
		return ret;

	ret = sev_cpu_init(sd);
	if (ret)
		goto free_save_area;

	sd->save_area = page_address(save_area_page);
	sd->save_area_pa = __sme_page_pa(save_area_page);
	return 0;

free_save_area:
	__free_page(save_area_page);
	return ret;

}

static void set_dr_intercepts(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb01.ptr;

	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);

	recalc_intercepts(svm);
}

static void clr_dr_intercepts(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb01.ptr;

	vmcb->control.intercepts[INTERCEPT_DR] = 0;

	recalc_intercepts(svm);
}

static int direct_access_msr_slot(u32 msr)
{
	u32 i;

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
		if (direct_access_msrs[i].index == msr)
			return i;

	return -ENOENT;
}

static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
				     int write)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int slot = direct_access_msr_slot(msr);

	if (slot == -ENOENT)
		return;

	/* Set the shadow bitmaps to the desired intercept states */
	if (read)
		set_bit(slot, svm->shadow_msr_intercept.read);
	else
		clear_bit(slot, svm->shadow_msr_intercept.read);

	if (write)
		set_bit(slot, svm->shadow_msr_intercept.write);
	else
		clear_bit(slot, svm->shadow_msr_intercept.write);
}

static bool valid_msr_intercept(u32 index)
{
	return direct_access_msr_slot(index) != -ENOENT;
}

static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
{
	u8 bit_write;
	unsigned long tmp;
	u32 offset;
	u32 *msrpm;

	/*
	 * For non-nested case:
	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
	 * save it.
	 *
	 * For nested case:
	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
	 * save it.
	 */
	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
				      to_svm(vcpu)->msrpm;

	offset    = svm_msrpm_offset(msr);
	bit_write = 2 * (msr & 0x0f) + 1;
	tmp       = msrpm[offset];

	BUG_ON(offset == MSR_INVALID);

	return test_bit(bit_write, &tmp);
}

static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
					u32 msr, int read, int write)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u8 bit_read, bit_write;
	unsigned long tmp;
	u32 offset;

	/*
	 * If this warning triggers extend the direct_access_msrs list at the
	 * beginning of the file
	 */
	WARN_ON(!valid_msr_intercept(msr));

	/* Enforce non allowed MSRs to trap */
	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
		read = 0;

	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
		write = 0;

	offset    = svm_msrpm_offset(msr);
	bit_read  = 2 * (msr & 0x0f);
	bit_write = 2 * (msr & 0x0f) + 1;
	tmp       = msrpm[offset];

	BUG_ON(offset == MSR_INVALID);

	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);

	msrpm[offset] = tmp;

	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
	svm->nested.force_msr_bitmap_recalc = true;
}

void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
			  int read, int write)
{
	set_shadow_msr_intercept(vcpu, msr, read, write);
	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
}

u32 *svm_vcpu_alloc_msrpm(void)
{
	unsigned int order = get_order(MSRPM_SIZE);
	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
	u32 *msrpm;

	if (!pages)
		return NULL;

	msrpm = page_address(pages);
	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));

	return msrpm;
}

void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
{
	int i;

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		if (!direct_access_msrs[i].always)
			continue;
		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
	}
}

void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
{
	int i;

	if (intercept == svm->x2avic_msrs_intercepted)
		return;

	if (!x2avic_enabled)
		return;

	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
		int index = direct_access_msrs[i].index;

		if ((index < APIC_BASE_MSR) ||
		    (index > APIC_BASE_MSR + 0xff))
			continue;
		set_msr_interception(&svm->vcpu, svm->msrpm, index,
				     !intercept, !intercept);
	}

	svm->x2avic_msrs_intercepted = intercept;
}

void svm_vcpu_free_msrpm(u32 *msrpm)
{
	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
}

static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 i;

	/*
	 * Set intercept permissions for all direct access MSRs again. They
	 * will automatically get filtered through the MSR filter, so we are
	 * back in sync after this.
	 */
	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		u32 msr = direct_access_msrs[i].index;
		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
		u32 write = test_bit(i, svm->shadow_msr_intercept.write);

		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
	}
}

static void add_msr_offset(u32 offset)
{
	int i;

	for (i = 0; i < MSRPM_OFFSETS; ++i) {

		/* Offset already in list? */
		if (msrpm_offsets[i] == offset)
			return;

		/* Slot used by another offset? */
		if (msrpm_offsets[i] != MSR_INVALID)
			continue;

		/* Add offset to list */
		msrpm_offsets[i] = offset;

		return;
	}

	/*
	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
	 * increase MSRPM_OFFSETS in this case.
	 */
	BUG();
}

static void init_msrpm_offsets(void)
{
	int i;

	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		u32 offset;

		offset = svm_msrpm_offset(direct_access_msrs[i].index);
		BUG_ON(offset == MSR_INVALID);

		add_msr_offset(offset);
	}
}

void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
{
	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
	to_vmcb->save.br_from		= from_vmcb->save.br_from;
	to_vmcb->save.br_to		= from_vmcb->save.br_to;
	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;

	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
}

void svm_enable_lbrv(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);

	if (sev_es_guest(vcpu->kvm))
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);

	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
	if (is_guest_mode(vcpu))
		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
}

static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);

	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);

	/*
	 * Move the LBR msrs back to the vmcb01 to avoid copying them
	 * on nested guest entries.
	 */
	if (is_guest_mode(vcpu))
		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
}

static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
{
	/*
	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
	 */
	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
								   svm->vmcb01.ptr;
}

void svm_update_lbrv(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));

	if (enable_lbrv == current_enable_lbrv)
		return;

	if (enable_lbrv)
		svm_enable_lbrv(vcpu);
	else
		svm_disable_lbrv(vcpu);
}

void disable_nmi_singlestep(struct vcpu_svm *svm)
{
	svm->nmi_singlestep = false;

	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
		/* Clear our flags if they were not set by the guest */
		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
	}
}

static void grow_ple_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	int old = control->pause_filter_count;

	if (kvm_pause_in_guest(vcpu->kvm))
		return;

	control->pause_filter_count = __grow_ple_window(old,
							pause_filter_count,
							pause_filter_count_grow,
							pause_filter_count_max);

	if (control->pause_filter_count != old) {
		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
		trace_kvm_ple_window_update(vcpu->vcpu_id,
					    control->pause_filter_count, old);
	}
}

static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	int old = control->pause_filter_count;

	if (kvm_pause_in_guest(vcpu->kvm))
		return;

	control->pause_filter_count =
				__shrink_ple_window(old,
						    pause_filter_count,
						    pause_filter_count_shrink,
						    pause_filter_count);
	if (control->pause_filter_count != old) {
		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
		trace_kvm_ple_window_update(vcpu->vcpu_id,
					    control->pause_filter_count, old);
	}
}

static void svm_hardware_unsetup(void)
{
	int cpu;

	sev_hardware_unsetup();

	for_each_possible_cpu(cpu)
		svm_cpu_uninit(cpu);

	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
	iopm_base = 0;
}

static void init_seg(struct vmcb_seg *seg)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
	seg->limit = 0xffff;
	seg->base = 0;
}

static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | type;
	seg->limit = 0xffff;
	seg->base = 0;
}

static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->nested.ctl.tsc_offset;
}

static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->tsc_ratio_msr;
}

static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
}

void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	if (to_svm(vcpu)->guest_state_loaded)
		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
	preempt_enable();
}

/* Evaluate instruction intercepts that depend on guest CPUID features. */
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
					      struct vcpu_svm *svm)
{
	/*
	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
	 * roots, or if INVPCID is disabled in the guest to inject #UD.
	 */
	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
		if (!npt_enabled ||
		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
			svm_set_intercept(svm, INTERCEPT_INVPCID);
		else
			svm_clr_intercept(svm, INTERCEPT_INVPCID);
	}

	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
		else
			svm_set_intercept(svm, INTERCEPT_RDTSCP);
	}
}

static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (guest_cpuid_is_intel_compatible(vcpu)) {
		/*
		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
		 * accesses because the processor only stores 32 bits.
		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
		 */
		svm_set_intercept(svm, INTERCEPT_VMLOAD);
		svm_set_intercept(svm, INTERCEPT_VMSAVE);
		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;

		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
	} else {
		/*
		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
		 * in VMCB and clear intercepts to avoid #VMEXIT.
		 */
		if (vls) {
			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
		}
		/* No need to intercept these MSRs */
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
	}
}

static void init_vmcb(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb01.ptr;
	struct vmcb_control_area *control = &vmcb->control;
	struct vmcb_save_area *save = &vmcb->save;

	svm_set_intercept(svm, INTERCEPT_CR0_READ);
	svm_set_intercept(svm, INTERCEPT_CR3_READ);
	svm_set_intercept(svm, INTERCEPT_CR4_READ);
	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
	if (!kvm_vcpu_apicv_active(vcpu))
		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);

	set_dr_intercepts(svm);

	set_exception_intercept(svm, PF_VECTOR);
	set_exception_intercept(svm, UD_VECTOR);
	set_exception_intercept(svm, MC_VECTOR);
	set_exception_intercept(svm, AC_VECTOR);
	set_exception_intercept(svm, DB_VECTOR);
	/*
	 * Guest access to VMware backdoor ports could legitimately
	 * trigger #GP because of TSS I/O permission bitmap.
	 * We intercept those #GP and allow access to them anyway
	 * as VMware does.
	 */
	if (enable_vmware_backdoor)
		set_exception_intercept(svm, GP_VECTOR);

	svm_set_intercept(svm, INTERCEPT_INTR);
	svm_set_intercept(svm, INTERCEPT_NMI);

	if (intercept_smi)
		svm_set_intercept(svm, INTERCEPT_SMI);

	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
	svm_set_intercept(svm, INTERCEPT_RDPMC);
	svm_set_intercept(svm, INTERCEPT_CPUID);
	svm_set_intercept(svm, INTERCEPT_INVD);
	svm_set_intercept(svm, INTERCEPT_INVLPG);
	svm_set_intercept(svm, INTERCEPT_INVLPGA);
	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
	svm_set_intercept(svm, INTERCEPT_VMRUN);
	svm_set_intercept(svm, INTERCEPT_VMMCALL);
	svm_set_intercept(svm, INTERCEPT_VMLOAD);
	svm_set_intercept(svm, INTERCEPT_VMSAVE);
	svm_set_intercept(svm, INTERCEPT_STGI);
	svm_set_intercept(svm, INTERCEPT_CLGI);
	svm_set_intercept(svm, INTERCEPT_SKINIT);
	svm_set_intercept(svm, INTERCEPT_WBINVD);
	svm_set_intercept(svm, INTERCEPT_XSETBV);
	svm_set_intercept(svm, INTERCEPT_RDPRU);
	svm_set_intercept(svm, INTERCEPT_RSM);

	if (!kvm_mwait_in_guest(vcpu->kvm)) {
		svm_set_intercept(svm, INTERCEPT_MONITOR);
		svm_set_intercept(svm, INTERCEPT_MWAIT);
	}

	if (!kvm_hlt_in_guest(vcpu->kvm))
		svm_set_intercept(svm, INTERCEPT_HLT);

	control->iopm_base_pa = iopm_base;
	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
	control->int_ctl = V_INTR_MASKING_MASK;

	init_seg(&save->es);
	init_seg(&save->ss);
	init_seg(&save->ds);
	init_seg(&save->fs);
	init_seg(&save->gs);

	save->cs.selector = 0xf000;
	save->cs.base = 0xffff0000;
	/* Executable/Readable Code Segment */
	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
	save->cs.limit = 0xffff;

	save->gdtr.base = 0;
	save->gdtr.limit = 0xffff;
	save->idtr.base = 0;
	save->idtr.limit = 0xffff;

	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);

	if (npt_enabled) {
		/* Setup VMCB for Nested Paging */
		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
		svm_clr_intercept(svm, INTERCEPT_INVLPG);
		clr_exception_intercept(svm, PF_VECTOR);
		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
		save->g_pat = vcpu->arch.pat;
		save->cr3 = 0;
	}
	svm->current_vmcb->asid_generation = 0;
	svm->asid = 0;

	svm->nested.vmcb12_gpa = INVALID_GPA;
	svm->nested.last_vmcb12_gpa = INVALID_GPA;

	if (!kvm_pause_in_guest(vcpu->kvm)) {
		control->pause_filter_count = pause_filter_count;
		if (pause_filter_thresh)
			control->pause_filter_thresh = pause_filter_thresh;
		svm_set_intercept(svm, INTERCEPT_PAUSE);
	} else {
		svm_clr_intercept(svm, INTERCEPT_PAUSE);
	}

	svm_recalc_instruction_intercepts(vcpu, svm);

	/*
	 * If the host supports V_SPEC_CTRL then disable the interception
	 * of MSR_IA32_SPEC_CTRL.
	 */
	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);

	if (kvm_vcpu_apicv_active(vcpu))
		avic_init_vmcb(svm, vmcb);

	if (vnmi)
		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;

	if (vgif) {
		svm_clr_intercept(svm, INTERCEPT_STGI);
		svm_clr_intercept(svm, INTERCEPT_CLGI);
		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
	}

	if (sev_guest(vcpu->kvm))
		sev_init_vmcb(svm);

	svm_hv_init_vmcb(vmcb);
	init_vmcb_after_set_cpuid(vcpu);

	vmcb_mark_all_dirty(vmcb);

	enable_gif(svm);
}

static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm_vcpu_init_msrpm(vcpu, svm->msrpm);

	svm_init_osvw(vcpu);
	vcpu->arch.microcode_version = 0x01000065;
	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;

	svm->nmi_masked = false;
	svm->awaiting_iret_completion = false;

	if (sev_es_guest(vcpu->kvm))
		sev_es_vcpu_reset(svm);
}

static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->spec_ctrl = 0;
	svm->virt_spec_ctrl = 0;

	if (init_event)
		sev_snp_init_protected_guest_state(vcpu);

	init_vmcb(vcpu);

	if (!init_event)
		__svm_vcpu_reset(vcpu);
}

void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
{
	svm->current_vmcb = target_vmcb;
	svm->vmcb = target_vmcb->ptr;
}

static int svm_vcpu_create(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm;
	struct page *vmcb01_page;
	struct page *vmsa_page = NULL;
	int err;

	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
	svm = to_svm(vcpu);

	err = -ENOMEM;
	vmcb01_page = snp_safe_alloc_page();
	if (!vmcb01_page)
		goto out;

	if (sev_es_guest(vcpu->kvm)) {
		/*
		 * SEV-ES guests require a separate VMSA page used to contain
		 * the encrypted register state of the guest.
		 */
		vmsa_page = snp_safe_alloc_page();
		if (!vmsa_page)
			goto error_free_vmcb_page;
	}

	err = avic_init_vcpu(svm);
	if (err)
		goto error_free_vmsa_page;

	svm->msrpm = svm_vcpu_alloc_msrpm();
	if (!svm->msrpm) {
		err = -ENOMEM;
		goto error_free_vmsa_page;
	}

	svm->x2avic_msrs_intercepted = true;

	svm->vmcb01.ptr = page_address(vmcb01_page);
	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
	svm_switch_vmcb(svm, &svm->vmcb01);

	if (vmsa_page)
		svm->sev_es.vmsa = page_address(vmsa_page);

	svm->guest_state_loaded = false;

	return 0;

error_free_vmsa_page:
	if (vmsa_page)
		__free_page(vmsa_page);
error_free_vmcb_page:
	__free_page(vmcb01_page);
out:
	return err;
}

static void svm_clear_current_vmcb(struct vmcb *vmcb)
{
	int i;

	for_each_online_cpu(i)
		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
}

static void svm_vcpu_free(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * The vmcb page can be recycled, causing a false negative in
	 * svm_vcpu_load(). So, ensure that no logical CPU has this
	 * vmcb page recorded as its current vmcb.
	 */
	svm_clear_current_vmcb(svm->vmcb);

	svm_leave_nested(vcpu);
	svm_free_nested(svm);

	sev_free_vcpu(vcpu);

	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
}

static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);

	if (sev_es_guest(vcpu->kvm))
		sev_es_unmap_ghcb(svm);

	if (svm->guest_state_loaded)
		return;

	/*
	 * Save additional host state that will be restored on VMEXIT (sev-es)
	 * or subsequent vmload of host save area.
	 */
	vmsave(sd->save_area_pa);
	if (sev_es_guest(vcpu->kvm))
		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));

	if (tsc_scaling)
		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);

	/*
	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
	 * available. The user return MSR support is not required in this case
	 * because TSC_AUX is restored on #VMEXIT from the host save area
	 * (which has been initialized in svm_enable_virtualization_cpu()).
	 */
	if (likely(tsc_aux_uret_slot >= 0) &&
	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);

	svm->guest_state_loaded = true;
}

static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
{
	to_svm(vcpu)->guest_state_loaded = false;
}

static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);

	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
		shrink_ple_window(vcpu);

	if (sd->current_vmcb != svm->vmcb) {
		sd->current_vmcb = svm->vmcb;

		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
			indirect_branch_prediction_barrier();
	}
	if (kvm_vcpu_apicv_active(vcpu))
		avic_vcpu_load(vcpu, cpu);
}

static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_apicv_active(vcpu))
		avic_vcpu_put(vcpu);

	svm_prepare_host_switch(vcpu);

	++vcpu->stat.host_state_reload;
}

static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long rflags = svm->vmcb->save.rflags;

	if (svm->nmi_singlestep) {
		/* Hide our flags if they were not set by the guest */
		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
			rflags &= ~X86_EFLAGS_TF;
		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
			rflags &= ~X86_EFLAGS_RF;
	}
	return rflags;
}

static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
	if (to_svm(vcpu)->nmi_singlestep)
		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);

       /*
        * Any change of EFLAGS.VM is accompanied by a reload of SS
        * (caused by either a task switch or an inter-privilege IRET),
        * so we do not need to update the CPL here.
        */
	to_svm(vcpu)->vmcb->save.rflags = rflags;
}

static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
{
	struct vmcb *vmcb = to_svm(vcpu)->vmcb;

	return sev_es_guest(vcpu->kvm)
		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
}

static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
	kvm_register_mark_available(vcpu, reg);

	switch (reg) {
	case VCPU_EXREG_PDPTR:
		/*
		 * When !npt_enabled, mmu->pdptrs[] is already available since
		 * it is always updated per SDM when moving to CRs.
		 */
		if (npt_enabled)
			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
		break;
	default:
		KVM_BUG_ON(1, vcpu->kvm);
	}
}

static void svm_set_vintr(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control;

	/*
	 * The following fields are ignored when AVIC is enabled
	 */
	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));

	svm_set_intercept(svm, INTERCEPT_VINTR);

	/*
	 * Recalculating intercepts may have cleared the VINTR intercept.  If
	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
	 * interrupts will never be unblocked while L2 is running.
	 */
	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
		return;

	/*
	 * This is just a dummy VINTR to actually cause a vmexit to happen.
	 * Actual injection of virtual interrupts happens through EVENTINJ.
	 */
	control = &svm->vmcb->control;
	control->int_vector = 0x0;
	control->int_ctl &= ~V_INTR_PRIO_MASK;
	control->int_ctl |= V_IRQ_MASK |
		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
}

static void svm_clear_vintr(struct vcpu_svm *svm)
{
	svm_clr_intercept(svm, INTERCEPT_VINTR);

	/* Drop int_ctl fields related to VINTR injection.  */
	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
	if (is_guest_mode(&svm->vcpu)) {
		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;

		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
			(svm->nested.ctl.int_ctl & V_TPR_MASK));

		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
			V_IRQ_INJECTION_BITS_MASK;

		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
	}

	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
}

static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;

	switch (seg) {
	case VCPU_SREG_CS: return &save->cs;
	case VCPU_SREG_DS: return &save->ds;
	case VCPU_SREG_ES: return &save->es;
	case VCPU_SREG_FS: return &save01->fs;
	case VCPU_SREG_GS: return &save01->gs;
	case VCPU_SREG_SS: return &save->ss;
	case VCPU_SREG_TR: return &save01->tr;
	case VCPU_SREG_LDTR: return &save01->ldtr;
	}
	BUG();
	return NULL;
}

static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	return s->base;
}

static void svm_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	var->base = s->base;
	var->limit = s->limit;
	var->selector = s->selector;
	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;

	/*
	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
	 * However, the SVM spec states that the G bit is not observed by the
	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
	 * So let's synthesize a legal G bit for all segments, this helps
	 * running KVM nested. It also helps cross-vendor migration, because
	 * Intel's vmentry has a check on the 'G' bit.
	 */
	var->g = s->limit > 0xfffff;

	/*
	 * AMD's VMCB does not have an explicit unusable field, so emulate it
	 * for cross vendor migration purposes by "not present"
	 */
	var->unusable = !var->present;

	switch (seg) {
	case VCPU_SREG_TR:
		/*
		 * Work around a bug where the busy flag in the tr selector
		 * isn't exposed
		 */
		var->type |= 0x2;
		break;
	case VCPU_SREG_DS:
	case VCPU_SREG_ES:
	case VCPU_SREG_FS:
	case VCPU_SREG_GS:
		/*
		 * The accessed bit must always be set in the segment
		 * descriptor cache, although it can be cleared in the
		 * descriptor, the cached bit always remains at 1. Since
		 * Intel has a check on this, set it here to support
		 * cross-vendor migration.
		 */
		if (!var->unusable)
			var->type |= 0x1;
		break;
	case VCPU_SREG_SS:
		/*
		 * On AMD CPUs sometimes the DB bit in the segment
		 * descriptor is left as 1, although the whole segment has
		 * been made unusable. Clear it here to pass an Intel VMX
		 * entry check when cross vendor migrating.
		 */
		if (var->unusable)
			var->db = 0;
		/* This is symmetric with svm_set_segment() */
		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
		break;
	}
}

static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;

	return save->cpl;
}

static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
	*db = cs.db;
	*l = cs.l;
}

static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	dt->size = svm->vmcb->save.idtr.limit;
	dt->address = svm->vmcb->save.idtr.base;
}

static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.idtr.limit = dt->size;
	svm->vmcb->save.idtr.base = dt->address ;
	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
}

static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	dt->size = svm->vmcb->save.gdtr.limit;
	dt->address = svm->vmcb->save.gdtr.base;
}

static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.gdtr.limit = dt->size;
	svm->vmcb->save.gdtr.base = dt->address ;
	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
}

static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * For guests that don't set guest_state_protected, the cr3 update is
	 * handled via kvm_mmu_load() while entering the guest. For guests
	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
	 * VMCB save area now, since the save area will become the initial
	 * contents of the VMSA, and future VMCB save area updates won't be
	 * seen.
	 */
	if (sev_es_guest(vcpu->kvm)) {
		svm->vmcb->save.cr3 = cr3;
		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
	}
}

static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
	return true;
}

void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 hcr0 = cr0;
	bool old_paging = is_paging(vcpu);

#ifdef CONFIG_X86_64
	if (vcpu->arch.efer & EFER_LME) {
		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
			vcpu->arch.efer |= EFER_LMA;
			if (!vcpu->arch.guest_state_protected)
				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
		}

		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
			vcpu->arch.efer &= ~EFER_LMA;
			if (!vcpu->arch.guest_state_protected)
				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
		}
	}
#endif
	vcpu->arch.cr0 = cr0;

	if (!npt_enabled) {
		hcr0 |= X86_CR0_PG | X86_CR0_WP;
		if (old_paging != is_paging(vcpu))
			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
	}

	/*
	 * re-enable caching here because the QEMU bios
	 * does not do it - this results in some delay at
	 * reboot
	 */
	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);

	svm->vmcb->save.cr0 = hcr0;
	vmcb_mark_dirty(svm->vmcb, VMCB_CR);

	/*
	 * SEV-ES guests must always keep the CR intercepts cleared. CR
	 * tracking is done using the CR write traps.
	 */
	if (sev_es_guest(vcpu->kvm))
		return;

	if (hcr0 == cr0) {
		/* Selective CR0 write remains on.  */
		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
	} else {
		svm_set_intercept(svm, INTERCEPT_CR0_READ);
		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
	}
}

static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
	return true;
}

void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
	unsigned long old_cr4 = vcpu->arch.cr4;

	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
		svm_flush_tlb_current(vcpu);

	vcpu->arch.cr4 = cr4;
	if (!npt_enabled) {
		cr4 |= X86_CR4_PAE;

		if (!is_paging(vcpu))
			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
	}
	cr4 |= host_cr4_mce;
	to_svm(vcpu)->vmcb->save.cr4 = cr4;
	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);

	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
		kvm_update_cpuid_runtime(vcpu);
}

static void svm_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	s->base = var->base;
	s->limit = var->limit;
	s->selector = var->selector;
	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;

	/*
	 * This is always accurate, except if SYSRET returned to a segment
	 * with SS.DPL != 3.  Intel does not have this quirk, and always
	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
	 * would entail passing the CPL to userspace and back.
	 */
	if (seg == VCPU_SREG_SS)
		/* This is symmetric with svm_get_segment() */
		svm->vmcb->save.cpl = (var->dpl & 3);

	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
}

static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	clr_exception_intercept(svm, BP_VECTOR);

	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
			set_exception_intercept(svm, BP_VECTOR);
	}
}

static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{
	if (sd->next_asid > sd->max_asid) {
		++sd->asid_generation;
		sd->next_asid = sd->min_asid;
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
	}

	svm->current_vmcb->asid_generation = sd->asid_generation;
	svm->asid = sd->next_asid++;
}

static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
{
	struct vmcb *vmcb = svm->vmcb;

	if (svm->vcpu.arch.guest_state_protected)
		return;

	if (unlikely(value != vmcb->save.dr6)) {
		vmcb->save.dr6 = value;
		vmcb_mark_dirty(vmcb, VMCB_DR);
	}
}

static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
		return;

	get_debugreg(vcpu->arch.db[0], 0);
	get_debugreg(vcpu->arch.db[1], 1);
	get_debugreg(vcpu->arch.db[2], 2);
	get_debugreg(vcpu->arch.db[3], 3);
	/*
	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
	 * because db_interception might need it.  We can do it before vmentry.
	 */
	vcpu->arch.dr6 = svm->vmcb->save.dr6;
	vcpu->arch.dr7 = svm->vmcb->save.dr7;
	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
	set_dr_intercepts(svm);
}

static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (vcpu->arch.guest_state_protected)
		return;

	svm->vmcb->save.dr7 = value;
	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
}

static int pf_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	u64 fault_address = svm->vmcb->control.exit_info_2;
	u64 error_code = svm->vmcb->control.exit_info_1;

	return kvm_handle_page_fault(vcpu, error_code, fault_address,
			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
			svm->vmcb->control.insn_bytes : NULL,
			svm->vmcb->control.insn_len);
}

static int npf_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int rc;

	u64 fault_address = svm->vmcb->control.exit_info_2;
	u64 error_code = svm->vmcb->control.exit_info_1;

	/*
	 * WARN if hardware generates a fault with an error code that collides
	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
	 * flag that KVM doesn't know about.
	 */
	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
		error_code &= ~PFERR_SYNTHETIC_MASK;

	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
		error_code |= PFERR_PRIVATE_ACCESS;

	trace_kvm_page_fault(vcpu, fault_address, error_code);
	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
				svm->vmcb->control.insn_bytes : NULL,
				svm->vmcb->control.insn_len);

	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
		sev_handle_rmp_fault(vcpu, fault_address, error_code);

	return rc;
}

static int db_interception(struct kvm_vcpu *vcpu)
{
	struct kvm_run *kvm_run = vcpu->run;
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!(vcpu->guest_debug &
	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
		!svm->nmi_singlestep) {
		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
		return 1;
	}

	if (svm->nmi_singlestep) {
		disable_nmi_singlestep(svm);
		/* Make sure we check for pending NMIs upon entry */
		kvm_make_request(KVM_REQ_EVENT, vcpu);
	}

	if (vcpu->guest_debug &
	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
		kvm_run->exit_reason = KVM_EXIT_DEBUG;
		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
		kvm_run->debug.arch.pc =
			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
		kvm_run->debug.arch.exception = DB_VECTOR;
		return 0;
	}

	return 1;
}

static int bp_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct kvm_run *kvm_run = vcpu->run;

	kvm_run->exit_reason = KVM_EXIT_DEBUG;
	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
	kvm_run->debug.arch.exception = BP_VECTOR;
	return 0;
}

static int ud_interception(struct kvm_vcpu *vcpu)
{
	return handle_ud(vcpu);
}

static int ac_interception(struct kvm_vcpu *vcpu)
{
	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
	return 1;
}

static bool is_erratum_383(void)
{
	int err, i;
	u64 value;

	if (!erratum_383_found)
		return false;

	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
	if (err)
		return false;

	/* Bit 62 may or may not be set for this mce */
	value &= ~(1ULL << 62);

	if (value != 0xb600000000010015ULL)
		return false;

	/* Clear MCi_STATUS registers */
	for (i = 0; i < 6; ++i)
		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);

	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
	if (!err) {
		u32 low, high;

		value &= ~(1ULL << 2);
		low    = lower_32_bits(value);
		high   = upper_32_bits(value);

		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
	}

	/* Flush tlb to evict multi-match entries */
	__flush_tlb_all();

	return true;
}

static void svm_handle_mce(struct kvm_vcpu *vcpu)
{
	if (is_erratum_383()) {
		/*
		 * Erratum 383 triggered. Guest state is corrupt so kill the
		 * guest.
		 */
		pr_err("Guest triggered AMD Erratum 383\n");

		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);

		return;
	}

	/*
	 * On an #MC intercept the MCE handler is not called automatically in
	 * the host. So do it by hand here.
	 */
	kvm_machine_check();
}

static int mc_interception(struct kvm_vcpu *vcpu)
{
	return 1;
}

static int shutdown_interception(struct kvm_vcpu *vcpu)
{
	struct kvm_run *kvm_run = vcpu->run;
	struct vcpu_svm *svm = to_svm(vcpu);


	/*
	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
	 * userspace.  At a platform view, INIT is acceptable behavior as
	 * there exist bare metal platforms that automatically INIT the CPU
	 * in response to shutdown.
	 *
	 * The VM save area for SEV-ES guests has already been encrypted so it
	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
	 */
	if (!sev_es_guest(vcpu->kvm)) {
		clear_page(svm->vmcb);
		kvm_vcpu_reset(vcpu, true);
	}

	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
	return 0;
}

static int io_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
	int size, in, string;
	unsigned port;

	++vcpu->stat.io_exits;
	string = (io_info & SVM_IOIO_STR_MASK) != 0;
	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
	port = io_info >> 16;
	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;

	if (string) {
		if (sev_es_guest(vcpu->kvm))
			return sev_es_string_io(svm, size, port, in);
		else
			return kvm_emulate_instruction(vcpu, 0);
	}

	svm->next_rip = svm->vmcb->control.exit_info_2;

	return kvm_fast_pio(vcpu, size, port, in);
}

static int nmi_interception(struct kvm_vcpu *vcpu)
{
	return 1;
}

static int smi_interception(struct kvm_vcpu *vcpu)
{
	return 1;
}

static int intr_interception(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.irq_exits;
	return 1;
}

static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb12;
	struct kvm_host_map map;
	int ret;

	if (nested_svm_check_permissions(vcpu))
		return 1;

	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
	if (ret) {
		if (ret == -EINVAL)
			kvm_inject_gp(vcpu, 0);
		return 1;
	}

	vmcb12 = map.hva;

	ret = kvm_skip_emulated_instruction(vcpu);

	if (vmload) {
		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
		svm->sysenter_eip_hi = 0;
		svm->sysenter_esp_hi = 0;
	} else {
		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
	}

	kvm_vcpu_unmap(vcpu, &map, true);

	return ret;
}

static int vmload_interception(struct kvm_vcpu *vcpu)
{
	return vmload_vmsave_interception(vcpu, true);
}

static int vmsave_interception(struct kvm_vcpu *vcpu)
{
	return vmload_vmsave_interception(vcpu, false);
}

static int vmrun_interception(struct kvm_vcpu *vcpu)
{
	if (nested_svm_check_permissions(vcpu))
		return 1;

	return nested_svm_vmrun(vcpu);
}

enum {
	NONE_SVM_INSTR,
	SVM_INSTR_VMRUN,
	SVM_INSTR_VMLOAD,
	SVM_INSTR_VMSAVE,
};

/* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
static int svm_instr_opcode(struct kvm_vcpu *vcpu)
{
	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;

	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
		return NONE_SVM_INSTR;

	switch (ctxt->modrm) {
	case 0xd8: /* VMRUN */
		return SVM_INSTR_VMRUN;
	case 0xda: /* VMLOAD */
		return SVM_INSTR_VMLOAD;
	case 0xdb: /* VMSAVE */
		return SVM_INSTR_VMSAVE;
	default:
		break;
	}

	return NONE_SVM_INSTR;
}

static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
{
	const int guest_mode_exit_codes[] = {
		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
	};
	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
		[SVM_INSTR_VMRUN] = vmrun_interception,
		[SVM_INSTR_VMLOAD] = vmload_interception,
		[SVM_INSTR_VMSAVE] = vmsave_interception,
	};
	struct vcpu_svm *svm = to_svm(vcpu);
	int ret;

	if (is_guest_mode(vcpu)) {
		/* Returns '1' or -errno on failure, '0' on success. */
		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
		if (ret)
			return ret;
		return 1;
	}
	return svm_instr_handlers[opcode](vcpu);
}

/*
 * #GP handling code. Note that #GP can be triggered under the following two
 * cases:
 *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
 *      some AMD CPUs when EAX of these instructions are in the reserved memory
 *      regions (e.g. SMM memory on host).
 *   2) VMware backdoor
 */
static int gp_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 error_code = svm->vmcb->control.exit_info_1;
	int opcode;

	/* Both #GP cases have zero error_code */
	if (error_code)
		goto reinject;

	/* Decode the instruction for usage later */
	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
		goto reinject;

	opcode = svm_instr_opcode(vcpu);

	if (opcode == NONE_SVM_INSTR) {
		if (!enable_vmware_backdoor)
			goto reinject;

		/*
		 * VMware backdoor emulation on #GP interception only handles
		 * IN{S}, OUT{S}, and RDPMC.
		 */
		if (!is_guest_mode(vcpu))
			return kvm_emulate_instruction(vcpu,
				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
	} else {
		/* All SVM instructions expect page aligned RAX */
		if (svm->vmcb->save.rax & ~PAGE_MASK)
			goto reinject;

		return emulate_svm_instr(vcpu, opcode);
	}

reinject:
	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
	return 1;
}

void svm_set_gif(struct vcpu_svm *svm, bool value)
{
	if (value) {
		/*
		 * If VGIF is enabled, the STGI intercept is only added to
		 * detect the opening of the SMI/NMI window; remove it now.
		 * Likewise, clear the VINTR intercept, we will set it
		 * again while processing KVM_REQ_EVENT if needed.
		 */
		if (vgif)
			svm_clr_intercept(svm, INTERCEPT_STGI);
		if (svm_is_intercept(svm, INTERCEPT_VINTR))
			svm_clear_vintr(svm);

		enable_gif(svm);
		if (svm->vcpu.arch.smi_pending ||
		    svm->vcpu.arch.nmi_pending ||
		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
	} else {
		disable_gif(svm);

		/*
		 * After a CLGI no interrupts should come.  But if vGIF is
		 * in use, we still rely on the VINTR intercept (rather than
		 * STGI) to detect an open interrupt window.
		*/
		if (!vgif)
			svm_clear_vintr(svm);
	}
}

static int stgi_interception(struct kvm_vcpu *vcpu)
{
	int ret;

	if (nested_svm_check_permissions(vcpu))
		return 1;

	ret = kvm_skip_emulated_instruction(vcpu);
	svm_set_gif(to_svm(vcpu), true);
	return ret;
}

static int clgi_interception(struct kvm_vcpu *vcpu)
{
	int ret;

	if (nested_svm_check_permissions(vcpu))
		return 1;

	ret = kvm_skip_emulated_instruction(vcpu);
	svm_set_gif(to_svm(vcpu), false);
	return ret;
}

static int invlpga_interception(struct kvm_vcpu *vcpu)
{
	gva_t gva = kvm_rax_read(vcpu);
	u32 asid = kvm_rcx_read(vcpu);

	/* FIXME: Handle an address size prefix. */
	if (!is_long_mode(vcpu))
		gva = (u32)gva;

	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);

	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
	kvm_mmu_invlpg(vcpu, gva);

	return kvm_skip_emulated_instruction(vcpu);
}

static int skinit_interception(struct kvm_vcpu *vcpu)
{
	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));

	kvm_queue_exception(vcpu, UD_VECTOR);
	return 1;
}

static int task_switch_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u16 tss_selector;
	int reason;
	int int_type = svm->vmcb->control.exit_int_info &
		SVM_EXITINTINFO_TYPE_MASK;
	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
	uint32_t type =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
	uint32_t idt_v =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
	bool has_error_code = false;
	u32 error_code = 0;

	tss_selector = (u16)svm->vmcb->control.exit_info_1;

	if (svm->vmcb->control.exit_info_2 &
	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
		reason = TASK_SWITCH_IRET;
	else if (svm->vmcb->control.exit_info_2 &
		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
		reason = TASK_SWITCH_JMP;
	else if (idt_v)
		reason = TASK_SWITCH_GATE;
	else
		reason = TASK_SWITCH_CALL;

	if (reason == TASK_SWITCH_GATE) {
		switch (type) {
		case SVM_EXITINTINFO_TYPE_NMI:
			vcpu->arch.nmi_injected = false;
			break;
		case SVM_EXITINTINFO_TYPE_EXEPT:
			if (svm->vmcb->control.exit_info_2 &
			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
				has_error_code = true;
				error_code =
					(u32)svm->vmcb->control.exit_info_2;
			}
			kvm_clear_exception_queue(vcpu);
			break;
		case SVM_EXITINTINFO_TYPE_INTR:
		case SVM_EXITINTINFO_TYPE_SOFT:
			kvm_clear_interrupt_queue(vcpu);
			break;
		default:
			break;
		}
	}

	if (reason != TASK_SWITCH_GATE ||
	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
		if (!svm_skip_emulated_instruction(vcpu))
			return 0;
	}

	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
		int_vec = -1;

	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
			       has_error_code, error_code);
}

static void svm_clr_iret_intercept(struct vcpu_svm *svm)
{
	if (!sev_es_guest(svm->vcpu.kvm))
		svm_clr_intercept(svm, INTERCEPT_IRET);
}

static void svm_set_iret_intercept(struct vcpu_svm *svm)
{
	if (!sev_es_guest(svm->vcpu.kvm))
		svm_set_intercept(svm, INTERCEPT_IRET);
}

static int iret_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));

	++vcpu->stat.nmi_window_exits;
	svm->awaiting_iret_completion = true;

	svm_clr_iret_intercept(svm);
	svm->nmi_iret_rip = kvm_rip_read(vcpu);

	kvm_make_request(KVM_REQ_EVENT, vcpu);
	return 1;
}

static int invlpg_interception(struct kvm_vcpu *vcpu)
{
	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return kvm_emulate_instruction(vcpu, 0);

	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
	return kvm_skip_emulated_instruction(vcpu);
}

static int emulate_on_interception(struct kvm_vcpu *vcpu)
{
	return kvm_emulate_instruction(vcpu, 0);
}

static int rsm_interception(struct kvm_vcpu *vcpu)
{
	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
}

static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
					    unsigned long val)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long cr0 = vcpu->arch.cr0;
	bool ret = false;

	if (!is_guest_mode(vcpu) ||
	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
		return false;

	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
	val &= ~SVM_CR0_SELECTIVE_MASK;

	if (cr0 ^ val) {
		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
	}

	return ret;
}

#define CR_VALID (1ULL << 63)

static int cr_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int reg, cr;
	unsigned long val;
	int err;

	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(vcpu);

	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
		return emulate_on_interception(vcpu);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
	else
		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;

	err = 0;
	if (cr >= 16) { /* mov to cr */
		cr -= 16;
		val = kvm_register_read(vcpu, reg);
		trace_kvm_cr_write(cr, val);
		switch (cr) {
		case 0:
			if (!check_selective_cr0_intercepted(vcpu, val))
				err = kvm_set_cr0(vcpu, val);
			else
				return 1;

			break;
		case 3:
			err = kvm_set_cr3(vcpu, val);
			break;
		case 4:
			err = kvm_set_cr4(vcpu, val);
			break;
		case 8:
			err = kvm_set_cr8(vcpu, val);
			break;
		default:
			WARN(1, "unhandled write to CR%d", cr);
			kvm_queue_exception(vcpu, UD_VECTOR);
			return 1;
		}
	} else { /* mov from cr */
		switch (cr) {
		case 0:
			val = kvm_read_cr0(vcpu);
			break;
		case 2:
			val = vcpu->arch.cr2;
			break;
		case 3:
			val = kvm_read_cr3(vcpu);
			break;
		case 4:
			val = kvm_read_cr4(vcpu);
			break;
		case 8:
			val = kvm_get_cr8(vcpu);
			break;
		default:
			WARN(1, "unhandled read from CR%d", cr);
			kvm_queue_exception(vcpu, UD_VECTOR);
			return 1;
		}
		kvm_register_write(vcpu, reg, val);
		trace_kvm_cr_read(cr, val);
	}
	return kvm_complete_insn_gp(vcpu, err);
}

static int cr_trap(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long old_value, new_value;
	unsigned int cr;
	int ret = 0;

	new_value = (unsigned long)svm->vmcb->control.exit_info_1;

	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
	switch (cr) {
	case 0:
		old_value = kvm_read_cr0(vcpu);
		svm_set_cr0(vcpu, new_value);

		kvm_post_set_cr0(vcpu, old_value, new_value);
		break;
	case 4:
		old_value = kvm_read_cr4(vcpu);
		svm_set_cr4(vcpu, new_value);

		kvm_post_set_cr4(vcpu, old_value, new_value);
		break;
	case 8:
		ret = kvm_set_cr8(vcpu, new_value);
		break;
	default:
		WARN(1, "unhandled CR%d write trap", cr);
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	return kvm_complete_insn_gp(vcpu, ret);
}

static int dr_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int reg, dr;
	int err = 0;

	/*
	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
	 */
	if (sev_es_guest(vcpu->kvm))
		return 1;

	if (vcpu->guest_debug == 0) {
		/*
		 * No more DR vmexits; force a reload of the debug registers
		 * and reenter on this instruction.  The next vmexit will
		 * retrieve the full state of the debug registers.
		 */
		clr_dr_intercepts(svm);
		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
		return 1;
	}

	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(vcpu);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
	if (dr >= 16) { /* mov to DRn  */
		dr -= 16;
		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
	} else {
		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
	}

	return kvm_complete_insn_gp(vcpu, err);
}

static int cr8_write_interception(struct kvm_vcpu *vcpu)
{
	int r;

	u8 cr8_prev = kvm_get_cr8(vcpu);
	/* instruction emulation calls kvm_set_cr8() */
	r = cr_interception(vcpu);
	if (lapic_in_kernel(vcpu))
		return r;
	if (cr8_prev <= kvm_get_cr8(vcpu))
		return r;
	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
	return 0;
}

static int efer_trap(struct kvm_vcpu *vcpu)
{
	struct msr_data msr_info;
	int ret;

	/*
	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
	 * the guest doesn't have X86_FEATURE_SVM.
	 */
	msr_info.host_initiated = false;
	msr_info.index = MSR_EFER;
	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
	ret = kvm_set_msr_common(vcpu, &msr_info);

	return kvm_complete_insn_gp(vcpu, ret);
}

static int svm_get_feature_msr(u32 msr, u64 *data)
{
	*data = 0;

	switch (msr) {
	case MSR_AMD64_DE_CFG:
		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
		break;
	default:
		return KVM_MSR_RET_UNSUPPORTED;
	}

	return 0;
}

static bool
sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
	return sev_es_guest(vcpu->kvm) &&
	       vcpu->arch.guest_state_protected &&
	       svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
	       !msr_write_intercepted(vcpu, msr_info->index);
}

static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
		msr_info->data = 0;
		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
	}

	switch (msr_info->index) {
	case MSR_AMD64_TSC_RATIO:
		if (!msr_info->host_initiated &&
		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
			return 1;
		msr_info->data = svm->tsc_ratio_msr;
		break;
	case MSR_STAR:
		msr_info->data = svm->vmcb01.ptr->save.star;
		break;
#ifdef CONFIG_X86_64
	case MSR_LSTAR:
		msr_info->data = svm->vmcb01.ptr->save.lstar;
		break;
	case MSR_CSTAR:
		msr_info->data = svm->vmcb01.ptr->save.cstar;
		break;
	case MSR_GS_BASE:
		msr_info->data = svm->vmcb01.ptr->save.gs.base;
		break;
	case MSR_FS_BASE:
		msr_info->data = svm->vmcb01.ptr->save.fs.base;
		break;
	case MSR_KERNEL_GS_BASE:
		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
		break;
	case MSR_SYSCALL_MASK:
		msr_info->data = svm->vmcb01.ptr->save.sfmask;
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
		break;
	case MSR_IA32_SYSENTER_EIP:
		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
		if (guest_cpuid_is_intel_compatible(vcpu))
			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
		break;
	case MSR_IA32_SYSENTER_ESP:
		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
		if (guest_cpuid_is_intel_compatible(vcpu))
			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
		break;
	case MSR_TSC_AUX:
		msr_info->data = svm->tsc_aux;
		break;
	case MSR_IA32_DEBUGCTLMSR:
		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
		break;
	case MSR_IA32_LASTBRANCHFROMIP:
		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
		break;
	case MSR_IA32_LASTBRANCHTOIP:
		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
		break;
	case MSR_IA32_LASTINTFROMIP:
		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
		break;
	case MSR_IA32_LASTINTTOIP:
		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
		break;
	case MSR_VM_HSAVE_PA:
		msr_info->data = svm->nested.hsave_msr;
		break;
	case MSR_VM_CR:
		msr_info->data = svm->nested.vm_cr_msr;
		break;
	case MSR_IA32_SPEC_CTRL:
		if (!msr_info->host_initiated &&
		    !guest_has_spec_ctrl_msr(vcpu))
			return 1;

		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
			msr_info->data = svm->vmcb->save.spec_ctrl;
		else
			msr_info->data = svm->spec_ctrl;
		break;
	case MSR_AMD64_VIRT_SPEC_CTRL:
		if (!msr_info->host_initiated &&
		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
			return 1;

		msr_info->data = svm->virt_spec_ctrl;
		break;
	case MSR_F15H_IC_CFG: {

		int family, model;

		family = guest_cpuid_family(vcpu);
		model  = guest_cpuid_model(vcpu);

		if (family < 0 || model < 0)
			return kvm_get_msr_common(vcpu, msr_info);

		msr_info->data = 0;

		if (family == 0x15 &&
		    (model >= 0x2 && model < 0x20))
			msr_info->data = 0x1E;
		}
		break;
	case MSR_AMD64_DE_CFG:
		msr_info->data = svm->msr_decfg;
		break;
	default:
		return kvm_get_msr_common(vcpu, msr_info);
	}
	return 0;
}

static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
		return kvm_complete_insn_gp(vcpu, err);

	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
				X86_TRAP_GP |
				SVM_EVTINJ_TYPE_EXEPT |
				SVM_EVTINJ_VALID);
	return 1;
}

static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int svm_dis, chg_mask;

	if (data & ~SVM_VM_CR_VALID_MASK)
		return 1;

	chg_mask = SVM_VM_CR_VALID_MASK;

	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);

	svm->nested.vm_cr_msr &= ~chg_mask;
	svm->nested.vm_cr_msr |= (data & chg_mask);

	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;

	/* check for svm_disable while efer.svme is set */
	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
		return 1;

	return 0;
}

static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int ret = 0;

	u32 ecx = msr->index;
	u64 data = msr->data;

	if (sev_es_prevent_msr_access(vcpu, msr))
		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;

	switch (ecx) {
	case MSR_AMD64_TSC_RATIO:

		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {

			if (!msr->host_initiated)
				return 1;
			/*
			 * In case TSC scaling is not enabled, always
			 * leave this MSR at the default value.
			 *
			 * Due to bug in qemu 6.2.0, it would try to set
			 * this msr to 0 if tsc scaling is not enabled.
			 * Ignore this value as well.
			 */
			if (data != 0 && data != svm->tsc_ratio_msr)
				return 1;
			break;
		}

		if (data & SVM_TSC_RATIO_RSVD)
			return 1;

		svm->tsc_ratio_msr = data;

		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
		    is_guest_mode(vcpu))
			nested_svm_update_tsc_ratio_msr(vcpu);

		break;
	case MSR_IA32_CR_PAT:
		ret = kvm_set_msr_common(vcpu, msr);
		if (ret)
			break;

		svm->vmcb01.ptr->save.g_pat = data;
		if (is_guest_mode(vcpu))
			nested_vmcb02_compute_g_pat(svm);
		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
		break;
	case MSR_IA32_SPEC_CTRL:
		if (!msr->host_initiated &&
		    !guest_has_spec_ctrl_msr(vcpu))
			return 1;

		if (kvm_spec_ctrl_test_value(data))
			return 1;

		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
			svm->vmcb->save.spec_ctrl = data;
		else
			svm->spec_ctrl = data;
		if (!data)
			break;

		/*
		 * For non-nested:
		 * When it's written (to non-zero) for the first time, pass
		 * it through.
		 *
		 * For nested:
		 * The handling of the MSR bitmap for L2 guests is done in
		 * nested_svm_vmrun_msrpm.
		 * We update the L1 MSR bit as well since it will end up
		 * touching the MSR anyway now.
		 */
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
		break;
	case MSR_AMD64_VIRT_SPEC_CTRL:
		if (!msr->host_initiated &&
		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
			return 1;

		if (data & ~SPEC_CTRL_SSBD)
			return 1;

		svm->virt_spec_ctrl = data;
		break;
	case MSR_STAR:
		svm->vmcb01.ptr->save.star = data;
		break;
#ifdef CONFIG_X86_64
	case MSR_LSTAR:
		svm->vmcb01.ptr->save.lstar = data;
		break;
	case MSR_CSTAR:
		svm->vmcb01.ptr->save.cstar = data;
		break;
	case MSR_GS_BASE:
		svm->vmcb01.ptr->save.gs.base = data;
		break;
	case MSR_FS_BASE:
		svm->vmcb01.ptr->save.fs.base = data;
		break;
	case MSR_KERNEL_GS_BASE:
		svm->vmcb01.ptr->save.kernel_gs_base = data;
		break;
	case MSR_SYSCALL_MASK:
		svm->vmcb01.ptr->save.sfmask = data;
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
		svm->vmcb01.ptr->save.sysenter_cs = data;
		break;
	case MSR_IA32_SYSENTER_EIP:
		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
		/*
		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
		 * when we spoof an Intel vendor ID (for cross vendor migration).
		 * In this case we use this intercept to track the high
		 * 32 bit part of these msrs to support Intel's
		 * implementation of SYSENTER/SYSEXIT.
		 */
		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
		break;
	case MSR_IA32_SYSENTER_ESP:
		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
		break;
	case MSR_TSC_AUX:
		/*
		 * TSC_AUX is always virtualized for SEV-ES guests when the
		 * feature is available. The user return MSR support is not
		 * required in this case because TSC_AUX is restored on #VMEXIT
		 * from the host save area (which has been initialized in
		 * svm_enable_virtualization_cpu()).
		 */
		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
			break;

		/*
		 * TSC_AUX is usually changed only during boot and never read
		 * directly.  Intercept TSC_AUX instead of exposing it to the
		 * guest via direct_access_msrs, and switch it via user return.
		 */
		preempt_disable();
		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
		preempt_enable();
		if (ret)
			break;

		svm->tsc_aux = data;
		break;
	case MSR_IA32_DEBUGCTLMSR:
		if (!lbrv) {
			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
			break;
		}
		if (data & DEBUGCTL_RESERVED_BITS)
			return 1;

		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
		svm_update_lbrv(vcpu);
		break;
	case MSR_VM_HSAVE_PA:
		/*
		 * Old kernels did not validate the value written to
		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
		 * value to allow live migrating buggy or malicious guests
		 * originating from those kernels.
		 */
		if (!msr->host_initiated && !page_address_valid(vcpu, data))
			return 1;

		svm->nested.hsave_msr = data & PAGE_MASK;
		break;
	case MSR_VM_CR:
		return svm_set_vm_cr(vcpu, data);
	case MSR_VM_IGNNE:
		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
		break;
	case MSR_AMD64_DE_CFG: {
		u64 supported_de_cfg;

		if (svm_get_feature_msr(ecx, &supported_de_cfg))
			return 1;

		if (data & ~supported_de_cfg)
			return 1;

		/*
		 * Don't let the guest change the host-programmed value.  The
		 * MSR is very model specific, i.e. contains multiple bits that
		 * are completely unknown to KVM, and the one bit known to KVM
		 * is simply a reflection of hardware capabilities.
		 */
		if (!msr->host_initiated && data != svm->msr_decfg)
			return 1;

		svm->msr_decfg = data;
		break;
	}
	default:
		return kvm_set_msr_common(vcpu, msr);
	}
	return ret;
}

static int msr_interception(struct kvm_vcpu *vcpu)
{
	if (to_svm(vcpu)->vmcb->control.exit_info_1)
		return kvm_emulate_wrmsr(vcpu);
	else
		return kvm_emulate_rdmsr(vcpu);
}

static int interrupt_window_interception(struct kvm_vcpu *vcpu)
{
	kvm_make_request(KVM_REQ_EVENT, vcpu);
	svm_clear_vintr(to_svm(vcpu));

	/*
	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
	 * In this case AVIC was temporarily disabled for
	 * requesting the IRQ window and we have to re-enable it.
	 *
	 * If running nested, still remove the VM wide AVIC inhibit to
	 * support case in which the interrupt window was requested when the
	 * vCPU was not running nested.

	 * All vCPUs which run still run nested, will remain to have their
	 * AVIC still inhibited due to per-cpu AVIC inhibition.
	 */
	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);

	++vcpu->stat.irq_window_exits;
	return 1;
}

static int pause_interception(struct kvm_vcpu *vcpu)
{
	bool in_kernel;
	/*
	 * CPL is not made available for an SEV-ES guest, therefore
	 * vcpu->arch.preempted_in_kernel can never be true.  Just
	 * set in_kernel to false as well.
	 */
	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;

	grow_ple_window(vcpu);

	kvm_vcpu_on_spin(vcpu, in_kernel);
	return kvm_skip_emulated_instruction(vcpu);
}

static int invpcid_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long type;
	gva_t gva;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/*
	 * For an INVPCID intercept:
	 * EXITINFO1 provides the linear address of the memory operand.
	 * EXITINFO2 provides the contents of the register operand.
	 */
	type = svm->vmcb->control.exit_info_2;
	gva = svm->vmcb->control.exit_info_1;

	return kvm_handle_invpcid(vcpu, type, gva);
}

static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
	[SVM_EXIT_READ_CR0]			= cr_interception,
	[SVM_EXIT_READ_CR3]			= cr_interception,
	[SVM_EXIT_READ_CR4]			= cr_interception,
	[SVM_EXIT_READ_CR8]			= cr_interception,
	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
	[SVM_EXIT_WRITE_CR0]			= cr_interception,
	[SVM_EXIT_WRITE_CR3]			= cr_interception,
	[SVM_EXIT_WRITE_CR4]			= cr_interception,
	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
	[SVM_EXIT_READ_DR0]			= dr_interception,
	[SVM_EXIT_READ_DR1]			= dr_interception,
	[SVM_EXIT_READ_DR2]			= dr_interception,
	[SVM_EXIT_READ_DR3]			= dr_interception,
	[SVM_EXIT_READ_DR4]			= dr_interception,
	[SVM_EXIT_READ_DR5]			= dr_interception,
	[SVM_EXIT_READ_DR6]			= dr_interception,
	[SVM_EXIT_READ_DR7]			= dr_interception,
	[SVM_EXIT_WRITE_DR0]			= dr_interception,
	[SVM_EXIT_WRITE_DR1]			= dr_interception,
	[SVM_EXIT_WRITE_DR2]			= dr_interception,
	[SVM_EXIT_WRITE_DR3]			= dr_interception,
	[SVM_EXIT_WRITE_DR4]			= dr_interception,
	[SVM_EXIT_WRITE_DR5]			= dr_interception,
	[SVM_EXIT_WRITE_DR6]			= dr_interception,
	[SVM_EXIT_WRITE_DR7]			= dr_interception,
	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
	[SVM_EXIT_INTR]				= intr_interception,
	[SVM_EXIT_NMI]				= nmi_interception,
	[SVM_EXIT_SMI]				= smi_interception,
	[SVM_EXIT_VINTR]			= interrupt_window_interception,
	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
	[SVM_EXIT_IRET]                         = iret_interception,
	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
	[SVM_EXIT_PAUSE]			= pause_interception,
	[SVM_EXIT_HLT]				= kvm_emulate_halt,
	[SVM_EXIT_INVLPG]			= invlpg_interception,
	[SVM_EXIT_INVLPGA]			= invlpga_interception,
	[SVM_EXIT_IOIO]				= io_interception,
	[SVM_EXIT_MSR]				= msr_interception,
	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
	[SVM_EXIT_VMRUN]			= vmrun_interception,
	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
	[SVM_EXIT_VMLOAD]			= vmload_interception,
	[SVM_EXIT_VMSAVE]			= vmsave_interception,
	[SVM_EXIT_STGI]				= stgi_interception,
	[SVM_EXIT_CLGI]				= clgi_interception,
	[SVM_EXIT_SKINIT]			= skinit_interception,
	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
	[SVM_EXIT_INVPCID]                      = invpcid_interception,
	[SVM_EXIT_NPF]				= npf_interception,
	[SVM_EXIT_RSM]                          = rsm_interception,
	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
#ifdef CONFIG_KVM_AMD_SEV
	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
#endif
};

static void dump_vmcb(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct vmcb_save_area *save = &svm->vmcb->save;
	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;

	if (!dump_invalid_vmcb) {
		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
		return;
	}

	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
	pr_err("VMCB Control Area:\n");
	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
	pr_err("%-20s%08x %08x\n", "intercepts:",
              control->intercepts[INTERCEPT_WORD3],
	       control->intercepts[INTERCEPT_WORD4]);
	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
	pr_err("%-20s%d\n", "pause filter threshold:",
	       control->pause_filter_thresh);
	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
	pr_err("%-20s%d\n", "asid:", control->asid);
	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
	pr_err("%-20s%08x\n", "int_state:", control->int_state);
	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
	pr_err("VMCB State Save Area:\n");
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "es:",
	       save->es.selector, save->es.attrib,
	       save->es.limit, save->es.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "cs:",
	       save->cs.selector, save->cs.attrib,
	       save->cs.limit, save->cs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ss:",
	       save->ss.selector, save->ss.attrib,
	       save->ss.limit, save->ss.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ds:",
	       save->ds.selector, save->ds.attrib,
	       save->ds.limit, save->ds.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "fs:",
	       save01->fs.selector, save01->fs.attrib,
	       save01->fs.limit, save01->fs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gs:",
	       save01->gs.selector, save01->gs.attrib,
	       save01->gs.limit, save01->gs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gdtr:",
	       save->gdtr.selector, save->gdtr.attrib,
	       save->gdtr.limit, save->gdtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ldtr:",
	       save01->ldtr.selector, save01->ldtr.attrib,
	       save01->ldtr.limit, save01->ldtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "idtr:",
	       save->idtr.selector, save->idtr.attrib,
	       save->idtr.limit, save->idtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "tr:",
	       save01->tr.selector, save01->tr.attrib,
	       save01->tr.limit, save01->tr.base);
	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
	       save->vmpl, save->cpl, save->efer);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr0:", save->cr0, "cr2:", save->cr2);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr3:", save->cr3, "cr4:", save->cr4);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "dr6:", save->dr6, "dr7:", save->dr7);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rip:", save->rip, "rflags:", save->rflags);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rsp:", save->rsp, "rax:", save->rax);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "star:", save01->star, "lstar:", save01->lstar);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "kernel_gs_base:", save01->kernel_gs_base,
	       "sysenter_cs:", save01->sysenter_cs);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "sysenter_esp:", save01->sysenter_esp,
	       "sysenter_eip:", save01->sysenter_eip);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "br_from:", save->br_from, "br_to:", save->br_to);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "excp_from:", save->last_excp_from,
	       "excp_to:", save->last_excp_to);
}

static bool svm_check_exit_valid(u64 exit_code)
{
	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
		svm_exit_handlers[exit_code]);
}

static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
{
	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
	dump_vmcb(vcpu);
	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
	vcpu->run->internal.ndata = 2;
	vcpu->run->internal.data[0] = exit_code;
	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
	return 0;
}

int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
{
	if (!svm_check_exit_valid(exit_code))
		return svm_handle_invalid_exit(vcpu, exit_code);

#ifdef CONFIG_MITIGATION_RETPOLINE
	if (exit_code == SVM_EXIT_MSR)
		return msr_interception(vcpu);
	else if (exit_code == SVM_EXIT_VINTR)
		return interrupt_window_interception(vcpu);
	else if (exit_code == SVM_EXIT_INTR)
		return intr_interception(vcpu);
	else if (exit_code == SVM_EXIT_HLT)
		return kvm_emulate_halt(vcpu);
	else if (exit_code == SVM_EXIT_NPF)
		return npf_interception(vcpu);
#endif
	return svm_exit_handlers[exit_code](vcpu);
}

static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
			      u64 *info1, u64 *info2,
			      u32 *intr_info, u32 *error_code)
{
	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;

	*reason = control->exit_code;
	*info1 = control->exit_info_1;
	*info2 = control->exit_info_2;
	*intr_info = control->exit_int_info;
	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
		*error_code = control->exit_int_info_err;
	else
		*error_code = 0;
}

static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct kvm_run *kvm_run = vcpu->run;
	u32 exit_code = svm->vmcb->control.exit_code;

	/* SEV-ES guests must use the CR write traps to track CR registers. */
	if (!sev_es_guest(vcpu->kvm)) {
		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
			vcpu->arch.cr0 = svm->vmcb->save.cr0;
		if (npt_enabled)
			vcpu->arch.cr3 = svm->vmcb->save.cr3;
	}

	if (is_guest_mode(vcpu)) {
		int vmexit;

		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);

		vmexit = nested_svm_exit_special(svm);

		if (vmexit == NESTED_EXIT_CONTINUE)
			vmexit = nested_svm_exit_handled(svm);

		if (vmexit == NESTED_EXIT_DONE)
			return 1;
	}

	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		kvm_run->fail_entry.hardware_entry_failure_reason
			= svm->vmcb->control.exit_code;
		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
		dump_vmcb(vcpu);
		return 0;
	}

	if (exit_fastpath != EXIT_FASTPATH_NONE)
		return 1;

	return svm_invoke_exit_handler(vcpu, exit_code);
}

static void pre_svm_run(struct kvm_vcpu *vcpu)
{
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * If the previous vmrun of the vmcb occurred on a different physical
	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
	 */
	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
		svm->current_vmcb->asid_generation = 0;
		vmcb_mark_all_dirty(svm->vmcb);
		svm->current_vmcb->cpu = vcpu->cpu;
        }

	if (sev_guest(vcpu->kvm))
		return pre_sev_run(svm, vcpu->cpu);

	/* FIXME: handle wraparound of asid_generation */
	if (svm->current_vmcb->asid_generation != sd->asid_generation)
		new_asid(svm, sd);
}

static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;

	if (svm->nmi_l1_to_l2)
		return;

	/*
	 * No need to manually track NMI masking when vNMI is enabled, hardware
	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
	 * case where software directly injects an NMI.
	 */
	if (!is_vnmi_enabled(svm)) {
		svm->nmi_masked = true;
		svm_set_iret_intercept(svm);
	}
	++vcpu->stat.nmi_injections;
}

static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!is_vnmi_enabled(svm))
		return false;

	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
}

static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!is_vnmi_enabled(svm))
		return false;

	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
		return false;

	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);

	/*
	 * Because the pending NMI is serviced by hardware, KVM can't know when
	 * the NMI is "injected", but for all intents and purposes, passing the
	 * NMI off to hardware counts as injection.
	 */
	++vcpu->stat.nmi_injections;

	return true;
}

static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 type;

	if (vcpu->arch.interrupt.soft) {
		if (svm_update_soft_interrupt_rip(vcpu))
			return;

		type = SVM_EVTINJ_TYPE_SOFT;
	} else {
		type = SVM_EVTINJ_TYPE_INTR;
	}

	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
			   vcpu->arch.interrupt.soft, reinjected);
	++vcpu->stat.irq_injections;

	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
				       SVM_EVTINJ_VALID | type;
}

void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
				     int trig_mode, int vector)
{
	/*
	 * apic->apicv_active must be read after vcpu->mode.
	 * Pairs with smp_store_release in vcpu_enter_guest.
	 */
	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);

	/* Note, this is called iff the local APIC is in-kernel. */
	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
		/* Process the interrupt via kvm_check_and_inject_events(). */
		kvm_make_request(KVM_REQ_EVENT, vcpu);
		kvm_vcpu_kick(vcpu);
		return;
	}

	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
	if (in_guest_mode) {
		/*
		 * Signal the doorbell to tell hardware to inject the IRQ.  If
		 * the vCPU exits the guest before the doorbell chimes, hardware
		 * will automatically process AVIC interrupts at the next VMRUN.
		 */
		avic_ring_doorbell(vcpu);
	} else {
		/*
		 * Wake the vCPU if it was blocking.  KVM will then detect the
		 * pending IRQ when checking if the vCPU has a wake event.
		 */
		kvm_vcpu_wake_up(vcpu);
	}
}

static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
				  int trig_mode, int vector)
{
	kvm_lapic_set_irr(vector, apic);

	/*
	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
	 * the read of guest_mode.  This guarantees that either VMRUN will see
	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
	 * will signal the doorbell if the CPU has already entered the guest.
	 */
	smp_mb__after_atomic();
	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
}

static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * SEV-ES guests must always keep the CR intercepts cleared. CR
	 * tracking is done using the CR write traps.
	 */
	if (sev_es_guest(vcpu->kvm))
		return;

	if (nested_svm_virtualize_tpr(vcpu))
		return;

	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);

	if (irr == -1)
		return;

	if (tpr >= irr)
		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
}

static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (is_vnmi_enabled(svm))
		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
	else
		return svm->nmi_masked;
}

static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (is_vnmi_enabled(svm)) {
		if (masked)
			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
		else
			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;

	} else {
		svm->nmi_masked = masked;
		if (masked)
			svm_set_iret_intercept(svm);
		else
			svm_clr_iret_intercept(svm);
	}
}

bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;

	if (!gif_set(svm))
		return true;

	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
		return false;

	if (svm_get_nmi_mask(vcpu))
		return true;

	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
}

static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	if (svm->nested.nested_run_pending)
		return -EBUSY;

	if (svm_nmi_blocked(vcpu))
		return 0;

	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
		return -EBUSY;
	return 1;
}

bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;

	if (!gif_set(svm))
		return true;

	if (is_guest_mode(vcpu)) {
		/* As long as interrupts are being delivered...  */
		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
			return true;

		/* ... vmexits aren't blocked by the interrupt shadow  */
		if (nested_exit_on_intr(svm))
			return false;
	} else {
		if (!svm_get_if_flag(vcpu))
			return true;
	}

	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
}

static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (svm->nested.nested_run_pending)
		return -EBUSY;

	if (svm_interrupt_blocked(vcpu))
		return 0;

	/*
	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
	 * e.g. if the IRQ arrived asynchronously after checking nested events.
	 */
	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
		return -EBUSY;

	return 1;
}

static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
	 * get that intercept, this function will be called again though and
	 * we'll get the vintr intercept. However, if the vGIF feature is
	 * enabled, the STGI interception will not occur. Enable the irq
	 * window under the assumption that the hardware will set the GIF.
	 */
	if (vgif || gif_set(svm)) {
		/*
		 * IRQ window is not needed when AVIC is enabled,
		 * unless we have pending ExtINT since it cannot be injected
		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
		 * and fallback to injecting IRQ via V_IRQ.
		 *
		 * If running nested, AVIC is already locally inhibited
		 * on this vCPU, therefore there is no need to request
		 * the VM wide AVIC inhibition.
		 */
		if (!is_guest_mode(vcpu))
			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);

		svm_set_vintr(svm);
	}
}

static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * If NMIs are outright masked, i.e. the vCPU is already handling an
	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
	 * more to do at this time as KVM has already enabled IRET intercepts.
	 * If KVM has already intercepted IRET, then single-step over the IRET,
	 * as NMIs aren't architecturally unmasked until the IRET completes.
	 *
	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
	 * are masked, as KVM allows at most one to-be-injected NMI and one
	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
	 * inject the NMI.  In those situations, KVM needs to single-step over
	 * the STI shadow or intercept STGI.
	 */
	if (svm_get_nmi_mask(vcpu)) {
		WARN_ON_ONCE(is_vnmi_enabled(svm));

		if (!svm->awaiting_iret_completion)
			return; /* IRET will cause a vm exit */
	}

	/*
	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
	 * KVM can't intercept and single-step IRET to detect when NMIs are
	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
	 *
	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
	 * supported NAEs in the GHCB protocol.
	 */
	if (sev_es_guest(vcpu->kvm))
		return;

	if (!gif_set(svm)) {
		if (vgif)
			svm_set_intercept(svm, INTERCEPT_STGI);
		return; /* STGI will cause a vm exit */
	}

	/*
	 * Something prevents NMI from been injected. Single step over possible
	 * problem (IRET or exception injection or interrupt shadow)
	 */
	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
	svm->nmi_singlestep = true;
	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
}

static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
	 */
	kvm_hv_vcpu_purge_flush_tlb(vcpu);

	/*
	 * Flush only the current ASID even if the TLB flush was invoked via
	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
	 * unconditionally does a TLB flush on both nested VM-Enter and nested
	 * VM-Exit (via kvm_mmu_reset_context()).
	 */
	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
	else
		svm->current_vmcb->asid_generation--;
}

static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
{
	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;

	/*
	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
	 * flush the NPT mappings via hypercall as flushing the ASID only
	 * affects virtual to physical mappings, it does not invalidate guest
	 * physical to host physical mappings.
	 */
	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
		hyperv_flush_guest_mapping(root_tdp);

	svm_flush_tlb_asid(vcpu);
}

static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
{
	/*
	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
	 * a "regular" remote flush.  Reaching this point means either there's
	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
	 * which might be fatal to the guest.  Yell, but try to recover.
	 */
	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
		hv_flush_remote_tlbs(vcpu->kvm);

	svm_flush_tlb_asid(vcpu);
}

static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	invlpga(gva, svm->vmcb->control.asid);
}

static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (nested_svm_virtualize_tpr(vcpu))
		return;

	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
		kvm_set_cr8(vcpu, cr8);
	}
}

static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 cr8;

	if (nested_svm_virtualize_tpr(vcpu) ||
	    kvm_vcpu_apicv_active(vcpu))
		return;

	cr8 = kvm_get_cr8(vcpu);
	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}

static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
					int type)
{
	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
	 * associated with the original soft exception/interrupt.  next_rip is
	 * cleared on all exits that can occur while vectoring an event, so KVM
	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
	 * case below, this needs to be done if and only if KVM is re-injecting
	 * the same event, i.e. if the event is a soft exception/interrupt,
	 * otherwise next_rip is unused on VMRUN.
	 */
	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
	/*
	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
	 * injecting the soft exception/interrupt.  That advancement needs to
	 * be unwound if vectoring didn't complete.  Note, the new event may
	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
	 * be the reported vectored event, but RIP still needs to be unwound.
	 */
	else if (!nrips && (is_soft || is_exception) &&
		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
		kvm_rip_write(vcpu, svm->soft_int_old_rip);
}

static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u8 vector;
	int type;
	u32 exitintinfo = svm->vmcb->control.exit_int_info;
	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
	bool soft_int_injected = svm->soft_int_injected;

	svm->nmi_l1_to_l2 = false;
	svm->soft_int_injected = false;

	/*
	 * If we've made progress since setting awaiting_iret_completion, we've
	 * executed an IRET and can allow NMI injection.
	 */
	if (svm->awaiting_iret_completion &&
	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
		svm->awaiting_iret_completion = false;
		svm->nmi_masked = false;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
	}

	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);

	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
		return;

	kvm_make_request(KVM_REQ_EVENT, vcpu);

	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;

	if (soft_int_injected)
		svm_complete_soft_interrupt(vcpu, vector, type);

	switch (type) {
	case SVM_EXITINTINFO_TYPE_NMI:
		vcpu->arch.nmi_injected = true;
		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
		break;
	case SVM_EXITINTINFO_TYPE_EXEPT:
		/*
		 * Never re-inject a #VC exception.
		 */
		if (vector == X86_TRAP_VC)
			break;

		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
			u32 err = svm->vmcb->control.exit_int_info_err;
			kvm_requeue_exception_e(vcpu, vector, err);

		} else
			kvm_requeue_exception(vcpu, vector);
		break;
	case SVM_EXITINTINFO_TYPE_INTR:
		kvm_queue_interrupt(vcpu, vector, false);
		break;
	case SVM_EXITINTINFO_TYPE_SOFT:
		kvm_queue_interrupt(vcpu, vector, true);
		break;
	default:
		break;
	}

}

static void svm_cancel_injection(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;

	control->exit_int_info = control->event_inj;
	control->exit_int_info_err = control->event_inj_err;
	control->event_inj = 0;
	svm_complete_interrupts(vcpu);
}

static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
{
	if (to_kvm_sev_info(vcpu->kvm)->need_init)
		return -EINVAL;

	return 1;
}

static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (is_guest_mode(vcpu))
		return EXIT_FASTPATH_NONE;

	switch (svm->vmcb->control.exit_code) {
	case SVM_EXIT_MSR:
		if (!svm->vmcb->control.exit_info_1)
			break;
		return handle_fastpath_set_msr_irqoff(vcpu);
	case SVM_EXIT_HLT:
		return handle_fastpath_hlt(vcpu);
	default:
		break;
	}

	return EXIT_FASTPATH_NONE;
}

static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
{
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
	struct vcpu_svm *svm = to_svm(vcpu);

	guest_state_enter_irqoff();

	amd_clear_divider();

	if (sev_es_guest(vcpu->kvm))
		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
				      sev_es_host_save_area(sd));
	else
		__svm_vcpu_run(svm, spec_ctrl_intercepted);

	guest_state_exit_irqoff();
}

static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
					  bool force_immediate_exit)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);

	trace_kvm_entry(vcpu, force_immediate_exit);

	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];

	/*
	 * Disable singlestep if we're injecting an interrupt/exception.
	 * We don't want our modified rflags to be pushed on the stack where
	 * we might not be able to easily reset them if we disabled NMI
	 * singlestep later.
	 */
	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
		/*
		 * Event injection happens before external interrupts cause a
		 * vmexit and interrupts are disabled here, so smp_send_reschedule
		 * is enough to force an immediate vmexit.
		 */
		disable_nmi_singlestep(svm);
		force_immediate_exit = true;
	}

	if (force_immediate_exit)
		smp_send_reschedule(vcpu->cpu);

	pre_svm_run(vcpu);

	sync_lapic_to_cr8(vcpu);

	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
		svm->vmcb->control.asid = svm->asid;
		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
	}
	svm->vmcb->save.cr2 = vcpu->arch.cr2;

	svm_hv_update_vp_id(svm->vmcb, vcpu);

	/*
	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
	 * of a #DB.
	 */
	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
		svm_set_dr6(svm, vcpu->arch.dr6);
	else
		svm_set_dr6(svm, DR6_ACTIVE_LOW);

	clgi();
	kvm_load_guest_xsave_state(vcpu);

	kvm_wait_lapic_expire(vcpu);

	/*
	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
	 * is no need to worry about the conditional branch over the wrmsr
	 * being speculatively taken.
	 */
	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);

	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);

	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);

	if (!sev_es_guest(vcpu->kvm)) {
		vcpu->arch.cr2 = svm->vmcb->save.cr2;
		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
	}
	vcpu->arch.regs_dirty = 0;

	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);

	kvm_load_host_xsave_state(vcpu);
	stgi();

	/* Any pending NMI will happen here */

	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_after_interrupt(vcpu);

	sync_cr8_to_lapic(vcpu);

	svm->next_rip = 0;
	if (is_guest_mode(vcpu)) {
		nested_sync_control_from_vmcb02(svm);

		/* Track VMRUNs that have made past consistency checking */
		if (svm->nested.nested_run_pending &&
		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
                        ++vcpu->stat.nested_run;

		svm->nested.nested_run_pending = 0;
	}

	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
	vmcb_mark_all_clean(svm->vmcb);

	/* if exit due to PF check for async PF */
	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
		vcpu->arch.apf.host_apf_flags =
			kvm_read_and_reset_apf_flags();

	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;

	/*
	 * We need to handle MC intercepts here before the vcpu has a chance to
	 * change the physical cpu
	 */
	if (unlikely(svm->vmcb->control.exit_code ==
		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
		svm_handle_mce(vcpu);

	trace_kvm_exit(vcpu, KVM_ISA_SVM);

	svm_complete_interrupts(vcpu);

	return svm_exit_handlers_fastpath(vcpu);
}

static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
			     int root_level)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long cr3;

	if (npt_enabled) {
		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);

		hv_track_root_tdp(vcpu, root_hpa);

		cr3 = vcpu->arch.cr3;
	} else if (root_level >= PT64_ROOT_4LEVEL) {
		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
	} else {
		/* PCID in the guest should be impossible with a 32-bit MMU. */
		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
		cr3 = root_hpa;
	}

	svm->vmcb->save.cr3 = cr3;
	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
}

static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
	/*
	 * Patch in the VMMCALL instruction:
	 */
	hypercall[0] = 0x0f;
	hypercall[1] = 0x01;
	hypercall[2] = 0xd9;
}

/*
 * The kvm parameter can be NULL (module initialization, or invocation before
 * VM creation). Be sure to check the kvm parameter before using it.
 */
static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
{
	switch (index) {
	case MSR_IA32_MCG_EXT_CTL:
	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
		return false;
	case MSR_IA32_SMBASE:
		if (!IS_ENABLED(CONFIG_KVM_SMM))
			return false;
		/* SEV-ES guests do not support SMM, so report false */
		if (kvm && sev_es_guest(kvm))
			return false;
		break;
	default:
		break;
	}

	return true;
}

static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/*
	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
	 * can only disable all variants of by disallowing CR4.OSXSAVE from
	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
	 * guest has XSAVE enabled, the guest can execute XSAVES without
	 * faulting.  Treat XSAVES as enabled in this case regardless of
	 * whether it's advertised to the guest so that KVM context switches
	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
	 * the guest read/write access to the host's XSS.
	 */
	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
	    boot_cpu_has(X86_FEATURE_XSAVES) &&
	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);

	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);

	/*
	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
	 * SVM on Intel is bonkers and extremely unlikely to work).
	 */
	if (!guest_cpuid_is_intel_compatible(vcpu))
		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);

	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);

	svm_recalc_instruction_intercepts(vcpu, svm);

	if (boot_cpu_has(X86_FEATURE_IBPB))
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
				     !!guest_has_pred_cmd_msr(vcpu));

	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));

	if (sev_guest(vcpu->kvm))
		sev_vcpu_after_set_cpuid(svm);

	init_vmcb_after_set_cpuid(vcpu);
}

static bool svm_has_wbinvd_exit(void)
{
	return true;
}

#define PRE_EX(exit)  { .exit_code = (exit), \
			.stage = X86_ICPT_PRE_EXCEPT, }
#define POST_EX(exit) { .exit_code = (exit), \
			.stage = X86_ICPT_POST_EXCEPT, }
#define POST_MEM(exit) { .exit_code = (exit), \
			.stage = X86_ICPT_POST_MEMACCESS, }

static const struct __x86_intercept {
	u32 exit_code;
	enum x86_intercept_stage stage;
} x86_intercept_map[] = {
	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
};

#undef PRE_EX
#undef POST_EX
#undef POST_MEM

static int svm_check_intercept(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
			       enum x86_intercept_stage stage,
			       struct x86_exception *exception)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int vmexit, ret = X86EMUL_CONTINUE;
	struct __x86_intercept icpt_info;
	struct vmcb *vmcb = svm->vmcb;

	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
		goto out;

	icpt_info = x86_intercept_map[info->intercept];

	if (stage != icpt_info.stage)
		goto out;

	switch (icpt_info.exit_code) {
	case SVM_EXIT_READ_CR0:
		if (info->intercept == x86_intercept_cr_read)
			icpt_info.exit_code += info->modrm_reg;
		break;
	case SVM_EXIT_WRITE_CR0: {
		unsigned long cr0, val;

		if (info->intercept == x86_intercept_cr_write)
			icpt_info.exit_code += info->modrm_reg;

		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
		    info->intercept == x86_intercept_clts)
			break;

		if (!(vmcb12_is_intercept(&svm->nested.ctl,
					INTERCEPT_SELECTIVE_CR0)))
			break;

		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;

		if (info->intercept == x86_intercept_lmsw) {
			cr0 &= 0xfUL;
			val &= 0xfUL;
			/* lmsw can't clear PE - catch this here */
			if (cr0 & X86_CR0_PE)
				val |= X86_CR0_PE;
		}

		if (cr0 ^ val)
			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;

		break;
	}
	case SVM_EXIT_READ_DR0:
	case SVM_EXIT_WRITE_DR0:
		icpt_info.exit_code += info->modrm_reg;
		break;
	case SVM_EXIT_MSR:
		if (info->intercept == x86_intercept_wrmsr)
			vmcb->control.exit_info_1 = 1;
		else
			vmcb->control.exit_info_1 = 0;
		break;
	case SVM_EXIT_PAUSE:
		/*
		 * We get this for NOP only, but pause
		 * is rep not, check this here
		 */
		if (info->rep_prefix != REPE_PREFIX)
			goto out;
		break;
	case SVM_EXIT_IOIO: {
		u64 exit_info;
		u32 bytes;

		if (info->intercept == x86_intercept_in ||
		    info->intercept == x86_intercept_ins) {
			exit_info = ((info->src_val & 0xffff) << 16) |
				SVM_IOIO_TYPE_MASK;
			bytes = info->dst_bytes;
		} else {
			exit_info = (info->dst_val & 0xffff) << 16;
			bytes = info->src_bytes;
		}

		if (info->intercept == x86_intercept_outs ||
		    info->intercept == x86_intercept_ins)
			exit_info |= SVM_IOIO_STR_MASK;

		if (info->rep_prefix)
			exit_info |= SVM_IOIO_REP_MASK;

		bytes = min(bytes, 4u);

		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;

		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);

		vmcb->control.exit_info_1 = exit_info;
		vmcb->control.exit_info_2 = info->next_rip;

		break;
	}
	default:
		break;
	}

	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
	if (static_cpu_has(X86_FEATURE_NRIPS))
		vmcb->control.next_rip  = info->next_rip;
	vmcb->control.exit_code = icpt_info.exit_code;
	vmexit = nested_svm_exit_handled(svm);

	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
					   : X86EMUL_CONTINUE;

out:
	return ret;
}

static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{
	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
		vcpu->arch.at_instruction_boundary = true;
}

static void svm_setup_mce(struct kvm_vcpu *vcpu)
{
	/* [63:9] are reserved. */
	vcpu->arch.mcg_cap &= 0x1ff;
}

#ifdef CONFIG_KVM_SMM
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/* Per APM Vol.2 15.22.2 "Response to SMI" */
	if (!gif_set(svm))
		return true;

	return is_smm(vcpu);
}

static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	if (svm->nested.nested_run_pending)
		return -EBUSY;

	if (svm_smi_blocked(vcpu))
		return 0;

	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
		return -EBUSY;

	return 1;
}

static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct kvm_host_map map_save;
	int ret;

	if (!is_guest_mode(vcpu))
		return 0;

	/*
	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
	 */

	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
		return 1;

	smram->smram64.svm_guest_flag = 1;
	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;

	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];

	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
	if (ret)
		return ret;

	/*
	 * KVM uses VMCB01 to store L1 host state while L2 runs but
	 * VMCB01 is going to be used during SMM and thus the state will
	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
	 * format of the area is identical to guest save area offsetted
	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
	 * within 'struct vmcb'). Note: HSAVE area may also be used by
	 * L1 hypervisor to save additional host context (e.g. KVM does
	 * that, see svm_prepare_switch_to_guest()) which must be
	 * preserved.
	 */
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
		return 1;

	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);

	svm_copy_vmrun_state(map_save.hva + 0x400,
			     &svm->vmcb01.ptr->save);

	kvm_vcpu_unmap(vcpu, &map_save, true);
	return 0;
}

static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct kvm_host_map map, map_save;
	struct vmcb *vmcb12;
	int ret;

	const struct kvm_smram_state_64 *smram64 = &smram->smram64;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
		return 0;

	/* Non-zero if SMI arrived while vCPU was in guest mode. */
	if (!smram64->svm_guest_flag)
		return 0;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
		return 1;

	if (!(smram64->efer & EFER_SVME))
		return 1;

	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
		return 1;

	ret = 1;
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
		goto unmap_map;

	if (svm_allocate_nested(svm))
		goto unmap_save;

	/*
	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
	 * used during SMM (see svm_enter_smm())
	 */

	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);

	/*
	 * Enter the nested guest now
	 */

	vmcb_mark_all_dirty(svm->vmcb01.ptr);

	vmcb12 = map.hva;
	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);

	if (ret)
		goto unmap_save;

	svm->nested.nested_run_pending = 1;

unmap_save:
	kvm_vcpu_unmap(vcpu, &map_save, true);
unmap_map:
	kvm_vcpu_unmap(vcpu, &map, true);
	return ret;
}

static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!gif_set(svm)) {
		if (vgif)
			svm_set_intercept(svm, INTERCEPT_STGI);
		/* STGI will cause a vm exit */
	} else {
		/* We must be in SMM; RSM will cause a vmexit anyway.  */
	}
}
#endif

static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
					 void *insn, int insn_len)
{
	bool smep, smap, is_user;
	u64 error_code;

	/* Emulation is always possible when KVM has access to all guest state. */
	if (!sev_guest(vcpu->kvm))
		return X86EMUL_CONTINUE;

	/* #UD and #GP should never be intercepted for SEV guests. */
	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
				  EMULTYPE_TRAP_UD_FORCED |
				  EMULTYPE_VMWARE_GP));

	/*
	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
	 * to guest register state.
	 */
	if (sev_es_guest(vcpu->kvm))
		return X86EMUL_RETRY_INSTR;

	/*
	 * Emulation is possible if the instruction is already decoded, e.g.
	 * when completing I/O after returning from userspace.
	 */
	if (emul_type & EMULTYPE_NO_DECODE)
		return X86EMUL_CONTINUE;

	/*
	 * Emulation is possible for SEV guests if and only if a prefilled
	 * buffer containing the bytes of the intercepted instruction is
	 * available. SEV guest memory is encrypted with a guest specific key
	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
	 * decode garbage.
	 *
	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
	 * KVM reached this point without an instruction buffer.  In practice,
	 * this path should never be hit by a well-behaved guest, e.g. KVM
	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
	 * access, and needs to be handled by KVM to avoid putting the guest
	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
	 * its the least awful option given lack of insight into the guest.
	 *
	 * If KVM is trying to skip an instruction, simply resume the guest.
	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
	 * will attempt to re-inject the INT3/INTO and skip the instruction.
	 * In that scenario, retrying the INT3/INTO and hoping the guest will
	 * make forward progress is the only option that has a chance of
	 * success (and in practice it will work the vast majority of the time).
	 */
	if (unlikely(!insn)) {
		if (emul_type & EMULTYPE_SKIP)
			return X86EMUL_UNHANDLEABLE;

		kvm_queue_exception(vcpu, UD_VECTOR);
		return X86EMUL_PROPAGATE_FAULT;
	}

	/*
	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
	 * the faulting instruction because the code fetch itself faulted, e.g.
	 * the guest attempted to fetch from emulated MMIO or a guest page
	 * table used to translate CS:RIP resides in emulated MMIO.
	 */
	if (likely(insn_len))
		return X86EMUL_CONTINUE;

	/*
	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
	 *
	 * Errata:
	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
	 * possible that CPU microcode implementing DecodeAssist will fail to
	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
	 * gives up and does not fill the instruction bytes buffer.
	 *
	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
	 * GuestIntrBytes field of the VMCB.
	 *
	 * This does _not_ mean that the erratum has been encountered, as the
	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
	 * encountered a reserved/not-present #PF.
	 *
	 * To hit the erratum, the following conditions must be true:
	 *    1. CR4.SMAP=1 (obviously).
	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
	 *       have been hit as the guest would have encountered a SMEP
	 *       violation #PF, not a #NPF.
	 *    3. The #NPF is not due to a code fetch, in which case failure to
	 *       retrieve the instruction bytes is legitimate (see abvoe).
	 *
	 * In addition, don't apply the erratum workaround if the #NPF occurred
	 * while translating guest page tables (see below).
	 */
	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
		goto resume_guest;

	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
	is_user = svm_get_cpl(vcpu) == 3;
	if (smap && (!smep || is_user)) {
		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");

		/*
		 * If the fault occurred in userspace, arbitrarily inject #GP
		 * to avoid killing the guest and to hopefully avoid confusing
		 * the guest kernel too much, e.g. injecting #PF would not be
		 * coherent with respect to the guest's page tables.  Request
		 * triple fault if the fault occurred in the kernel as there's
		 * no fault that KVM can inject without confusing the guest.
		 * In practice, the triple fault is moot as no sane SEV kernel
		 * will execute from user memory while also running with SMAP=1.
		 */
		if (is_user)
			kvm_inject_gp(vcpu, 0);
		else
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
		return X86EMUL_PROPAGATE_FAULT;
	}

resume_guest:
	/*
	 * If the erratum was not hit, simply resume the guest and let it fault
	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
	 * userspace will kill the guest, and letting the emulator read garbage
	 * will yield random behavior and potentially corrupt the guest.
	 *
	 * Simply resuming the guest is technically not a violation of the SEV
	 * architecture.  AMD's APM states that all code fetches and page table
	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
	 * APM also states that encrypted accesses to MMIO are "ignored", but
	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
	 * the guest spin is technically "ignoring" the access.
	 */
	return X86EMUL_RETRY_INSTR;
}

static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return !gif_set(svm);
}

static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
	if (!sev_es_guest(vcpu->kvm))
		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);

	sev_vcpu_deliver_sipi_vector(vcpu, vector);
}

static void svm_vm_destroy(struct kvm *kvm)
{
	avic_vm_destroy(kvm);
	sev_vm_destroy(kvm);
}

static int svm_vm_init(struct kvm *kvm)
{
	int type = kvm->arch.vm_type;

	if (type != KVM_X86_DEFAULT_VM &&
	    type != KVM_X86_SW_PROTECTED_VM) {
		kvm->arch.has_protected_state =
			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
		to_kvm_sev_info(kvm)->need_init = true;

		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
	}

	if (!pause_filter_count || !pause_filter_thresh)
		kvm->arch.pause_in_guest = true;

	if (enable_apicv) {
		int ret = avic_vm_init(kvm);
		if (ret)
			return ret;
	}

	return 0;
}

static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
{
	struct page *page = snp_safe_alloc_page();

	if (!page)
		return NULL;

	return page_address(page);
}

static struct kvm_x86_ops svm_x86_ops __initdata = {
	.name = KBUILD_MODNAME,

	.check_processor_compatibility = svm_check_processor_compat,

	.hardware_unsetup = svm_hardware_unsetup,
	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
	.has_emulated_msr = svm_has_emulated_msr,

	.vcpu_create = svm_vcpu_create,
	.vcpu_free = svm_vcpu_free,
	.vcpu_reset = svm_vcpu_reset,

	.vm_size = sizeof(struct kvm_svm),
	.vm_init = svm_vm_init,
	.vm_destroy = svm_vm_destroy,

	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
	.vcpu_load = svm_vcpu_load,
	.vcpu_put = svm_vcpu_put,
	.vcpu_blocking = avic_vcpu_blocking,
	.vcpu_unblocking = avic_vcpu_unblocking,

	.update_exception_bitmap = svm_update_exception_bitmap,
	.get_feature_msr = svm_get_feature_msr,
	.get_msr = svm_get_msr,
	.set_msr = svm_set_msr,
	.get_segment_base = svm_get_segment_base,
	.get_segment = svm_get_segment,
	.set_segment = svm_set_segment,
	.get_cpl = svm_get_cpl,
	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
	.is_valid_cr0 = svm_is_valid_cr0,
	.set_cr0 = svm_set_cr0,
	.post_set_cr3 = sev_post_set_cr3,
	.is_valid_cr4 = svm_is_valid_cr4,
	.set_cr4 = svm_set_cr4,
	.set_efer = svm_set_efer,
	.get_idt = svm_get_idt,
	.set_idt = svm_set_idt,
	.get_gdt = svm_get_gdt,
	.set_gdt = svm_set_gdt,
	.set_dr7 = svm_set_dr7,
	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
	.cache_reg = svm_cache_reg,
	.get_rflags = svm_get_rflags,
	.set_rflags = svm_set_rflags,
	.get_if_flag = svm_get_if_flag,

	.flush_tlb_all = svm_flush_tlb_all,
	.flush_tlb_current = svm_flush_tlb_current,
	.flush_tlb_gva = svm_flush_tlb_gva,
	.flush_tlb_guest = svm_flush_tlb_asid,

	.vcpu_pre_run = svm_vcpu_pre_run,
	.vcpu_run = svm_vcpu_run,
	.handle_exit = svm_handle_exit,
	.skip_emulated_instruction = svm_skip_emulated_instruction,
	.update_emulated_instruction = NULL,
	.set_interrupt_shadow = svm_set_interrupt_shadow,
	.get_interrupt_shadow = svm_get_interrupt_shadow,
	.patch_hypercall = svm_patch_hypercall,
	.inject_irq = svm_inject_irq,
	.inject_nmi = svm_inject_nmi,
	.is_vnmi_pending = svm_is_vnmi_pending,
	.set_vnmi_pending = svm_set_vnmi_pending,
	.inject_exception = svm_inject_exception,
	.cancel_injection = svm_cancel_injection,
	.interrupt_allowed = svm_interrupt_allowed,
	.nmi_allowed = svm_nmi_allowed,
	.get_nmi_mask = svm_get_nmi_mask,
	.set_nmi_mask = svm_set_nmi_mask,
	.enable_nmi_window = svm_enable_nmi_window,
	.enable_irq_window = svm_enable_irq_window,
	.update_cr8_intercept = svm_update_cr8_intercept,

	.x2apic_icr_is_split = true,
	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
	.apicv_post_state_restore = avic_apicv_post_state_restore,
	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,

	.get_exit_info = svm_get_exit_info,

	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,

	.has_wbinvd_exit = svm_has_wbinvd_exit,

	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
	.write_tsc_offset = svm_write_tsc_offset,
	.write_tsc_multiplier = svm_write_tsc_multiplier,

	.load_mmu_pgd = svm_load_mmu_pgd,

	.check_intercept = svm_check_intercept,
	.handle_exit_irqoff = svm_handle_exit_irqoff,

	.nested_ops = &svm_nested_ops,

	.deliver_interrupt = svm_deliver_interrupt,
	.pi_update_irte = avic_pi_update_irte,
	.setup_mce = svm_setup_mce,

#ifdef CONFIG_KVM_SMM
	.smi_allowed = svm_smi_allowed,
	.enter_smm = svm_enter_smm,
	.leave_smm = svm_leave_smm,
	.enable_smi_window = svm_enable_smi_window,
#endif

#ifdef CONFIG_KVM_AMD_SEV
	.dev_get_attr = sev_dev_get_attr,
	.mem_enc_ioctl = sev_mem_enc_ioctl,
	.mem_enc_register_region = sev_mem_enc_register_region,
	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
	.guest_memory_reclaimed = sev_guest_memory_reclaimed,

	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
#endif
	.check_emulate_instruction = svm_check_emulate_instruction,

	.apic_init_signal_blocked = svm_apic_init_signal_blocked,

	.msr_filter_changed = svm_msr_filter_changed,
	.complete_emulated_msr = svm_complete_emulated_msr,

	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
	.alloc_apic_backing_page = svm_alloc_apic_backing_page,

	.gmem_prepare = sev_gmem_prepare,
	.gmem_invalidate = sev_gmem_invalidate,
	.private_max_mapping_level = sev_private_max_mapping_level,
};

/*
 * The default MMIO mask is a single bit (excluding the present bit),
 * which could conflict with the memory encryption bit. Check for
 * memory encryption support and override the default MMIO mask if
 * memory encryption is enabled.
 */
static __init void svm_adjust_mmio_mask(void)
{
	unsigned int enc_bit, mask_bit;
	u64 msr, mask;

	/* If there is no memory encryption support, use existing mask */
	if (cpuid_eax(0x80000000) < 0x8000001f)
		return;

	/* If memory encryption is not enabled, use existing mask */
	rdmsrl(MSR_AMD64_SYSCFG, msr);
	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
		return;

	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
	mask_bit = boot_cpu_data.x86_phys_bits;

	/* Increment the mask bit if it is the same as the encryption bit */
	if (enc_bit == mask_bit)
		mask_bit++;

	/*
	 * If the mask bit location is below 52, then some bits above the
	 * physical addressing limit will always be reserved, so use the
	 * rsvd_bits() function to generate the mask. This mask, along with
	 * the present bit, will be used to generate a page fault with
	 * PFER.RSV = 1.
	 *
	 * If the mask bit location is 52 (or above), then clear the mask.
	 */
	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;

	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
}

static __init void svm_set_cpu_caps(void)
{
	kvm_set_cpu_caps();

	kvm_caps.supported_perf_cap = 0;
	kvm_caps.supported_xss = 0;

	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
	if (nested) {
		kvm_cpu_cap_set(X86_FEATURE_SVM);
		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);

		/*
		 * KVM currently flushes TLBs on *every* nested SVM transition,
		 * and so for all intents and purposes KVM supports flushing by
		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
		 */
		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);

		if (nrips)
			kvm_cpu_cap_set(X86_FEATURE_NRIPS);

		if (npt_enabled)
			kvm_cpu_cap_set(X86_FEATURE_NPT);

		if (tsc_scaling)
			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);

		if (vls)
			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
		if (lbrv)
			kvm_cpu_cap_set(X86_FEATURE_LBRV);

		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);

		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);

		if (vgif)
			kvm_cpu_cap_set(X86_FEATURE_VGIF);

		if (vnmi)
			kvm_cpu_cap_set(X86_FEATURE_VNMI);

		/* Nested VM can receive #VMEXIT instead of triggering #GP */
		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
	}

	/* CPUID 0x80000008 */
	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);

	if (enable_pmu) {
		/*
		 * Enumerate support for PERFCTR_CORE if and only if KVM has
		 * access to enough counters to virtualize "core" support,
		 * otherwise limit vPMU support to the legacy number of counters.
		 */
		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
							  kvm_pmu_cap.num_counters_gp);
		else
			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);

		if (kvm_pmu_cap.version != 2 ||
		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
	}

	/* CPUID 0x8000001F (SME/SEV features) */
	sev_set_cpu_caps();

	/* Don't advertise Bus Lock Detect to guest if SVM support is absent */
	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
}

static __init int svm_hardware_setup(void)
{
	int cpu;
	struct page *iopm_pages;
	void *iopm_va;
	int r;
	unsigned int order = get_order(IOPM_SIZE);

	/*
	 * NX is required for shadow paging and for NPT if the NX huge pages
	 * mitigation is enabled.
	 */
	if (!boot_cpu_has(X86_FEATURE_NX)) {
		pr_err_ratelimited("NX (Execute Disable) not supported\n");
		return -EOPNOTSUPP;
	}
	kvm_enable_efer_bits(EFER_NX);

	iopm_pages = alloc_pages(GFP_KERNEL, order);

	if (!iopm_pages)
		return -ENOMEM;

	iopm_va = page_address(iopm_pages);
	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
	iopm_base = __sme_page_pa(iopm_pages);

	init_msrpm_offsets();

	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
				     XFEATURE_MASK_BNDCSR);

	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
		kvm_enable_efer_bits(EFER_FFXSR);

	if (tsc_scaling) {
		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
			tsc_scaling = false;
		} else {
			pr_info("TSC scaling supported\n");
			kvm_caps.has_tsc_control = true;
		}
	}
	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
	kvm_caps.tsc_scaling_ratio_frac_bits = 32;

	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);

	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
		kvm_enable_efer_bits(EFER_AUTOIBRS);

	/* Check for pause filtering support */
	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
		pause_filter_count = 0;
		pause_filter_thresh = 0;
	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
		pause_filter_thresh = 0;
	}

	if (nested) {
		pr_info("Nested Virtualization enabled\n");
		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
	}

	/*
	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
	 * NPT isn't supported if the host is using 2-level paging since host
	 * CR4 is unchanged on VMRUN.
	 */
	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
		npt_enabled = false;

	if (!boot_cpu_has(X86_FEATURE_NPT))
		npt_enabled = false;

	/* Force VM NPT level equal to the host's paging level */
	kvm_configure_mmu(npt_enabled, get_npt_level(),
			  get_npt_level(), PG_LEVEL_1G);
	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");

	/* Setup shadow_me_value and shadow_me_mask */
	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);

	svm_adjust_mmio_mask();

	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);

	if (lbrv) {
		if (!boot_cpu_has(X86_FEATURE_LBRV))
			lbrv = false;
		else
			pr_info("LBR virtualization supported\n");
	}
	/*
	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
	 */
	sev_hardware_setup();

	svm_hv_hardware_setup();

	for_each_possible_cpu(cpu) {
		r = svm_cpu_init(cpu);
		if (r)
			goto err;
	}

	enable_apicv = avic = avic && avic_hardware_setup();

	if (!enable_apicv) {
		svm_x86_ops.vcpu_blocking = NULL;
		svm_x86_ops.vcpu_unblocking = NULL;
		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
	} else if (!x2avic_enabled) {
		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
	}

	if (vls) {
		if (!npt_enabled ||
		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
		    !IS_ENABLED(CONFIG_X86_64)) {
			vls = false;
		} else {
			pr_info("Virtual VMLOAD VMSAVE supported\n");
		}
	}

	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
		svm_gp_erratum_intercept = false;

	if (vgif) {
		if (!boot_cpu_has(X86_FEATURE_VGIF))
			vgif = false;
		else
			pr_info("Virtual GIF supported\n");
	}

	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
	if (vnmi)
		pr_info("Virtual NMI enabled\n");

	if (!vnmi) {
		svm_x86_ops.is_vnmi_pending = NULL;
		svm_x86_ops.set_vnmi_pending = NULL;
	}

	if (!enable_pmu)
		pr_info("PMU virtualization is disabled\n");

	svm_set_cpu_caps();

	/*
	 * It seems that on AMD processors PTE's accessed bit is
	 * being set by the CPU hardware before the NPF vmexit.
	 * This is not expected behaviour and our tests fail because
	 * of it.
	 * A workaround here is to disable support for
	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
	 * In this case userspace can know if there is support using
	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
	 * it
	 * If future AMD CPU models change the behaviour described above,
	 * this variable can be changed accordingly
	 */
	allow_smaller_maxphyaddr = !npt_enabled;

	return 0;

err:
	svm_hardware_unsetup();
	return r;
}


static struct kvm_x86_init_ops svm_init_ops __initdata = {
	.hardware_setup = svm_hardware_setup,

	.runtime_ops = &svm_x86_ops,
	.pmu_ops = &amd_pmu_ops,
};

static void __svm_exit(void)
{
	kvm_x86_vendor_exit();
}

static int __init svm_init(void)
{
	int r;

	__unused_size_checks();

	if (!kvm_is_svm_supported())
		return -EOPNOTSUPP;

	r = kvm_x86_vendor_init(&svm_init_ops);
	if (r)
		return r;

	/*
	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
	 * exposed to userspace!
	 */
	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
		     THIS_MODULE);
	if (r)
		goto err_kvm_init;

	return 0;

err_kvm_init:
	__svm_exit();
	return r;
}

static void __exit svm_exit(void)
{
	kvm_exit();
	__svm_exit();
}

module_init(svm_init)
module_exit(svm_exit)