// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * AMD SVM-SEV support * * Copyright 2010 Red Hat, Inc. and/or its affiliates. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu.h" #include "x86.h" #include "svm.h" #include "svm_ops.h" #include "cpuid.h" #include "trace.h" #define GHCB_VERSION_MAX 2ULL #define GHCB_VERSION_DEFAULT 2ULL #define GHCB_VERSION_MIN 1ULL #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) /* enable/disable SEV support */ static bool sev_enabled = true; module_param_named(sev, sev_enabled, bool, 0444); /* enable/disable SEV-ES support */ static bool sev_es_enabled = true; module_param_named(sev_es, sev_es_enabled, bool, 0444); /* enable/disable SEV-SNP support */ static bool sev_snp_enabled = true; module_param_named(sev_snp, sev_snp_enabled, bool, 0444); /* enable/disable SEV-ES DebugSwap support */ static bool sev_es_debug_swap_enabled = true; module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); static u64 sev_supported_vmsa_features; #define AP_RESET_HOLD_NONE 0 #define AP_RESET_HOLD_NAE_EVENT 1 #define AP_RESET_HOLD_MSR_PROTO 2 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) #define SNP_POLICY_MASK_SMT BIT_ULL(16) #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ SNP_POLICY_MASK_API_MAJOR | \ SNP_POLICY_MASK_SMT | \ SNP_POLICY_MASK_RSVD_MBO | \ SNP_POLICY_MASK_DEBUG | \ SNP_POLICY_MASK_SINGLE_SOCKET) #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 static u8 sev_enc_bit; static DECLARE_RWSEM(sev_deactivate_lock); static DEFINE_MUTEX(sev_bitmap_lock); unsigned int max_sev_asid; static unsigned int min_sev_asid; static unsigned long sev_me_mask; static unsigned int nr_asids; static unsigned long *sev_asid_bitmap; static unsigned long *sev_reclaim_asid_bitmap; static int snp_decommission_context(struct kvm *kvm); struct enc_region { struct list_head list; unsigned long npages; struct page **pages; unsigned long uaddr; unsigned long size; }; /* Called with the sev_bitmap_lock held, or on shutdown */ static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) { int ret, error = 0; unsigned int asid; /* Check if there are any ASIDs to reclaim before performing a flush */ asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); if (asid > max_asid) return -EBUSY; /* * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, * so it must be guarded. */ down_write(&sev_deactivate_lock); wbinvd_on_all_cpus(); if (sev_snp_enabled) ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); else ret = sev_guest_df_flush(&error); up_write(&sev_deactivate_lock); if (ret) pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", sev_snp_enabled ? "-SNP" : "", ret, error); return ret; } static inline bool is_mirroring_enc_context(struct kvm *kvm) { return !!to_kvm_sev_info(kvm)->enc_context_owner; } static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; } /* Must be called with the sev_bitmap_lock held */ static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) { if (sev_flush_asids(min_asid, max_asid)) return false; /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, nr_asids); bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); return true; } static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) { enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; return misc_cg_try_charge(type, sev->misc_cg, 1); } static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) { enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; misc_cg_uncharge(type, sev->misc_cg, 1); } static int sev_asid_new(struct kvm_sev_info *sev) { /* * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. * Note: min ASID can end up larger than the max if basic SEV support is * effectively disabled by disallowing use of ASIDs for SEV guests. */ unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; unsigned int asid; bool retry = true; int ret; if (min_asid > max_asid) return -ENOTTY; WARN_ON(sev->misc_cg); sev->misc_cg = get_current_misc_cg(); ret = sev_misc_cg_try_charge(sev); if (ret) { put_misc_cg(sev->misc_cg); sev->misc_cg = NULL; return ret; } mutex_lock(&sev_bitmap_lock); again: asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); if (asid > max_asid) { if (retry && __sev_recycle_asids(min_asid, max_asid)) { retry = false; goto again; } mutex_unlock(&sev_bitmap_lock); ret = -EBUSY; goto e_uncharge; } __set_bit(asid, sev_asid_bitmap); mutex_unlock(&sev_bitmap_lock); sev->asid = asid; return 0; e_uncharge: sev_misc_cg_uncharge(sev); put_misc_cg(sev->misc_cg); sev->misc_cg = NULL; return ret; } static unsigned int sev_get_asid(struct kvm *kvm) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->asid; } static void sev_asid_free(struct kvm_sev_info *sev) { struct svm_cpu_data *sd; int cpu; mutex_lock(&sev_bitmap_lock); __set_bit(sev->asid, sev_reclaim_asid_bitmap); for_each_possible_cpu(cpu) { sd = per_cpu_ptr(&svm_data, cpu); sd->sev_vmcbs[sev->asid] = NULL; } mutex_unlock(&sev_bitmap_lock); sev_misc_cg_uncharge(sev); put_misc_cg(sev->misc_cg); sev->misc_cg = NULL; } static void sev_decommission(unsigned int handle) { struct sev_data_decommission decommission; if (!handle) return; decommission.handle = handle; sev_guest_decommission(&decommission, NULL); } /* * Transition a page to hypervisor-owned/shared state in the RMP table. This * should not fail under normal conditions, but leak the page should that * happen since it will no longer be usable by the host due to RMP protections. */ static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) { if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); return -EIO; } return 0; } /* * Certain page-states, such as Pre-Guest and Firmware pages (as documented * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE * unless they are reclaimed first. * * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they * might not be usable by the host due to being set as immutable or still * being associated with a guest ASID. * * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be * converted back to shared, as the page is no longer usable due to RMP * protections, and it's infeasible for the guest to continue on. */ static int snp_page_reclaim(struct kvm *kvm, u64 pfn) { struct sev_data_snp_page_reclaim data = {0}; int fw_err, rc; data.paddr = __sme_set(pfn << PAGE_SHIFT); rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { snp_leak_pages(pfn, 1); return -EIO; } if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) return -EIO; return rc; } static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) { struct sev_data_deactivate deactivate; if (!handle) return; deactivate.handle = handle; /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ down_read(&sev_deactivate_lock); sev_guest_deactivate(&deactivate, NULL); up_read(&sev_deactivate_lock); sev_decommission(handle); } /* * This sets up bounce buffers/firmware pages to handle SNP Guest Request * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB * 2.0 specification for more details. * * Technically, when an SNP Guest Request is issued, the guest will provide its * own request/response pages, which could in theory be passed along directly * to firmware rather than using bounce pages. However, these pages would need * special care: * * - Both pages are from shared guest memory, so they need to be protected * from migration/etc. occurring while firmware reads/writes to them. At a * minimum, this requires elevating the ref counts and potentially needing * an explicit pinning of the memory. This places additional restrictions * on what type of memory backends userspace can use for shared guest * memory since there is some reliance on using refcounted pages. * * - The response page needs to be switched to Firmware-owned[1] state * before the firmware can write to it, which can lead to potential * host RMP #PFs if the guest is misbehaved and hands the host a * guest page that KVM might write to for other reasons (e.g. virtio * buffers/etc.). * * Both of these issues can be avoided completely by using separately-allocated * bounce pages for both the request/response pages and passing those to * firmware instead. So that's what is being set up here. * * Guest requests rely on message sequence numbers to ensure requests are * issued to firmware in the order the guest issues them, so concurrent guest * requests generally shouldn't happen. But a misbehaved guest could issue * concurrent guest requests in theory, so a mutex is used to serialize * access to the bounce buffers. * * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" * in the APM for details on the related RMP restrictions. */ static int snp_guest_req_init(struct kvm *kvm) { struct kvm_sev_info *sev = to_kvm_sev_info(kvm); struct page *req_page; req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!req_page) return -ENOMEM; sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!sev->guest_resp_buf) { __free_page(req_page); return -EIO; } sev->guest_req_buf = page_address(req_page); mutex_init(&sev->guest_req_mutex); return 0; } static void snp_guest_req_cleanup(struct kvm *kvm) { struct kvm_sev_info *sev = to_kvm_sev_info(kvm); if (sev->guest_resp_buf) snp_free_firmware_page(sev->guest_resp_buf); if (sev->guest_req_buf) __free_page(virt_to_page(sev->guest_req_buf)); sev->guest_req_buf = NULL; sev->guest_resp_buf = NULL; } static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, struct kvm_sev_init *data, unsigned long vm_type) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_platform_init_args init_args = {0}; bool es_active = vm_type != KVM_X86_SEV_VM; u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; int ret; if (kvm->created_vcpus) return -EINVAL; if (data->flags) return -EINVAL; if (data->vmsa_features & ~valid_vmsa_features) return -EINVAL; if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) return -EINVAL; if (unlikely(sev->active)) return -EINVAL; sev->active = true; sev->es_active = es_active; sev->vmsa_features = data->vmsa_features; sev->ghcb_version = data->ghcb_version; /* * Currently KVM supports the full range of mandatory features defined * by version 2 of the GHCB protocol, so default to that for SEV-ES * guests created via KVM_SEV_INIT2. */ if (sev->es_active && !sev->ghcb_version) sev->ghcb_version = GHCB_VERSION_DEFAULT; if (vm_type == KVM_X86_SNP_VM) sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; ret = sev_asid_new(sev); if (ret) goto e_no_asid; init_args.probe = false; ret = sev_platform_init(&init_args); if (ret) goto e_free; /* This needs to happen after SEV/SNP firmware initialization. */ if (vm_type == KVM_X86_SNP_VM) { ret = snp_guest_req_init(kvm); if (ret) goto e_free; } INIT_LIST_HEAD(&sev->regions_list); INIT_LIST_HEAD(&sev->mirror_vms); sev->need_init = false; kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); return 0; e_free: argp->error = init_args.error; sev_asid_free(sev); sev->asid = 0; e_no_asid: sev->vmsa_features = 0; sev->es_active = false; sev->active = false; return ret; } static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_init data = { .vmsa_features = 0, .ghcb_version = 0, }; unsigned long vm_type; if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) return -EINVAL; vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); /* * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will * continue to only ever support the minimal GHCB protocol version. */ if (vm_type == KVM_X86_SEV_ES_VM) data.ghcb_version = GHCB_VERSION_MIN; return __sev_guest_init(kvm, argp, &data, vm_type); } static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_init data; if (!sev->need_init) return -EINVAL; if (kvm->arch.vm_type != KVM_X86_SEV_VM && kvm->arch.vm_type != KVM_X86_SEV_ES_VM && kvm->arch.vm_type != KVM_X86_SNP_VM) return -EINVAL; if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) return -EFAULT; return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); } static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) { unsigned int asid = sev_get_asid(kvm); struct sev_data_activate activate; int ret; /* activate ASID on the given handle */ activate.handle = handle; activate.asid = asid; ret = sev_guest_activate(&activate, error); return ret; } static int __sev_issue_cmd(int fd, int id, void *data, int *error) { struct fd f; int ret; f = fdget(fd); if (!fd_file(f)) return -EBADF; ret = sev_issue_cmd_external_user(fd_file(f), id, data, error); fdput(f); return ret; } static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return __sev_issue_cmd(sev->fd, id, data, error); } static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_start start; struct kvm_sev_launch_start params; void *dh_blob, *session_blob; int *error = &argp->error; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; memset(&start, 0, sizeof(start)); dh_blob = NULL; if (params.dh_uaddr) { dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); if (IS_ERR(dh_blob)) return PTR_ERR(dh_blob); start.dh_cert_address = __sme_set(__pa(dh_blob)); start.dh_cert_len = params.dh_len; } session_blob = NULL; if (params.session_uaddr) { session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); if (IS_ERR(session_blob)) { ret = PTR_ERR(session_blob); goto e_free_dh; } start.session_address = __sme_set(__pa(session_blob)); start.session_len = params.session_len; } start.handle = params.handle; start.policy = params.policy; /* create memory encryption context */ ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); if (ret) goto e_free_session; /* Bind ASID to this guest */ ret = sev_bind_asid(kvm, start.handle, error); if (ret) { sev_decommission(start.handle); goto e_free_session; } /* return handle to userspace */ params.handle = start.handle; if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { sev_unbind_asid(kvm, start.handle); ret = -EFAULT; goto e_free_session; } sev->handle = start.handle; sev->fd = argp->sev_fd; e_free_session: kfree(session_blob); e_free_dh: kfree(dh_blob); return ret; } static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, unsigned long ulen, unsigned long *n, int write) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; unsigned long npages, size; int npinned; unsigned long locked, lock_limit; struct page **pages; unsigned long first, last; int ret; lockdep_assert_held(&kvm->lock); if (ulen == 0 || uaddr + ulen < uaddr) return ERR_PTR(-EINVAL); /* Calculate number of pages. */ first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; npages = (last - first + 1); locked = sev->pages_locked + npages; lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); return ERR_PTR(-ENOMEM); } if (WARN_ON_ONCE(npages > INT_MAX)) return ERR_PTR(-EINVAL); /* Avoid using vmalloc for smaller buffers. */ size = npages * sizeof(struct page *); if (size > PAGE_SIZE) pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); else pages = kmalloc(size, GFP_KERNEL_ACCOUNT); if (!pages) return ERR_PTR(-ENOMEM); /* Pin the user virtual address. */ npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); if (npinned != npages) { pr_err("SEV: Failure locking %lu pages.\n", npages); ret = -ENOMEM; goto err; } *n = npages; sev->pages_locked = locked; return pages; err: if (npinned > 0) unpin_user_pages(pages, npinned); kvfree(pages); return ERR_PTR(ret); } static void sev_unpin_memory(struct kvm *kvm, struct page **pages, unsigned long npages) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; unpin_user_pages(pages, npages); kvfree(pages); sev->pages_locked -= npages; } static void sev_clflush_pages(struct page *pages[], unsigned long npages) { uint8_t *page_virtual; unsigned long i; if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || pages == NULL) return; for (i = 0; i < npages; i++) { page_virtual = kmap_local_page(pages[i]); clflush_cache_range(page_virtual, PAGE_SIZE); kunmap_local(page_virtual); cond_resched(); } } static unsigned long get_num_contig_pages(unsigned long idx, struct page **inpages, unsigned long npages) { unsigned long paddr, next_paddr; unsigned long i = idx + 1, pages = 1; /* find the number of contiguous pages starting from idx */ paddr = __sme_page_pa(inpages[idx]); while (i < npages) { next_paddr = __sme_page_pa(inpages[i++]); if ((paddr + PAGE_SIZE) == next_paddr) { pages++; paddr = next_paddr; continue; } break; } return pages; } static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) { unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_launch_update_data params; struct sev_data_launch_update_data data; struct page **inpages; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; vaddr = params.uaddr; size = params.len; vaddr_end = vaddr + size; /* Lock the user memory. */ inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); if (IS_ERR(inpages)) return PTR_ERR(inpages); /* * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in * place; the cache may contain the data that was written unencrypted. */ sev_clflush_pages(inpages, npages); data.reserved = 0; data.handle = sev->handle; for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { int offset, len; /* * If the user buffer is not page-aligned, calculate the offset * within the page. */ offset = vaddr & (PAGE_SIZE - 1); /* Calculate the number of pages that can be encrypted in one go. */ pages = get_num_contig_pages(i, inpages, npages); len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); data.len = len; data.address = __sme_page_pa(inpages[i]) + offset; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); if (ret) goto e_unpin; size -= len; next_vaddr = vaddr + len; } e_unpin: /* content of memory is updated, mark pages dirty */ for (i = 0; i < npages; i++) { set_page_dirty_lock(inpages[i]); mark_page_accessed(inpages[i]); } /* unlock the user pages */ sev_unpin_memory(kvm, inpages, npages); return ret; } static int sev_es_sync_vmsa(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; struct sev_es_save_area *save = svm->sev_es.vmsa; struct xregs_state *xsave; const u8 *s; u8 *d; int i; /* Check some debug related fields before encrypting the VMSA */ if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) return -EINVAL; /* * SEV-ES will use a VMSA that is pointed to by the VMCB, not * the traditional VMSA that is part of the VMCB. Copy the * traditional VMSA as it has been built so far (in prep * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. */ memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); /* Sync registgers */ save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; #ifdef CONFIG_X86_64 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; #endif save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; /* Sync some non-GPR registers before encrypting */ save->xcr0 = svm->vcpu.arch.xcr0; save->pkru = svm->vcpu.arch.pkru; save->xss = svm->vcpu.arch.ia32_xss; save->dr6 = svm->vcpu.arch.dr6; save->sev_features = sev->vmsa_features; /* * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid * breaking older measurements. */ if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; save->x87_dp = xsave->i387.rdp; save->mxcsr = xsave->i387.mxcsr; save->x87_ftw = xsave->i387.twd; save->x87_fsw = xsave->i387.swd; save->x87_fcw = xsave->i387.cwd; save->x87_fop = xsave->i387.fop; save->x87_ds = 0; save->x87_cs = 0; save->x87_rip = xsave->i387.rip; for (i = 0; i < 8; i++) { /* * The format of the x87 save area is undocumented and * definitely not what you would expect. It consists of * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes * area with bytes 8-9 of each register. */ d = save->fpreg_x87 + i * 8; s = ((u8 *)xsave->i387.st_space) + i * 16; memcpy(d, s, 8); save->fpreg_x87[64 + i * 2] = s[8]; save->fpreg_x87[64 + i * 2 + 1] = s[9]; } memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); s = get_xsave_addr(xsave, XFEATURE_YMM); if (s) memcpy(save->fpreg_ymm, s, 256); else memset(save->fpreg_ymm, 0, 256); } pr_debug("Virtual Machine Save Area (VMSA):\n"); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); return 0; } static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, int *error) { struct sev_data_launch_update_vmsa vmsa; struct vcpu_svm *svm = to_svm(vcpu); int ret; if (vcpu->guest_debug) { pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); return -EINVAL; } /* Perform some pre-encryption checks against the VMSA */ ret = sev_es_sync_vmsa(svm); if (ret) return ret; /* * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of * the VMSA memory content (i.e it will write the same memory region * with the guest's key), so invalidate it first. */ clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); vmsa.reserved = 0; vmsa.handle = to_kvm_sev_info(kvm)->handle; vmsa.address = __sme_pa(svm->sev_es.vmsa); vmsa.len = PAGE_SIZE; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); if (ret) return ret; /* * SEV-ES guests maintain an encrypted version of their FPU * state which is restored and saved on VMRUN and VMEXIT. * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't * do xsave/xrstor on it. */ fpstate_set_confidential(&vcpu->arch.guest_fpu); vcpu->arch.guest_state_protected = true; /* * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it * only after setting guest_state_protected because KVM_SET_MSRS allows * dynamic toggling of LBRV (for performance reason) on write access to * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. */ svm_enable_lbrv(vcpu); return 0; } static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_vcpu *vcpu; unsigned long i; int ret; if (!sev_es_guest(kvm)) return -ENOTTY; kvm_for_each_vcpu(i, vcpu, kvm) { ret = mutex_lock_killable(&vcpu->mutex); if (ret) return ret; ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); mutex_unlock(&vcpu->mutex); if (ret) return ret; } return 0; } static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) { void __user *measure = u64_to_user_ptr(argp->data); struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_measure data; struct kvm_sev_launch_measure params; void __user *p = NULL; void *blob = NULL; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, measure, sizeof(params))) return -EFAULT; memset(&data, 0, sizeof(data)); /* User wants to query the blob length */ if (!params.len) goto cmd; p = u64_to_user_ptr(params.uaddr); if (p) { if (params.len > SEV_FW_BLOB_MAX_SIZE) return -EINVAL; blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); if (!blob) return -ENOMEM; data.address = __psp_pa(blob); data.len = params.len; } cmd: data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); /* * If we query the session length, FW responded with expected data. */ if (!params.len) goto done; if (ret) goto e_free_blob; if (blob) { if (copy_to_user(p, blob, params.len)) ret = -EFAULT; } done: params.len = data.len; if (copy_to_user(measure, ¶ms, sizeof(params))) ret = -EFAULT; e_free_blob: kfree(blob); return ret; } static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_finish data; if (!sev_guest(kvm)) return -ENOTTY; data.handle = sev->handle; return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); } static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_guest_status params; struct sev_data_guest_status data; int ret; if (!sev_guest(kvm)) return -ENOTTY; memset(&data, 0, sizeof(data)); data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); if (ret) return ret; params.policy = data.policy; params.state = data.state; params.handle = data.handle; if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) ret = -EFAULT; return ret; } static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, unsigned long dst, int size, int *error, bool enc) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_dbg data; data.reserved = 0; data.handle = sev->handle; data.dst_addr = dst; data.src_addr = src; data.len = size; return sev_issue_cmd(kvm, enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, &data, error); } static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, unsigned long dst_paddr, int sz, int *err) { int offset; /* * Its safe to read more than we are asked, caller should ensure that * destination has enough space. */ offset = src_paddr & 15; src_paddr = round_down(src_paddr, 16); sz = round_up(sz + offset, 16); return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); } static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, void __user *dst_uaddr, unsigned long dst_paddr, int size, int *err) { struct page *tpage = NULL; int ret, offset; /* if inputs are not 16-byte then use intermediate buffer */ if (!IS_ALIGNED(dst_paddr, 16) || !IS_ALIGNED(paddr, 16) || !IS_ALIGNED(size, 16)) { tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!tpage) return -ENOMEM; dst_paddr = __sme_page_pa(tpage); } ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); if (ret) goto e_free; if (tpage) { offset = paddr & 15; if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) ret = -EFAULT; } e_free: if (tpage) __free_page(tpage); return ret; } static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, void __user *vaddr, unsigned long dst_paddr, void __user *dst_vaddr, int size, int *error) { struct page *src_tpage = NULL; struct page *dst_tpage = NULL; int ret, len = size; /* If source buffer is not aligned then use an intermediate buffer */ if (!IS_ALIGNED((unsigned long)vaddr, 16)) { src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); if (!src_tpage) return -ENOMEM; if (copy_from_user(page_address(src_tpage), vaddr, size)) { __free_page(src_tpage); return -EFAULT; } paddr = __sme_page_pa(src_tpage); } /* * If destination buffer or length is not aligned then do read-modify-write: * - decrypt destination in an intermediate buffer * - copy the source buffer in an intermediate buffer * - use the intermediate buffer as source buffer */ if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { int dst_offset; dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); if (!dst_tpage) { ret = -ENOMEM; goto e_free; } ret = __sev_dbg_decrypt(kvm, dst_paddr, __sme_page_pa(dst_tpage), size, error); if (ret) goto e_free; /* * If source is kernel buffer then use memcpy() otherwise * copy_from_user(). */ dst_offset = dst_paddr & 15; if (src_tpage) memcpy(page_address(dst_tpage) + dst_offset, page_address(src_tpage), size); else { if (copy_from_user(page_address(dst_tpage) + dst_offset, vaddr, size)) { ret = -EFAULT; goto e_free; } } paddr = __sme_page_pa(dst_tpage); dst_paddr = round_down(dst_paddr, 16); len = round_up(size, 16); } ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); e_free: if (src_tpage) __free_page(src_tpage); if (dst_tpage) __free_page(dst_tpage); return ret; } static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) { unsigned long vaddr, vaddr_end, next_vaddr; unsigned long dst_vaddr; struct page **src_p, **dst_p; struct kvm_sev_dbg debug; unsigned long n; unsigned int size; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) return -EFAULT; if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) return -EINVAL; if (!debug.dst_uaddr) return -EINVAL; vaddr = debug.src_uaddr; size = debug.len; vaddr_end = vaddr + size; dst_vaddr = debug.dst_uaddr; for (; vaddr < vaddr_end; vaddr = next_vaddr) { int len, s_off, d_off; /* lock userspace source and destination page */ src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); if (IS_ERR(src_p)) return PTR_ERR(src_p); dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); if (IS_ERR(dst_p)) { sev_unpin_memory(kvm, src_p, n); return PTR_ERR(dst_p); } /* * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify * the pages; flush the destination too so that future accesses do not * see stale data. */ sev_clflush_pages(src_p, 1); sev_clflush_pages(dst_p, 1); /* * Since user buffer may not be page aligned, calculate the * offset within the page. */ s_off = vaddr & ~PAGE_MASK; d_off = dst_vaddr & ~PAGE_MASK; len = min_t(size_t, (PAGE_SIZE - s_off), size); if (dec) ret = __sev_dbg_decrypt_user(kvm, __sme_page_pa(src_p[0]) + s_off, (void __user *)dst_vaddr, __sme_page_pa(dst_p[0]) + d_off, len, &argp->error); else ret = __sev_dbg_encrypt_user(kvm, __sme_page_pa(src_p[0]) + s_off, (void __user *)vaddr, __sme_page_pa(dst_p[0]) + d_off, (void __user *)dst_vaddr, len, &argp->error); sev_unpin_memory(kvm, src_p, n); sev_unpin_memory(kvm, dst_p, n); if (ret) goto err; next_vaddr = vaddr + len; dst_vaddr = dst_vaddr + len; size -= len; } err: return ret; } static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_secret data; struct kvm_sev_launch_secret params; struct page **pages; void *blob, *hdr; unsigned long n, i; int ret, offset; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); if (IS_ERR(pages)) return PTR_ERR(pages); /* * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in * place; the cache may contain the data that was written unencrypted. */ sev_clflush_pages(pages, n); /* * The secret must be copied into contiguous memory region, lets verify * that userspace memory pages are contiguous before we issue command. */ if (get_num_contig_pages(0, pages, n) != n) { ret = -EINVAL; goto e_unpin_memory; } memset(&data, 0, sizeof(data)); offset = params.guest_uaddr & (PAGE_SIZE - 1); data.guest_address = __sme_page_pa(pages[0]) + offset; data.guest_len = params.guest_len; blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); if (IS_ERR(blob)) { ret = PTR_ERR(blob); goto e_unpin_memory; } data.trans_address = __psp_pa(blob); data.trans_len = params.trans_len; hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); if (IS_ERR(hdr)) { ret = PTR_ERR(hdr); goto e_free_blob; } data.hdr_address = __psp_pa(hdr); data.hdr_len = params.hdr_len; data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); kfree(hdr); e_free_blob: kfree(blob); e_unpin_memory: /* content of memory is updated, mark pages dirty */ for (i = 0; i < n; i++) { set_page_dirty_lock(pages[i]); mark_page_accessed(pages[i]); } sev_unpin_memory(kvm, pages, n); return ret; } static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) { void __user *report = u64_to_user_ptr(argp->data); struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_attestation_report data; struct kvm_sev_attestation_report params; void __user *p; void *blob = NULL; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; memset(&data, 0, sizeof(data)); /* User wants to query the blob length */ if (!params.len) goto cmd; p = u64_to_user_ptr(params.uaddr); if (p) { if (params.len > SEV_FW_BLOB_MAX_SIZE) return -EINVAL; blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); if (!blob) return -ENOMEM; data.address = __psp_pa(blob); data.len = params.len; memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); } cmd: data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); /* * If we query the session length, FW responded with expected data. */ if (!params.len) goto done; if (ret) goto e_free_blob; if (blob) { if (copy_to_user(p, blob, params.len)) ret = -EFAULT; } done: params.len = data.len; if (copy_to_user(report, ¶ms, sizeof(params))) ret = -EFAULT; e_free_blob: kfree(blob); return ret; } /* Userspace wants to query session length. */ static int __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, struct kvm_sev_send_start *params) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_start data; int ret; memset(&data, 0, sizeof(data)); data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); params->session_len = data.session_len; if (copy_to_user(u64_to_user_ptr(argp->data), params, sizeof(struct kvm_sev_send_start))) ret = -EFAULT; return ret; } static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_start data; struct kvm_sev_send_start params; void *amd_certs, *session_data; void *pdh_cert, *plat_certs; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(struct kvm_sev_send_start))) return -EFAULT; /* if session_len is zero, userspace wants to query the session length */ if (!params.session_len) return __sev_send_start_query_session_length(kvm, argp, ¶ms); /* some sanity checks */ if (!params.pdh_cert_uaddr || !params.pdh_cert_len || !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) return -EINVAL; /* allocate the memory to hold the session data blob */ session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); if (!session_data) return -ENOMEM; /* copy the certificate blobs from userspace */ pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, params.pdh_cert_len); if (IS_ERR(pdh_cert)) { ret = PTR_ERR(pdh_cert); goto e_free_session; } plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, params.plat_certs_len); if (IS_ERR(plat_certs)) { ret = PTR_ERR(plat_certs); goto e_free_pdh; } amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, params.amd_certs_len); if (IS_ERR(amd_certs)) { ret = PTR_ERR(amd_certs); goto e_free_plat_cert; } /* populate the FW SEND_START field with system physical address */ memset(&data, 0, sizeof(data)); data.pdh_cert_address = __psp_pa(pdh_cert); data.pdh_cert_len = params.pdh_cert_len; data.plat_certs_address = __psp_pa(plat_certs); data.plat_certs_len = params.plat_certs_len; data.amd_certs_address = __psp_pa(amd_certs); data.amd_certs_len = params.amd_certs_len; data.session_address = __psp_pa(session_data); data.session_len = params.session_len; data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), session_data, params.session_len)) { ret = -EFAULT; goto e_free_amd_cert; } params.policy = data.policy; params.session_len = data.session_len; if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(struct kvm_sev_send_start))) ret = -EFAULT; e_free_amd_cert: kfree(amd_certs); e_free_plat_cert: kfree(plat_certs); e_free_pdh: kfree(pdh_cert); e_free_session: kfree(session_data); return ret; } /* Userspace wants to query either header or trans length. */ static int __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, struct kvm_sev_send_update_data *params) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_update_data data; int ret; memset(&data, 0, sizeof(data)); data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); params->hdr_len = data.hdr_len; params->trans_len = data.trans_len; if (copy_to_user(u64_to_user_ptr(argp->data), params, sizeof(struct kvm_sev_send_update_data))) ret = -EFAULT; return ret; } static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_update_data data; struct kvm_sev_send_update_data params; void *hdr, *trans_data; struct page **guest_page; unsigned long n; int ret, offset; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(struct kvm_sev_send_update_data))) return -EFAULT; /* userspace wants to query either header or trans length */ if (!params.trans_len || !params.hdr_len) return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); if (!params.trans_uaddr || !params.guest_uaddr || !params.guest_len || !params.hdr_uaddr) return -EINVAL; /* Check if we are crossing the page boundary */ offset = params.guest_uaddr & (PAGE_SIZE - 1); if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) return -EINVAL; /* Pin guest memory */ guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, PAGE_SIZE, &n, 0); if (IS_ERR(guest_page)) return PTR_ERR(guest_page); /* allocate memory for header and transport buffer */ ret = -ENOMEM; hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); if (!hdr) goto e_unpin; trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); if (!trans_data) goto e_free_hdr; memset(&data, 0, sizeof(data)); data.hdr_address = __psp_pa(hdr); data.hdr_len = params.hdr_len; data.trans_address = __psp_pa(trans_data); data.trans_len = params.trans_len; /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; data.guest_address |= sev_me_mask; data.guest_len = params.guest_len; data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); if (ret) goto e_free_trans_data; /* copy transport buffer to user space */ if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), trans_data, params.trans_len)) { ret = -EFAULT; goto e_free_trans_data; } /* Copy packet header to userspace. */ if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, params.hdr_len)) ret = -EFAULT; e_free_trans_data: kfree(trans_data); e_free_hdr: kfree(hdr); e_unpin: sev_unpin_memory(kvm, guest_page, n); return ret; } static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_finish data; if (!sev_guest(kvm)) return -ENOTTY; data.handle = sev->handle; return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); } static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_send_cancel data; if (!sev_guest(kvm)) return -ENOTTY; data.handle = sev->handle; return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); } static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_receive_start start; struct kvm_sev_receive_start params; int *error = &argp->error; void *session_data; void *pdh_data; int ret; if (!sev_guest(kvm)) return -ENOTTY; /* Get parameter from the userspace */ if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(struct kvm_sev_receive_start))) return -EFAULT; /* some sanity checks */ if (!params.pdh_uaddr || !params.pdh_len || !params.session_uaddr || !params.session_len) return -EINVAL; pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); if (IS_ERR(pdh_data)) return PTR_ERR(pdh_data); session_data = psp_copy_user_blob(params.session_uaddr, params.session_len); if (IS_ERR(session_data)) { ret = PTR_ERR(session_data); goto e_free_pdh; } memset(&start, 0, sizeof(start)); start.handle = params.handle; start.policy = params.policy; start.pdh_cert_address = __psp_pa(pdh_data); start.pdh_cert_len = params.pdh_len; start.session_address = __psp_pa(session_data); start.session_len = params.session_len; /* create memory encryption context */ ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, error); if (ret) goto e_free_session; /* Bind ASID to this guest */ ret = sev_bind_asid(kvm, start.handle, error); if (ret) { sev_decommission(start.handle); goto e_free_session; } params.handle = start.handle; if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(struct kvm_sev_receive_start))) { ret = -EFAULT; sev_unbind_asid(kvm, start.handle); goto e_free_session; } sev->handle = start.handle; sev->fd = argp->sev_fd; e_free_session: kfree(session_data); e_free_pdh: kfree(pdh_data); return ret; } static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_receive_update_data params; struct sev_data_receive_update_data data; void *hdr = NULL, *trans = NULL; struct page **guest_page; unsigned long n; int ret, offset; if (!sev_guest(kvm)) return -EINVAL; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(struct kvm_sev_receive_update_data))) return -EFAULT; if (!params.hdr_uaddr || !params.hdr_len || !params.guest_uaddr || !params.guest_len || !params.trans_uaddr || !params.trans_len) return -EINVAL; /* Check if we are crossing the page boundary */ offset = params.guest_uaddr & (PAGE_SIZE - 1); if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) return -EINVAL; hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); if (IS_ERR(hdr)) return PTR_ERR(hdr); trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto e_free_hdr; } memset(&data, 0, sizeof(data)); data.hdr_address = __psp_pa(hdr); data.hdr_len = params.hdr_len; data.trans_address = __psp_pa(trans); data.trans_len = params.trans_len; /* Pin guest memory */ guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, PAGE_SIZE, &n, 1); if (IS_ERR(guest_page)) { ret = PTR_ERR(guest_page); goto e_free_trans; } /* * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP * encrypts the written data with the guest's key, and the cache may * contain dirty, unencrypted data. */ sev_clflush_pages(guest_page, n); /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; data.guest_address |= sev_me_mask; data.guest_len = params.guest_len; data.handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, &argp->error); sev_unpin_memory(kvm, guest_page, n); e_free_trans: kfree(trans); e_free_hdr: kfree(hdr); return ret; } static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_receive_finish data; if (!sev_guest(kvm)) return -ENOTTY; data.handle = sev->handle; return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); } static bool is_cmd_allowed_from_mirror(u32 cmd_id) { /* * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES * active mirror VMs. Also allow the debugging and status commands. */ if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || cmd_id == KVM_SEV_DBG_ENCRYPT) return true; return false; } static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) { struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; int r = -EBUSY; if (dst_kvm == src_kvm) return -EINVAL; /* * Bail if these VMs are already involved in a migration to avoid * deadlock between two VMs trying to migrate to/from each other. */ if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) return -EBUSY; if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) goto release_dst; r = -EINTR; if (mutex_lock_killable(&dst_kvm->lock)) goto release_src; if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) goto unlock_dst; return 0; unlock_dst: mutex_unlock(&dst_kvm->lock); release_src: atomic_set_release(&src_sev->migration_in_progress, 0); release_dst: atomic_set_release(&dst_sev->migration_in_progress, 0); return r; } static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) { struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; mutex_unlock(&dst_kvm->lock); mutex_unlock(&src_kvm->lock); atomic_set_release(&dst_sev->migration_in_progress, 0); atomic_set_release(&src_sev->migration_in_progress, 0); } /* vCPU mutex subclasses. */ enum sev_migration_role { SEV_MIGRATION_SOURCE = 0, SEV_MIGRATION_TARGET, SEV_NR_MIGRATION_ROLES, }; static int sev_lock_vcpus_for_migration(struct kvm *kvm, enum sev_migration_role role) { struct kvm_vcpu *vcpu; unsigned long i, j; kvm_for_each_vcpu(i, vcpu, kvm) { if (mutex_lock_killable_nested(&vcpu->mutex, role)) goto out_unlock; #ifdef CONFIG_PROVE_LOCKING if (!i) /* * Reset the role to one that avoids colliding with * the role used for the first vcpu mutex. */ role = SEV_NR_MIGRATION_ROLES; else mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); #endif } return 0; out_unlock: kvm_for_each_vcpu(j, vcpu, kvm) { if (i == j) break; #ifdef CONFIG_PROVE_LOCKING if (j) mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); #endif mutex_unlock(&vcpu->mutex); } return -EINTR; } static void sev_unlock_vcpus_for_migration(struct kvm *kvm) { struct kvm_vcpu *vcpu; unsigned long i; bool first = true; kvm_for_each_vcpu(i, vcpu, kvm) { if (first) first = false; else mutex_acquire(&vcpu->mutex.dep_map, SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); mutex_unlock(&vcpu->mutex); } } static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) { struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; struct kvm_vcpu *dst_vcpu, *src_vcpu; struct vcpu_svm *dst_svm, *src_svm; struct kvm_sev_info *mirror; unsigned long i; dst->active = true; dst->asid = src->asid; dst->handle = src->handle; dst->pages_locked = src->pages_locked; dst->enc_context_owner = src->enc_context_owner; dst->es_active = src->es_active; dst->vmsa_features = src->vmsa_features; src->asid = 0; src->active = false; src->handle = 0; src->pages_locked = 0; src->enc_context_owner = NULL; src->es_active = false; list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); /* * If this VM has mirrors, "transfer" each mirror's refcount of the * source to the destination (this KVM). The caller holds a reference * to the source, so there's no danger of use-after-free. */ list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { kvm_get_kvm(dst_kvm); kvm_put_kvm(src_kvm); mirror->enc_context_owner = dst_kvm; } /* * If this VM is a mirror, remove the old mirror from the owners list * and add the new mirror to the list. */ if (is_mirroring_enc_context(dst_kvm)) { struct kvm_sev_info *owner_sev_info = &to_kvm_svm(dst->enc_context_owner)->sev_info; list_del(&src->mirror_entry); list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); } kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { dst_svm = to_svm(dst_vcpu); sev_init_vmcb(dst_svm); if (!dst->es_active) continue; /* * Note, the source is not required to have the same number of * vCPUs as the destination when migrating a vanilla SEV VM. */ src_vcpu = kvm_get_vcpu(src_kvm, i); src_svm = to_svm(src_vcpu); /* * Transfer VMSA and GHCB state to the destination. Nullify and * clear source fields as appropriate, the state now belongs to * the destination. */ memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; dst_vcpu->arch.guest_state_protected = true; memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; src_vcpu->arch.guest_state_protected = false; } } static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) { struct kvm_vcpu *src_vcpu; unsigned long i; if (!sev_es_guest(src)) return 0; if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) return -EINVAL; kvm_for_each_vcpu(i, src_vcpu, src) { if (!src_vcpu->arch.guest_state_protected) return -EINVAL; } return 0; } int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) { struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_info *src_sev, *cg_cleanup_sev; struct fd f = fdget(source_fd); struct kvm *source_kvm; bool charged = false; int ret; if (!fd_file(f)) return -EBADF; if (!file_is_kvm(fd_file(f))) { ret = -EBADF; goto out_fput; } source_kvm = fd_file(f)->private_data; ret = sev_lock_two_vms(kvm, source_kvm); if (ret) goto out_fput; if (kvm->arch.vm_type != source_kvm->arch.vm_type || sev_guest(kvm) || !sev_guest(source_kvm)) { ret = -EINVAL; goto out_unlock; } src_sev = &to_kvm_svm(source_kvm)->sev_info; dst_sev->misc_cg = get_current_misc_cg(); cg_cleanup_sev = dst_sev; if (dst_sev->misc_cg != src_sev->misc_cg) { ret = sev_misc_cg_try_charge(dst_sev); if (ret) goto out_dst_cgroup; charged = true; } ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); if (ret) goto out_dst_cgroup; ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); if (ret) goto out_dst_vcpu; ret = sev_check_source_vcpus(kvm, source_kvm); if (ret) goto out_source_vcpu; sev_migrate_from(kvm, source_kvm); kvm_vm_dead(source_kvm); cg_cleanup_sev = src_sev; ret = 0; out_source_vcpu: sev_unlock_vcpus_for_migration(source_kvm); out_dst_vcpu: sev_unlock_vcpus_for_migration(kvm); out_dst_cgroup: /* Operates on the source on success, on the destination on failure. */ if (charged) sev_misc_cg_uncharge(cg_cleanup_sev); put_misc_cg(cg_cleanup_sev->misc_cg); cg_cleanup_sev->misc_cg = NULL; out_unlock: sev_unlock_two_vms(kvm, source_kvm); out_fput: fdput(f); return ret; } int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { if (group != KVM_X86_GRP_SEV) return -ENXIO; switch (attr) { case KVM_X86_SEV_VMSA_FEATURES: *val = sev_supported_vmsa_features; return 0; default: return -ENXIO; } } /* * The guest context contains all the information, keys and metadata * associated with the guest that the firmware tracks to implement SEV * and SNP features. The firmware stores the guest context in hypervisor * provide page via the SNP_GCTX_CREATE command. */ static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct sev_data_snp_addr data = {}; void *context; int rc; /* Allocate memory for context page */ context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); if (!context) return NULL; data.address = __psp_pa(context); rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); if (rc) { pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", rc, argp->error); snp_free_firmware_page(context); return NULL; } return context; } static int snp_bind_asid(struct kvm *kvm, int *error) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_snp_activate data = {0}; data.gctx_paddr = __psp_pa(sev->snp_context); data.asid = sev_get_asid(kvm); return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); } static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_snp_launch_start start = {0}; struct kvm_sev_snp_launch_start params; int rc; if (!sev_snp_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; /* Don't allow userspace to allocate memory for more than 1 SNP context. */ if (sev->snp_context) return -EINVAL; if (params.flags) return -EINVAL; if (params.policy & ~SNP_POLICY_MASK_VALID) return -EINVAL; /* Check for policy bits that must be set */ if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || !(params.policy & SNP_POLICY_MASK_SMT)) return -EINVAL; if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) return -EINVAL; sev->snp_context = snp_context_create(kvm, argp); if (!sev->snp_context) return -ENOTTY; start.gctx_paddr = __psp_pa(sev->snp_context); start.policy = params.policy; memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); if (rc) { pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", __func__, rc); goto e_free_context; } sev->fd = argp->sev_fd; rc = snp_bind_asid(kvm, &argp->error); if (rc) { pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", __func__, rc); goto e_free_context; } return 0; e_free_context: snp_decommission_context(kvm); return rc; } struct sev_gmem_populate_args { __u8 type; int sev_fd; int fw_error; }; static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, void __user *src, int order, void *opaque) { struct sev_gmem_populate_args *sev_populate_args = opaque; struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; int n_private = 0, ret, i; int npages = (1 << order); gfn_t gfn; if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) return -EINVAL; for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { struct sev_data_snp_launch_update fw_args = {0}; bool assigned = false; int level; ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); if (ret || assigned) { pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", __func__, gfn, ret, assigned); ret = ret ? -EINVAL : -EEXIST; goto err; } if (src) { void *vaddr = kmap_local_pfn(pfn + i); if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { ret = -EFAULT; goto err; } kunmap_local(vaddr); } ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, sev_get_asid(kvm), true); if (ret) goto err; n_private++; fw_args.gctx_paddr = __psp_pa(sev->snp_context); fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); fw_args.page_type = sev_populate_args->type; ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, &fw_args, &sev_populate_args->fw_error); if (ret) goto fw_err; } return 0; fw_err: /* * If the firmware command failed handle the reclaim and cleanup of that * PFN specially vs. prior pages which can be cleaned up below without * needing to reclaim in advance. * * Additionally, when invalid CPUID function entries are detected, * firmware writes the expected values into the page and leaves it * unencrypted so it can be used for debugging and error-reporting. * * Copy this page back into the source buffer so userspace can use this * information to provide information on which CPUID leaves/fields * failed CPUID validation. */ if (!snp_page_reclaim(kvm, pfn + i) && sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { void *vaddr = kmap_local_pfn(pfn + i); if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) pr_debug("Failed to write CPUID page back to userspace\n"); kunmap_local(vaddr); } /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ n_private--; err: pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", __func__, ret, sev_populate_args->fw_error, n_private); for (i = 0; i < n_private; i++) kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); return ret; } static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_gmem_populate_args sev_populate_args = {0}; struct kvm_sev_snp_launch_update params; struct kvm_memory_slot *memslot; long npages, count; void __user *src; int ret = 0; if (!sev_snp_guest(kvm) || !sev->snp_context) return -EINVAL; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, params.gfn_start, params.len, params.type, params.flags); if (!PAGE_ALIGNED(params.len) || params.flags || (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) return -EINVAL; npages = params.len / PAGE_SIZE; /* * For each GFN that's being prepared as part of the initial guest * state, the following pre-conditions are verified: * * 1) The backing memslot is a valid private memslot. * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES * beforehand. * 3) The PFN of the guest_memfd has not already been set to private * in the RMP table. * * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page * faults if there's a race between a fault and an attribute update via * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized * here. However, kvm->slots_lock guards against both this as well as * concurrent memslot updates occurring while these checks are being * performed, so use that here to make it easier to reason about the * initial expected state and better guard against unexpected * situations. */ mutex_lock(&kvm->slots_lock); memslot = gfn_to_memslot(kvm, params.gfn_start); if (!kvm_slot_can_be_private(memslot)) { ret = -EINVAL; goto out; } sev_populate_args.sev_fd = argp->sev_fd; sev_populate_args.type = params.type; src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, sev_gmem_post_populate, &sev_populate_args); if (count < 0) { argp->error = sev_populate_args.fw_error; pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", __func__, count, argp->error); ret = -EIO; } else { params.gfn_start += count; params.len -= count * PAGE_SIZE; if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) params.uaddr += count * PAGE_SIZE; ret = 0; if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) ret = -EFAULT; } out: mutex_unlock(&kvm->slots_lock); return ret; } static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_snp_launch_update data = {}; struct kvm_vcpu *vcpu; unsigned long i; int ret; data.gctx_paddr = __psp_pa(sev->snp_context); data.page_type = SNP_PAGE_TYPE_VMSA; kvm_for_each_vcpu(i, vcpu, kvm) { struct vcpu_svm *svm = to_svm(vcpu); u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; ret = sev_es_sync_vmsa(svm); if (ret) return ret; /* Transition the VMSA page to a firmware state. */ ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); if (ret) return ret; /* Issue the SNP command to encrypt the VMSA */ data.address = __sme_pa(svm->sev_es.vmsa); ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, &data, &argp->error); if (ret) { snp_page_reclaim(kvm, pfn); return ret; } svm->vcpu.arch.guest_state_protected = true; /* * SEV-ES (and thus SNP) guest mandates LBR Virtualization to * be _always_ ON. Enable it only after setting * guest_state_protected because KVM_SET_MSRS allows dynamic * toggling of LBRV (for performance reason) on write access to * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. */ svm_enable_lbrv(vcpu); } return 0; } static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_snp_launch_finish params; struct sev_data_snp_launch_finish *data; void *id_block = NULL, *id_auth = NULL; int ret; if (!sev_snp_guest(kvm)) return -ENOTTY; if (!sev->snp_context) return -EINVAL; if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) return -EFAULT; if (params.flags) return -EINVAL; /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ ret = snp_launch_update_vmsa(kvm, argp); if (ret) return ret; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; if (params.id_block_en) { id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); if (IS_ERR(id_block)) { ret = PTR_ERR(id_block); goto e_free; } data->id_block_en = 1; data->id_block_paddr = __sme_pa(id_block); id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); if (IS_ERR(id_auth)) { ret = PTR_ERR(id_auth); goto e_free_id_block; } data->id_auth_paddr = __sme_pa(id_auth); if (params.auth_key_en) data->auth_key_en = 1; } data->vcek_disabled = params.vcek_disabled; memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); data->gctx_paddr = __psp_pa(sev->snp_context); ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); /* * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages * can be given to the guest simply by marking the RMP entry as private. * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. */ if (!ret) kvm->arch.pre_fault_allowed = true; kfree(id_auth); e_free_id_block: kfree(id_block); e_free: kfree(data); return ret; } int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) { struct kvm_sev_cmd sev_cmd; int r; if (!sev_enabled) return -ENOTTY; if (!argp) return 0; if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) return -EFAULT; mutex_lock(&kvm->lock); /* Only the enc_context_owner handles some memory enc operations. */ if (is_mirroring_enc_context(kvm) && !is_cmd_allowed_from_mirror(sev_cmd.id)) { r = -EINVAL; goto out; } /* * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only * allow the use of SNP-specific commands. */ if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { r = -EPERM; goto out; } switch (sev_cmd.id) { case KVM_SEV_ES_INIT: if (!sev_es_enabled) { r = -ENOTTY; goto out; } fallthrough; case KVM_SEV_INIT: r = sev_guest_init(kvm, &sev_cmd); break; case KVM_SEV_INIT2: r = sev_guest_init2(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_START: r = sev_launch_start(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_UPDATE_DATA: r = sev_launch_update_data(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_UPDATE_VMSA: r = sev_launch_update_vmsa(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_MEASURE: r = sev_launch_measure(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_FINISH: r = sev_launch_finish(kvm, &sev_cmd); break; case KVM_SEV_GUEST_STATUS: r = sev_guest_status(kvm, &sev_cmd); break; case KVM_SEV_DBG_DECRYPT: r = sev_dbg_crypt(kvm, &sev_cmd, true); break; case KVM_SEV_DBG_ENCRYPT: r = sev_dbg_crypt(kvm, &sev_cmd, false); break; case KVM_SEV_LAUNCH_SECRET: r = sev_launch_secret(kvm, &sev_cmd); break; case KVM_SEV_GET_ATTESTATION_REPORT: r = sev_get_attestation_report(kvm, &sev_cmd); break; case KVM_SEV_SEND_START: r = sev_send_start(kvm, &sev_cmd); break; case KVM_SEV_SEND_UPDATE_DATA: r = sev_send_update_data(kvm, &sev_cmd); break; case KVM_SEV_SEND_FINISH: r = sev_send_finish(kvm, &sev_cmd); break; case KVM_SEV_SEND_CANCEL: r = sev_send_cancel(kvm, &sev_cmd); break; case KVM_SEV_RECEIVE_START: r = sev_receive_start(kvm, &sev_cmd); break; case KVM_SEV_RECEIVE_UPDATE_DATA: r = sev_receive_update_data(kvm, &sev_cmd); break; case KVM_SEV_RECEIVE_FINISH: r = sev_receive_finish(kvm, &sev_cmd); break; case KVM_SEV_SNP_LAUNCH_START: r = snp_launch_start(kvm, &sev_cmd); break; case KVM_SEV_SNP_LAUNCH_UPDATE: r = snp_launch_update(kvm, &sev_cmd); break; case KVM_SEV_SNP_LAUNCH_FINISH: r = snp_launch_finish(kvm, &sev_cmd); break; default: r = -EINVAL; goto out; } if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) r = -EFAULT; out: mutex_unlock(&kvm->lock); return r; } int sev_mem_enc_register_region(struct kvm *kvm, struct kvm_enc_region *range) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct enc_region *region; int ret = 0; if (!sev_guest(kvm)) return -ENOTTY; /* If kvm is mirroring encryption context it isn't responsible for it */ if (is_mirroring_enc_context(kvm)) return -EINVAL; if (range->addr > ULONG_MAX || range->size > ULONG_MAX) return -EINVAL; region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); if (!region) return -ENOMEM; mutex_lock(&kvm->lock); region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); if (IS_ERR(region->pages)) { ret = PTR_ERR(region->pages); mutex_unlock(&kvm->lock); goto e_free; } /* * The guest may change the memory encryption attribute from C=0 -> C=1 * or vice versa for this memory range. Lets make sure caches are * flushed to ensure that guest data gets written into memory with * correct C-bit. Note, this must be done before dropping kvm->lock, * as region and its array of pages can be freed by a different task * once kvm->lock is released. */ sev_clflush_pages(region->pages, region->npages); region->uaddr = range->addr; region->size = range->size; list_add_tail(®ion->list, &sev->regions_list); mutex_unlock(&kvm->lock); return ret; e_free: kfree(region); return ret; } static struct enc_region * find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct list_head *head = &sev->regions_list; struct enc_region *i; list_for_each_entry(i, head, list) { if (i->uaddr == range->addr && i->size == range->size) return i; } return NULL; } static void __unregister_enc_region_locked(struct kvm *kvm, struct enc_region *region) { sev_unpin_memory(kvm, region->pages, region->npages); list_del(®ion->list); kfree(region); } int sev_mem_enc_unregister_region(struct kvm *kvm, struct kvm_enc_region *range) { struct enc_region *region; int ret; /* If kvm is mirroring encryption context it isn't responsible for it */ if (is_mirroring_enc_context(kvm)) return -EINVAL; mutex_lock(&kvm->lock); if (!sev_guest(kvm)) { ret = -ENOTTY; goto failed; } region = find_enc_region(kvm, range); if (!region) { ret = -EINVAL; goto failed; } /* * Ensure that all guest tagged cache entries are flushed before * releasing the pages back to the system for use. CLFLUSH will * not do this, so issue a WBINVD. */ wbinvd_on_all_cpus(); __unregister_enc_region_locked(kvm, region); mutex_unlock(&kvm->lock); return 0; failed: mutex_unlock(&kvm->lock); return ret; } int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) { struct fd f = fdget(source_fd); struct kvm *source_kvm; struct kvm_sev_info *source_sev, *mirror_sev; int ret; if (!fd_file(f)) return -EBADF; if (!file_is_kvm(fd_file(f))) { ret = -EBADF; goto e_source_fput; } source_kvm = fd_file(f)->private_data; ret = sev_lock_two_vms(kvm, source_kvm); if (ret) goto e_source_fput; /* * Mirrors of mirrors should work, but let's not get silly. Also * disallow out-of-band SEV/SEV-ES init if the target is already an * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being * created after SEV/SEV-ES initialization, e.g. to init intercepts. */ if (sev_guest(kvm) || !sev_guest(source_kvm) || is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { ret = -EINVAL; goto e_unlock; } /* * The mirror kvm holds an enc_context_owner ref so its asid can't * disappear until we're done with it */ source_sev = &to_kvm_svm(source_kvm)->sev_info; kvm_get_kvm(source_kvm); mirror_sev = &to_kvm_svm(kvm)->sev_info; list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); /* Set enc_context_owner and copy its encryption context over */ mirror_sev->enc_context_owner = source_kvm; mirror_sev->active = true; mirror_sev->asid = source_sev->asid; mirror_sev->fd = source_sev->fd; mirror_sev->es_active = source_sev->es_active; mirror_sev->need_init = false; mirror_sev->handle = source_sev->handle; INIT_LIST_HEAD(&mirror_sev->regions_list); INIT_LIST_HEAD(&mirror_sev->mirror_vms); ret = 0; /* * Do not copy ap_jump_table. Since the mirror does not share the same * KVM contexts as the original, and they may have different * memory-views. */ e_unlock: sev_unlock_two_vms(kvm, source_kvm); e_source_fput: fdput(f); return ret; } static int snp_decommission_context(struct kvm *kvm) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_snp_addr data = {}; int ret; /* If context is not created then do nothing */ if (!sev->snp_context) return 0; /* Do the decommision, which will unbind the ASID from the SNP context */ data.address = __sme_pa(sev->snp_context); down_write(&sev_deactivate_lock); ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); up_write(&sev_deactivate_lock); if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) return ret; snp_free_firmware_page(sev->snp_context); sev->snp_context = NULL; return 0; } void sev_vm_destroy(struct kvm *kvm) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct list_head *head = &sev->regions_list; struct list_head *pos, *q; if (!sev_guest(kvm)) return; WARN_ON(!list_empty(&sev->mirror_vms)); /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ if (is_mirroring_enc_context(kvm)) { struct kvm *owner_kvm = sev->enc_context_owner; mutex_lock(&owner_kvm->lock); list_del(&sev->mirror_entry); mutex_unlock(&owner_kvm->lock); kvm_put_kvm(owner_kvm); return; } /* * Ensure that all guest tagged cache entries are flushed before * releasing the pages back to the system for use. CLFLUSH will * not do this, so issue a WBINVD. */ wbinvd_on_all_cpus(); /* * if userspace was terminated before unregistering the memory regions * then lets unpin all the registered memory. */ if (!list_empty(head)) { list_for_each_safe(pos, q, head) { __unregister_enc_region_locked(kvm, list_entry(pos, struct enc_region, list)); cond_resched(); } } if (sev_snp_guest(kvm)) { snp_guest_req_cleanup(kvm); /* * Decomission handles unbinding of the ASID. If it fails for * some unexpected reason, just leak the ASID. */ if (snp_decommission_context(kvm)) return; } else { sev_unbind_asid(kvm, sev->handle); } sev_asid_free(sev); } void __init sev_set_cpu_caps(void) { if (sev_enabled) { kvm_cpu_cap_set(X86_FEATURE_SEV); kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); } if (sev_es_enabled) { kvm_cpu_cap_set(X86_FEATURE_SEV_ES); kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); } if (sev_snp_enabled) { kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); } } void __init sev_hardware_setup(void) { unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; bool sev_snp_supported = false; bool sev_es_supported = false; bool sev_supported = false; if (!sev_enabled || !npt_enabled || !nrips) goto out; /* * SEV must obviously be supported in hardware. Sanity check that the * CPU supports decode assists, which is mandatory for SEV guests to * support instruction emulation. Ditto for flushing by ASID, as SEV * guests are bound to a single ASID, i.e. KVM can't rotate to a new * ASID to effect a TLB flush. */ if (!boot_cpu_has(X86_FEATURE_SEV) || WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) goto out; /* Retrieve SEV CPUID information */ cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); /* Set encryption bit location for SEV-ES guests */ sev_enc_bit = ebx & 0x3f; /* Maximum number of encrypted guests supported simultaneously */ max_sev_asid = ecx; if (!max_sev_asid) goto out; /* Minimum ASID value that should be used for SEV guest */ min_sev_asid = edx; sev_me_mask = 1UL << (ebx & 0x3f); /* * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, * even though it's never used, so that the bitmap is indexed by the * actual ASID. */ nr_asids = max_sev_asid + 1; sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); if (!sev_asid_bitmap) goto out; sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); if (!sev_reclaim_asid_bitmap) { bitmap_free(sev_asid_bitmap); sev_asid_bitmap = NULL; goto out; } if (min_sev_asid <= max_sev_asid) { sev_asid_count = max_sev_asid - min_sev_asid + 1; WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); } sev_supported = true; /* SEV-ES support requested? */ if (!sev_es_enabled) goto out; /* * SEV-ES requires MMIO caching as KVM doesn't have access to the guest * instruction stream, i.e. can't emulate in response to a #NPF and * instead relies on #NPF(RSVD) being reflected into the guest as #VC * (the guest can then do a #VMGEXIT to request MMIO emulation). */ if (!enable_mmio_caching) goto out; /* Does the CPU support SEV-ES? */ if (!boot_cpu_has(X86_FEATURE_SEV_ES)) goto out; if (!lbrv) { WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), "LBRV must be present for SEV-ES support"); goto out; } /* Has the system been allocated ASIDs for SEV-ES? */ if (min_sev_asid == 1) goto out; sev_es_asid_count = min_sev_asid - 1; WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); sev_es_supported = true; sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); out: if (boot_cpu_has(X86_FEATURE_SEV)) pr_info("SEV %s (ASIDs %u - %u)\n", sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : "unusable" : "disabled", min_sev_asid, max_sev_asid); if (boot_cpu_has(X86_FEATURE_SEV_ES)) pr_info("SEV-ES %s (ASIDs %u - %u)\n", sev_es_supported ? "enabled" : "disabled", min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); if (boot_cpu_has(X86_FEATURE_SEV_SNP)) pr_info("SEV-SNP %s (ASIDs %u - %u)\n", sev_snp_supported ? "enabled" : "disabled", min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); sev_enabled = sev_supported; sev_es_enabled = sev_es_supported; sev_snp_enabled = sev_snp_supported; if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) sev_es_debug_swap_enabled = false; sev_supported_vmsa_features = 0; if (sev_es_debug_swap_enabled) sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; } void sev_hardware_unsetup(void) { if (!sev_enabled) return; /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ sev_flush_asids(1, max_sev_asid); bitmap_free(sev_asid_bitmap); bitmap_free(sev_reclaim_asid_bitmap); misc_cg_set_capacity(MISC_CG_RES_SEV, 0); misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); } int sev_cpu_init(struct svm_cpu_data *sd) { if (!sev_enabled) return 0; sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); if (!sd->sev_vmcbs) return -ENOMEM; return 0; } /* * Pages used by hardware to hold guest encrypted state must be flushed before * returning them to the system. */ static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) { unsigned int asid = sev_get_asid(vcpu->kvm); /* * Note! The address must be a kernel address, as regular page walk * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user * address is non-deterministic and unsafe. This function deliberately * takes a pointer to deter passing in a user address. */ unsigned long addr = (unsigned long)va; /* * If CPU enforced cache coherency for encrypted mappings of the * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache * flush is still needed in order to work properly with DMA devices. */ if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { clflush_cache_range(va, PAGE_SIZE); return; } /* * VM Page Flush takes a host virtual address and a guest ASID. Fall * back to WBINVD if this faults so as not to make any problems worse * by leaving stale encrypted data in the cache. */ if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) goto do_wbinvd; return; do_wbinvd: wbinvd_on_all_cpus(); } void sev_guest_memory_reclaimed(struct kvm *kvm) { /* * With SNP+gmem, private/encrypted memory is unreachable via the * hva-based mmu notifiers, so these events are only actually * pertaining to shared pages where there is no need to perform * the WBINVD to flush associated caches. */ if (!sev_guest(kvm) || sev_snp_guest(kvm)) return; wbinvd_on_all_cpus(); } void sev_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm; if (!sev_es_guest(vcpu->kvm)) return; svm = to_svm(vcpu); /* * If it's an SNP guest, then the VMSA was marked in the RMP table as * a guest-owned page. Transition the page to hypervisor state before * releasing it back to the system. */ if (sev_snp_guest(vcpu->kvm)) { u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) goto skip_vmsa_free; } if (vcpu->arch.guest_state_protected) sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); __free_page(virt_to_page(svm->sev_es.vmsa)); skip_vmsa_free: if (svm->sev_es.ghcb_sa_free) kvfree(svm->sev_es.ghcb_sa); } static void dump_ghcb(struct vcpu_svm *svm) { struct ghcb *ghcb = svm->sev_es.ghcb; unsigned int nbits; /* Re-use the dump_invalid_vmcb module parameter */ if (!dump_invalid_vmcb) { pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); return; } nbits = sizeof(ghcb->save.valid_bitmap) * 8; pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); } static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; struct ghcb *ghcb = svm->sev_es.ghcb; /* * The GHCB protocol so far allows for the following data * to be returned: * GPRs RAX, RBX, RCX, RDX * * Copy their values, even if they may not have been written during the * VM-Exit. It's the guest's responsibility to not consume random data. */ ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); } static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct kvm_vcpu *vcpu = &svm->vcpu; struct ghcb *ghcb = svm->sev_es.ghcb; u64 exit_code; /* * The GHCB protocol so far allows for the following data * to be supplied: * GPRs RAX, RBX, RCX, RDX * XCR0 * CPL * * VMMCALL allows the guest to provide extra registers. KVM also * expects RSI for hypercalls, so include that, too. * * Copy their values to the appropriate location if supplied. */ memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); if (kvm_ghcb_xcr0_is_valid(svm)) { vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); kvm_update_cpuid_runtime(vcpu); } /* Copy the GHCB exit information into the VMCB fields */ exit_code = ghcb_get_sw_exit_code(ghcb); control->exit_code = lower_32_bits(exit_code); control->exit_code_hi = upper_32_bits(exit_code); control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); /* Clear the valid entries fields */ memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); } static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) { return (((u64)control->exit_code_hi) << 32) | control->exit_code; } static int sev_es_validate_vmgexit(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct kvm_vcpu *vcpu = &svm->vcpu; u64 exit_code; u64 reason; /* * Retrieve the exit code now even though it may not be marked valid * as it could help with debugging. */ exit_code = kvm_ghcb_get_sw_exit_code(control); /* Only GHCB Usage code 0 is supported */ if (svm->sev_es.ghcb->ghcb_usage) { reason = GHCB_ERR_INVALID_USAGE; goto vmgexit_err; } reason = GHCB_ERR_MISSING_INPUT; if (!kvm_ghcb_sw_exit_code_is_valid(svm) || !kvm_ghcb_sw_exit_info_1_is_valid(svm) || !kvm_ghcb_sw_exit_info_2_is_valid(svm)) goto vmgexit_err; switch (exit_code) { case SVM_EXIT_READ_DR7: break; case SVM_EXIT_WRITE_DR7: if (!kvm_ghcb_rax_is_valid(svm)) goto vmgexit_err; break; case SVM_EXIT_RDTSC: break; case SVM_EXIT_RDPMC: if (!kvm_ghcb_rcx_is_valid(svm)) goto vmgexit_err; break; case SVM_EXIT_CPUID: if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rcx_is_valid(svm)) goto vmgexit_err; if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) if (!kvm_ghcb_xcr0_is_valid(svm)) goto vmgexit_err; break; case SVM_EXIT_INVD: break; case SVM_EXIT_IOIO: if (control->exit_info_1 & SVM_IOIO_STR_MASK) { if (!kvm_ghcb_sw_scratch_is_valid(svm)) goto vmgexit_err; } else { if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) if (!kvm_ghcb_rax_is_valid(svm)) goto vmgexit_err; } break; case SVM_EXIT_MSR: if (!kvm_ghcb_rcx_is_valid(svm)) goto vmgexit_err; if (control->exit_info_1) { if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rdx_is_valid(svm)) goto vmgexit_err; } break; case SVM_EXIT_VMMCALL: if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_cpl_is_valid(svm)) goto vmgexit_err; break; case SVM_EXIT_RDTSCP: break; case SVM_EXIT_WBINVD: break; case SVM_EXIT_MONITOR: if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rcx_is_valid(svm) || !kvm_ghcb_rdx_is_valid(svm)) goto vmgexit_err; break; case SVM_EXIT_MWAIT: if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rcx_is_valid(svm)) goto vmgexit_err; break; case SVM_VMGEXIT_MMIO_READ: case SVM_VMGEXIT_MMIO_WRITE: if (!kvm_ghcb_sw_scratch_is_valid(svm)) goto vmgexit_err; break; case SVM_VMGEXIT_AP_CREATION: if (!sev_snp_guest(vcpu->kvm)) goto vmgexit_err; if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) if (!kvm_ghcb_rax_is_valid(svm)) goto vmgexit_err; break; case SVM_VMGEXIT_NMI_COMPLETE: case SVM_VMGEXIT_AP_HLT_LOOP: case SVM_VMGEXIT_AP_JUMP_TABLE: case SVM_VMGEXIT_UNSUPPORTED_EVENT: case SVM_VMGEXIT_HV_FEATURES: case SVM_VMGEXIT_TERM_REQUEST: break; case SVM_VMGEXIT_PSC: if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) goto vmgexit_err; break; case SVM_VMGEXIT_GUEST_REQUEST: case SVM_VMGEXIT_EXT_GUEST_REQUEST: if (!sev_snp_guest(vcpu->kvm) || !PAGE_ALIGNED(control->exit_info_1) || !PAGE_ALIGNED(control->exit_info_2) || control->exit_info_1 == control->exit_info_2) goto vmgexit_err; break; default: reason = GHCB_ERR_INVALID_EVENT; goto vmgexit_err; } return 0; vmgexit_err: if (reason == GHCB_ERR_INVALID_USAGE) { vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", svm->sev_es.ghcb->ghcb_usage); } else if (reason == GHCB_ERR_INVALID_EVENT) { vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", exit_code); } else { vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", exit_code); dump_ghcb(svm); } ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); /* Resume the guest to "return" the error code. */ return 1; } void sev_es_unmap_ghcb(struct vcpu_svm *svm) { /* Clear any indication that the vCPU is in a type of AP Reset Hold */ svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; if (!svm->sev_es.ghcb) return; if (svm->sev_es.ghcb_sa_free) { /* * The scratch area lives outside the GHCB, so there is a * buffer that, depending on the operation performed, may * need to be synced, then freed. */ if (svm->sev_es.ghcb_sa_sync) { kvm_write_guest(svm->vcpu.kvm, svm->sev_es.sw_scratch, svm->sev_es.ghcb_sa, svm->sev_es.ghcb_sa_len); svm->sev_es.ghcb_sa_sync = false; } kvfree(svm->sev_es.ghcb_sa); svm->sev_es.ghcb_sa = NULL; svm->sev_es.ghcb_sa_free = false; } trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); sev_es_sync_to_ghcb(svm); kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); svm->sev_es.ghcb = NULL; } void pre_sev_run(struct vcpu_svm *svm, int cpu) { struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); unsigned int asid = sev_get_asid(svm->vcpu.kvm); /* Assign the asid allocated with this SEV guest */ svm->asid = asid; /* * Flush guest TLB: * * 1) when different VMCB for the same ASID is to be run on the same host CPU. * 2) or this VMCB was executed on different host CPU in previous VMRUNs. */ if (sd->sev_vmcbs[asid] == svm->vmcb && svm->vcpu.arch.last_vmentry_cpu == cpu) return; sd->sev_vmcbs[asid] = svm->vmcb; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; vmcb_mark_dirty(svm->vmcb, VMCB_ASID); } #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) { struct vmcb_control_area *control = &svm->vmcb->control; u64 ghcb_scratch_beg, ghcb_scratch_end; u64 scratch_gpa_beg, scratch_gpa_end; void *scratch_va; scratch_gpa_beg = svm->sev_es.sw_scratch; if (!scratch_gpa_beg) { pr_err("vmgexit: scratch gpa not provided\n"); goto e_scratch; } scratch_gpa_end = scratch_gpa_beg + len; if (scratch_gpa_end < scratch_gpa_beg) { pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", len, scratch_gpa_beg); goto e_scratch; } if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { /* Scratch area begins within GHCB */ ghcb_scratch_beg = control->ghcb_gpa + offsetof(struct ghcb, shared_buffer); ghcb_scratch_end = control->ghcb_gpa + offsetof(struct ghcb, reserved_0xff0); /* * If the scratch area begins within the GHCB, it must be * completely contained in the GHCB shared buffer area. */ if (scratch_gpa_beg < ghcb_scratch_beg || scratch_gpa_end > ghcb_scratch_end) { pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", scratch_gpa_beg, scratch_gpa_end); goto e_scratch; } scratch_va = (void *)svm->sev_es.ghcb; scratch_va += (scratch_gpa_beg - control->ghcb_gpa); } else { /* * The guest memory must be read into a kernel buffer, so * limit the size */ if (len > GHCB_SCRATCH_AREA_LIMIT) { pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", len, GHCB_SCRATCH_AREA_LIMIT); goto e_scratch; } scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); if (!scratch_va) return -ENOMEM; if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { /* Unable to copy scratch area from guest */ pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); kvfree(scratch_va); return -EFAULT; } /* * The scratch area is outside the GHCB. The operation will * dictate whether the buffer needs to be synced before running * the vCPU next time (i.e. a read was requested so the data * must be written back to the guest memory). */ svm->sev_es.ghcb_sa_sync = sync; svm->sev_es.ghcb_sa_free = true; } svm->sev_es.ghcb_sa = scratch_va; svm->sev_es.ghcb_sa_len = len; return 0; e_scratch: ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); return 1; } static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, unsigned int pos) { svm->vmcb->control.ghcb_gpa &= ~(mask << pos); svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; } static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) { return (svm->vmcb->control.ghcb_gpa >> pos) & mask; } static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) { svm->vmcb->control.ghcb_gpa = value; } static int snp_rmptable_psmash(kvm_pfn_t pfn) { int ret; pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); /* * PSMASH_FAIL_INUSE indicates another processor is modifying the * entry, so retry until that's no longer the case. */ do { ret = psmash(pfn); } while (ret == PSMASH_FAIL_INUSE); return ret; } static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (vcpu->run->hypercall.ret) set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); else set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); return 1; /* resume guest */ } static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) { u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); struct kvm_vcpu *vcpu = &svm->vcpu; if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); return 1; /* resume guest */ } if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); return 1; /* resume guest */ } vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; vcpu->run->hypercall.args[0] = gpa; vcpu->run->hypercall.args[1] = 1; vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) ? KVM_MAP_GPA_RANGE_ENCRYPTED : KVM_MAP_GPA_RANGE_DECRYPTED; vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; vcpu->arch.complete_userspace_io = snp_complete_psc_msr; return 0; /* forward request to userspace */ } struct psc_buffer { struct psc_hdr hdr; struct psc_entry entries[]; } __packed; static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) { svm->sev_es.psc_inflight = 0; svm->sev_es.psc_idx = 0; svm->sev_es.psc_2m = false; ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); } static void __snp_complete_one_psc(struct vcpu_svm *svm) { struct psc_buffer *psc = svm->sev_es.ghcb_sa; struct psc_entry *entries = psc->entries; struct psc_hdr *hdr = &psc->hdr; __u16 idx; /* * Everything in-flight has been processed successfully. Update the * corresponding entries in the guest's PSC buffer and zero out the * count of in-flight PSC entries. */ for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; svm->sev_es.psc_inflight--, idx++) { struct psc_entry *entry = &entries[idx]; entry->cur_page = entry->pagesize ? 512 : 1; } hdr->cur_entry = idx; } static int snp_complete_one_psc(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct psc_buffer *psc = svm->sev_es.ghcb_sa; if (vcpu->run->hypercall.ret) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); return 1; /* resume guest */ } __snp_complete_one_psc(svm); /* Handle the next range (if any). */ return snp_begin_psc(svm, psc); } static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) { struct psc_entry *entries = psc->entries; struct kvm_vcpu *vcpu = &svm->vcpu; struct psc_hdr *hdr = &psc->hdr; struct psc_entry entry_start; u16 idx, idx_start, idx_end; int npages; bool huge; u64 gfn; if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); return 1; } next_range: /* There should be no other PSCs in-flight at this point. */ if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); return 1; } /* * The PSC descriptor buffer can be modified by a misbehaved guest after * validation, so take care to only use validated copies of values used * for things like array indexing. */ idx_start = hdr->cur_entry; idx_end = hdr->end_entry; if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); return 1; } /* Find the start of the next range which needs processing. */ for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { entry_start = entries[idx]; gfn = entry_start.gfn; huge = entry_start.pagesize; npages = huge ? 512 : 1; if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); return 1; } if (entry_start.cur_page) { /* * If this is a partially-completed 2M range, force 4K handling * for the remaining pages since they're effectively split at * this point. Subsequent code should ensure this doesn't get * combined with adjacent PSC entries where 2M handling is still * possible. */ npages -= entry_start.cur_page; gfn += entry_start.cur_page; huge = false; } if (npages) break; } if (idx > idx_end) { /* Nothing more to process. */ snp_complete_psc(svm, 0); return 1; } svm->sev_es.psc_2m = huge; svm->sev_es.psc_idx = idx; svm->sev_es.psc_inflight = 1; /* * Find all subsequent PSC entries that contain adjacent GPA * ranges/operations and can be combined into a single * KVM_HC_MAP_GPA_RANGE exit. */ while (++idx <= idx_end) { struct psc_entry entry = entries[idx]; if (entry.operation != entry_start.operation || entry.gfn != entry_start.gfn + npages || entry.cur_page || !!entry.pagesize != huge) break; svm->sev_es.psc_inflight++; npages += huge ? 512 : 1; } switch (entry_start.operation) { case VMGEXIT_PSC_OP_PRIVATE: case VMGEXIT_PSC_OP_SHARED: vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); vcpu->run->hypercall.args[1] = npages; vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE ? KVM_MAP_GPA_RANGE_ENCRYPTED : KVM_MAP_GPA_RANGE_DECRYPTED; vcpu->run->hypercall.args[2] |= entry_start.pagesize ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; vcpu->arch.complete_userspace_io = snp_complete_one_psc; return 0; /* forward request to userspace */ default: /* * Only shared/private PSC operations are currently supported, so if the * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), * then consider the entire range completed and avoid exiting to * userspace. In theory snp_complete_psc() can always be called directly * at this point to complete the current range and start the next one, * but that could lead to unexpected levels of recursion. */ __snp_complete_one_psc(svm); goto next_range; } unreachable(); } static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); /* Mark the vCPU as offline and not runnable */ vcpu->arch.pv.pv_unhalted = false; vcpu->arch.mp_state = KVM_MP_STATE_HALTED; /* Clear use of the VMSA */ svm->vmcb->control.vmsa_pa = INVALID_PAGE; if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); struct kvm_memory_slot *slot; kvm_pfn_t pfn; slot = gfn_to_memslot(vcpu->kvm, gfn); if (!slot) return -EINVAL; /* * The new VMSA will be private memory guest memory, so * retrieve the PFN from the gmem backend. */ if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) return -EINVAL; /* * From this point forward, the VMSA will always be a * guest-mapped page rather than the initial one allocated * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa * could be free'd and cleaned up here, but that involves * cleanups like wbinvd_on_all_cpus() which would ideally * be handled during teardown rather than guest boot. * Deferring that also allows the existing logic for SEV-ES * VMSAs to be re-used with minimal SNP-specific changes. */ svm->sev_es.snp_has_guest_vmsa = true; /* Use the new VMSA */ svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); /* Mark the vCPU as runnable */ vcpu->arch.pv.pv_unhalted = false; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; /* * gmem pages aren't currently migratable, but if this ever * changes then care should be taken to ensure * svm->sev_es.vmsa is pinned through some other means. */ kvm_release_pfn_clean(pfn); } /* * When replacing the VMSA during SEV-SNP AP creation, * mark the VMCB dirty so that full state is always reloaded. */ vmcb_mark_all_dirty(svm->vmcb); return 0; } /* * Invoked as part of svm_vcpu_reset() processing of an init event. */ void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int ret; if (!sev_snp_guest(vcpu->kvm)) return; mutex_lock(&svm->sev_es.snp_vmsa_mutex); if (!svm->sev_es.snp_ap_waiting_for_reset) goto unlock; svm->sev_es.snp_ap_waiting_for_reset = false; ret = __sev_snp_update_protected_guest_state(vcpu); if (ret) vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); unlock: mutex_unlock(&svm->sev_es.snp_vmsa_mutex); } static int sev_snp_ap_creation(struct vcpu_svm *svm) { struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_vcpu *target_vcpu; struct vcpu_svm *target_svm; unsigned int request; unsigned int apic_id; bool kick; int ret; request = lower_32_bits(svm->vmcb->control.exit_info_1); apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); /* Validate the APIC ID */ target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); if (!target_vcpu) { vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", apic_id); return -EINVAL; } ret = 0; target_svm = to_svm(target_vcpu); /* * The target vCPU is valid, so the vCPU will be kicked unless the * request is for CREATE_ON_INIT. For any errors at this stage, the * kick will place the vCPU in an non-runnable state. */ kick = true; mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; target_svm->sev_es.snp_ap_waiting_for_reset = true; /* Interrupt injection mode shouldn't change for AP creation */ if (request < SVM_VMGEXIT_AP_DESTROY) { u64 sev_features; sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; sev_features ^= sev->vmsa_features; if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", vcpu->arch.regs[VCPU_REGS_RAX]); ret = -EINVAL; goto out; } } switch (request) { case SVM_VMGEXIT_AP_CREATE_ON_INIT: kick = false; fallthrough; case SVM_VMGEXIT_AP_CREATE: if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", svm->vmcb->control.exit_info_2); ret = -EINVAL; goto out; } /* * Malicious guest can RMPADJUST a large page into VMSA which * will hit the SNP erratum where the CPU will incorrectly signal * an RMP violation #PF if a hugepage collides with the RMP entry * of VMSA page, reject the AP CREATE request if VMSA address from * guest is 2M aligned. */ if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { vcpu_unimpl(vcpu, "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", svm->vmcb->control.exit_info_2); ret = -EINVAL; goto out; } target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; break; case SVM_VMGEXIT_AP_DESTROY: break; default: vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", request); ret = -EINVAL; break; } out: if (kick) { kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); kvm_vcpu_kick(target_vcpu); } mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); return ret; } static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) { struct sev_data_snp_guest_request data = {0}; struct kvm *kvm = svm->vcpu.kvm; struct kvm_sev_info *sev = to_kvm_sev_info(kvm); sev_ret_code fw_err = 0; int ret; if (!sev_snp_guest(kvm)) return -EINVAL; mutex_lock(&sev->guest_req_mutex); if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { ret = -EIO; goto out_unlock; } data.gctx_paddr = __psp_pa(sev->snp_context); data.req_paddr = __psp_pa(sev->guest_req_buf); data.res_paddr = __psp_pa(sev->guest_resp_buf); /* * Firmware failures are propagated on to guest, but any other failure * condition along the way should be reported to userspace. E.g. if * the PSP is dead and commands are timing out. */ ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); if (ret && !fw_err) goto out_unlock; if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { ret = -EIO; goto out_unlock; } ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); ret = 1; /* resume guest */ out_unlock: mutex_unlock(&sev->guest_req_mutex); return ret; } static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) { struct kvm *kvm = svm->vcpu.kvm; u8 msg_type; if (!sev_snp_guest(kvm)) return -EINVAL; if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), &msg_type, 1)) return -EIO; /* * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for * additional certificate data to be provided alongside the attestation * report via the guest-provided data pages indicated by RAX/RBX. The * certificate data is optional and requires additional KVM enablement * to provide an interface for userspace to provide it, but KVM still * needs to be able to handle extended guest requests either way. So * provide a stub implementation that will always return an empty * certificate table in the guest-provided data pages. */ if (msg_type == SNP_MSG_REPORT_REQ) { struct kvm_vcpu *vcpu = &svm->vcpu; u64 data_npages; gpa_t data_gpa; if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) goto request_invalid; data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; if (!PAGE_ALIGNED(data_gpa)) goto request_invalid; /* * As per GHCB spec (see "SNP Extended Guest Request"), the * certificate table is terminated by 24-bytes of zeroes. */ if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) return -EIO; } return snp_handle_guest_req(svm, req_gpa, resp_gpa); request_invalid: ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); return 1; /* resume guest */ } static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; u64 ghcb_info; int ret = 1; ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, control->ghcb_gpa); switch (ghcb_info) { case GHCB_MSR_SEV_INFO_REQ: set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, GHCB_VERSION_MIN, sev_enc_bit)); break; case GHCB_MSR_CPUID_REQ: { u64 cpuid_fn, cpuid_reg, cpuid_value; cpuid_fn = get_ghcb_msr_bits(svm, GHCB_MSR_CPUID_FUNC_MASK, GHCB_MSR_CPUID_FUNC_POS); /* Initialize the registers needed by the CPUID intercept */ vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; vcpu->arch.regs[VCPU_REGS_RCX] = 0; ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); if (!ret) { /* Error, keep GHCB MSR value as-is */ break; } cpuid_reg = get_ghcb_msr_bits(svm, GHCB_MSR_CPUID_REG_MASK, GHCB_MSR_CPUID_REG_POS); if (cpuid_reg == 0) cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; else if (cpuid_reg == 1) cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; else if (cpuid_reg == 2) cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; else cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; set_ghcb_msr_bits(svm, cpuid_value, GHCB_MSR_CPUID_VALUE_MASK, GHCB_MSR_CPUID_VALUE_POS); set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; } case GHCB_MSR_AP_RESET_HOLD_REQ: svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; ret = kvm_emulate_ap_reset_hold(&svm->vcpu); /* * Preset the result to a non-SIPI return and then only set * the result to non-zero when delivering a SIPI. */ set_ghcb_msr_bits(svm, 0, GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, GHCB_MSR_AP_RESET_HOLD_RESULT_POS); set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; case GHCB_MSR_HV_FT_REQ: set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; case GHCB_MSR_PREF_GPA_REQ: if (!sev_snp_guest(vcpu->kvm)) goto out_terminate; set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, GHCB_MSR_GPA_VALUE_POS); set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; case GHCB_MSR_REG_GPA_REQ: { u64 gfn; if (!sev_snp_guest(vcpu->kvm)) goto out_terminate; gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, GHCB_MSR_GPA_VALUE_POS); svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, GHCB_MSR_GPA_VALUE_POS); set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; } case GHCB_MSR_PSC_REQ: if (!sev_snp_guest(vcpu->kvm)) goto out_terminate; ret = snp_begin_psc_msr(svm, control->ghcb_gpa); break; case GHCB_MSR_TERM_REQ: { u64 reason_set, reason_code; reason_set = get_ghcb_msr_bits(svm, GHCB_MSR_TERM_REASON_SET_MASK, GHCB_MSR_TERM_REASON_SET_POS); reason_code = get_ghcb_msr_bits(svm, GHCB_MSR_TERM_REASON_MASK, GHCB_MSR_TERM_REASON_POS); pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", reason_set, reason_code); goto out_terminate; } default: /* Error, keep GHCB MSR value as-is */ break; } trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, control->ghcb_gpa, ret); return ret; out_terminate: vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; vcpu->run->system_event.ndata = 1; vcpu->run->system_event.data[0] = control->ghcb_gpa; return 0; } int sev_handle_vmgexit(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; u64 ghcb_gpa, exit_code; int ret; /* Validate the GHCB */ ghcb_gpa = control->ghcb_gpa; if (ghcb_gpa & GHCB_MSR_INFO_MASK) return sev_handle_vmgexit_msr_protocol(svm); if (!ghcb_gpa) { vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); /* Without a GHCB, just return right back to the guest */ return 1; } if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { /* Unable to map GHCB from guest */ vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", ghcb_gpa); /* Without a GHCB, just return right back to the guest */ return 1; } svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); sev_es_sync_from_ghcb(svm); /* SEV-SNP guest requires that the GHCB GPA must be registered */ if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); return -EINVAL; } ret = sev_es_validate_vmgexit(svm); if (ret) return ret; ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); exit_code = kvm_ghcb_get_sw_exit_code(control); switch (exit_code) { case SVM_VMGEXIT_MMIO_READ: ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); if (ret) break; ret = kvm_sev_es_mmio_read(vcpu, control->exit_info_1, control->exit_info_2, svm->sev_es.ghcb_sa); break; case SVM_VMGEXIT_MMIO_WRITE: ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); if (ret) break; ret = kvm_sev_es_mmio_write(vcpu, control->exit_info_1, control->exit_info_2, svm->sev_es.ghcb_sa); break; case SVM_VMGEXIT_NMI_COMPLETE: ++vcpu->stat.nmi_window_exits; svm->nmi_masked = false; kvm_make_request(KVM_REQ_EVENT, vcpu); ret = 1; break; case SVM_VMGEXIT_AP_HLT_LOOP: svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; ret = kvm_emulate_ap_reset_hold(vcpu); break; case SVM_VMGEXIT_AP_JUMP_TABLE: { struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; switch (control->exit_info_1) { case 0: /* Set AP jump table address */ sev->ap_jump_table = control->exit_info_2; break; case 1: /* Get AP jump table address */ ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); break; default: pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", control->exit_info_1); ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); } ret = 1; break; } case SVM_VMGEXIT_HV_FEATURES: ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); ret = 1; break; case SVM_VMGEXIT_TERM_REQUEST: pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", control->exit_info_1, control->exit_info_2); vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; vcpu->run->system_event.ndata = 1; vcpu->run->system_event.data[0] = control->ghcb_gpa; break; case SVM_VMGEXIT_PSC: ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); if (ret) break; ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); break; case SVM_VMGEXIT_AP_CREATION: ret = sev_snp_ap_creation(svm); if (ret) { ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); } ret = 1; break; case SVM_VMGEXIT_GUEST_REQUEST: ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); break; case SVM_VMGEXIT_EXT_GUEST_REQUEST: ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); break; case SVM_VMGEXIT_UNSUPPORTED_EVENT: vcpu_unimpl(vcpu, "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", control->exit_info_1, control->exit_info_2); ret = -EINVAL; break; default: ret = svm_invoke_exit_handler(vcpu, exit_code); } return ret; } int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) { int count; int bytes; int r; if (svm->vmcb->control.exit_info_2 > INT_MAX) return -EINVAL; count = svm->vmcb->control.exit_info_2; if (unlikely(check_mul_overflow(count, size, &bytes))) return -EINVAL; r = setup_vmgexit_scratch(svm, in, bytes); if (r) return r; return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, count, in); } static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || guest_cpuid_has(vcpu, X86_FEATURE_RDPID); set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); } /* * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if * the host/guest supports its use. * * guest_can_use() checks a number of requirements on the host/guest to * ensure that MSR_IA32_XSS is available, but it might report true even * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better * to further check that the guest CPUID actually supports * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved * guests will still get intercepted and caught in the normal * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. */ if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); else set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); } void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_cpuid_entry2 *best; /* For sev guests, the memory encryption bit is not reserved in CR3. */ best = kvm_find_cpuid_entry(vcpu, 0x8000001F); if (best) vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); if (sev_es_guest(svm->vcpu.kvm)) sev_es_vcpu_after_set_cpuid(svm); } static void sev_es_init_vmcb(struct vcpu_svm *svm) { struct vmcb *vmcb = svm->vmcb01.ptr; struct kvm_vcpu *vcpu = &svm->vcpu; svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; /* * An SEV-ES guest requires a VMSA area that is a separate from the * VMCB page. Do not include the encryption mask on the VMSA physical * address since hardware will access it using the guest key. Note, * the VMSA will be NULL if this vCPU is the destination for intrahost * migration, and will be copied later. */ if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); /* Can't intercept CR register access, HV can't modify CR registers */ svm_clr_intercept(svm, INTERCEPT_CR0_READ); svm_clr_intercept(svm, INTERCEPT_CR4_READ); svm_clr_intercept(svm, INTERCEPT_CR8_READ); svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); /* Track EFER/CR register changes */ svm_set_intercept(svm, TRAP_EFER_WRITE); svm_set_intercept(svm, TRAP_CR0_WRITE); svm_set_intercept(svm, TRAP_CR4_WRITE); svm_set_intercept(svm, TRAP_CR8_WRITE); vmcb->control.intercepts[INTERCEPT_DR] = 0; if (!sev_vcpu_has_debug_swap(svm)) { vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); recalc_intercepts(svm); } else { /* * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't * allow debugging SEV-ES guests, and enables DebugSwap iff * NO_NESTED_DATA_BP is supported, so there's no reason to * intercept #DB when DebugSwap is enabled. For simplicity * with respect to guest debug, intercept #DB for other VMs * even if NO_NESTED_DATA_BP is supported, i.e. even if the * guest can't DoS the CPU with infinite #DB vectoring. */ clr_exception_intercept(svm, DB_VECTOR); } /* Can't intercept XSETBV, HV can't modify XCR0 directly */ svm_clr_intercept(svm, INTERCEPT_XSETBV); /* Clear intercepts on selected MSRs */ set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); } void sev_init_vmcb(struct vcpu_svm *svm) { svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; clr_exception_intercept(svm, UD_VECTOR); /* * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as * KVM can't decrypt guest memory to decode the faulting instruction. */ clr_exception_intercept(svm, GP_VECTOR); if (sev_es_guest(svm->vcpu.kvm)) sev_es_init_vmcb(svm); } void sev_es_vcpu_reset(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; /* * Set the GHCB MSR value as per the GHCB specification when emulating * vCPU RESET for an SEV-ES guest. */ set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, GHCB_VERSION_MIN, sev_enc_bit)); mutex_init(&svm->sev_es.snp_vmsa_mutex); } void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) { /* * All host state for SEV-ES guests is categorized into three swap types * based on how it is handled by hardware during a world switch: * * A: VMRUN: Host state saved in host save area * VMEXIT: Host state loaded from host save area * * B: VMRUN: Host state _NOT_ saved in host save area * VMEXIT: Host state loaded from host save area * * C: VMRUN: Host state _NOT_ saved in host save area * VMEXIT: Host state initialized to default(reset) values * * Manually save type-B state, i.e. state that is loaded by VMEXIT but * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed * by common SVM code). */ hostsa->xcr0 = kvm_host.xcr0; hostsa->pkru = read_pkru(); hostsa->xss = kvm_host.xss; /* * If DebugSwap is enabled, debug registers are loaded but NOT saved by * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both * saves and loads debug registers (Type-A). */ if (sev_vcpu_has_debug_swap(svm)) { hostsa->dr0 = native_get_debugreg(0); hostsa->dr1 = native_get_debugreg(1); hostsa->dr2 = native_get_debugreg(2); hostsa->dr3 = native_get_debugreg(3); hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); } } void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) { struct vcpu_svm *svm = to_svm(vcpu); /* First SIPI: Use the values as initially set by the VMM */ if (!svm->sev_es.received_first_sipi) { svm->sev_es.received_first_sipi = true; return; } /* Subsequent SIPI */ switch (svm->sev_es.ap_reset_hold_type) { case AP_RESET_HOLD_NAE_EVENT: /* * Return from an AP Reset Hold VMGEXIT, where the guest will * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. */ ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); break; case AP_RESET_HOLD_MSR_PROTO: /* * Return from an AP Reset Hold VMGEXIT, where the guest will * set the CS and RIP. Set GHCB data field to a non-zero value. */ set_ghcb_msr_bits(svm, 1, GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, GHCB_MSR_AP_RESET_HOLD_RESULT_POS); set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); break; default: break; } } struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) { unsigned long pfn; struct page *p; if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) return alloc_pages_node(node, gfp | __GFP_ZERO, 0); /* * Allocate an SNP-safe page to workaround the SNP erratum where * the CPU will incorrectly signal an RMP violation #PF if a * hugepage (2MB or 1GB) collides with the RMP entry of a * 2MB-aligned VMCB, VMSA, or AVIC backing page. * * Allocate one extra page, choose a page which is not * 2MB-aligned, and free the other. */ p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); if (!p) return NULL; split_page(p, 1); pfn = page_to_pfn(p); if (IS_ALIGNED(pfn, PTRS_PER_PMD)) __free_page(p++); else __free_page(p + 1); return p; } void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) { struct kvm_memory_slot *slot; struct kvm *kvm = vcpu->kvm; int order, rmp_level, ret; bool assigned; kvm_pfn_t pfn; gfn_t gfn; gfn = gpa >> PAGE_SHIFT; /* * The only time RMP faults occur for shared pages is when the guest is * triggering an RMP fault for an implicit page-state change from * shared->private. Implicit page-state changes are forwarded to * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults * for shared pages should not end up here. */ if (!kvm_mem_is_private(kvm, gfn)) { pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", gpa); return; } slot = gfn_to_memslot(kvm, gfn); if (!kvm_slot_can_be_private(slot)) { pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", gpa); return; } ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); if (ret) { pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", gpa); return; } ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); if (ret || !assigned) { pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", gpa, pfn, ret); goto out_no_trace; } /* * There are 2 cases where a PSMASH may be needed to resolve an #NPF * with PFERR_GUEST_RMP_BIT set: * * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM * bit set if the guest issues them with a smaller granularity than * what is indicated by the page-size bit in the 2MB RMP entry for * the PFN that backs the GPA. * * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is * smaller than what is indicated by the 2MB RMP entry for the PFN * that backs the GPA. * * In both these cases, the corresponding 2M RMP entry needs to * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already * split into 4K RMP entries, then this is likely a spurious case which * can occur when there are concurrent accesses by the guest to a 2MB * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in * the process of being PMASH'd into 4K entries. These cases should * resolve automatically on subsequent accesses, so just ignore them * here. */ if (rmp_level == PG_LEVEL_4K) goto out; ret = snp_rmptable_psmash(pfn); if (ret) { /* * Look it up again. If it's 4K now then the PSMASH may have * raced with another process and the issue has already resolved * itself. */ if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && assigned && rmp_level == PG_LEVEL_4K) goto out; pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", gpa, pfn, ret); } kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); out: trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); out_no_trace: put_page(pfn_to_page(pfn)); } static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) { kvm_pfn_t pfn = start; while (pfn < end) { int ret, rmp_level; bool assigned; ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); if (ret) { pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", pfn, start, end, rmp_level, ret); return false; } if (assigned) { pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", __func__, pfn, start, end, rmp_level); return false; } pfn++; } return true; } static u8 max_level_for_order(int order) { if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) return PG_LEVEL_2M; return PG_LEVEL_4K; } static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) { kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); /* * If this is a large folio, and the entire 2M range containing the * PFN is currently shared, then the entire 2M-aligned range can be * set to private via a single 2M RMP entry. */ if (max_level_for_order(order) > PG_LEVEL_4K && is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) return true; return false; } int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; kvm_pfn_t pfn_aligned; gfn_t gfn_aligned; int level, rc; bool assigned; if (!sev_snp_guest(kvm)) return 0; rc = snp_lookup_rmpentry(pfn, &assigned, &level); if (rc) { pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", gfn, pfn, rc); return -ENOENT; } if (assigned) { pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", __func__, gfn, pfn, max_order, level); return 0; } if (is_large_rmp_possible(kvm, pfn, max_order)) { level = PG_LEVEL_2M; pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); } else { level = PG_LEVEL_4K; pfn_aligned = pfn; gfn_aligned = gfn; } rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); if (rc) { pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", gfn, pfn, level, rc); return -EINVAL; } pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", __func__, gfn, pfn, pfn_aligned, max_order, level); return 0; } void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) { kvm_pfn_t pfn; if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) return; pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); for (pfn = start; pfn < end;) { bool use_2m_update = false; int rc, rmp_level; bool assigned; rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); if (rc || !assigned) goto next_pfn; use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && end >= (pfn + PTRS_PER_PMD) && rmp_level > PG_LEVEL_4K; /* * If an unaligned PFN corresponds to a 2M region assigned as a * large page in the RMP table, PSMASH the region into individual * 4K RMP entries before attempting to convert a 4K sub-page. */ if (!use_2m_update && rmp_level > PG_LEVEL_4K) { /* * This shouldn't fail, but if it does, report it, but * still try to update RMP entry to shared and pray this * was a spurious error that can be addressed later. */ rc = snp_rmptable_psmash(pfn); WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", pfn, rc); } rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", pfn, rc)) goto next_pfn; /* * SEV-ES avoids host/guest cache coherency issues through * WBINVD hooks issued via MMU notifiers during run-time, and * KVM's VM destroy path at shutdown. Those MMU notifier events * don't cover gmem since there is no requirement to map pages * to a HVA in order to use them for a running guest. While the * shutdown path would still likely cover things for SNP guests, * userspace may also free gmem pages during run-time via * hole-punching operations on the guest_memfd, so flush the * cache entries for these pages before free'ing them back to * the host. */ clflush_cache_range(__va(pfn_to_hpa(pfn)), use_2m_update ? PMD_SIZE : PAGE_SIZE); next_pfn: pfn += use_2m_update ? PTRS_PER_PMD : 1; cond_resched(); } } int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) { int level, rc; bool assigned; if (!sev_snp_guest(kvm)) return 0; rc = snp_lookup_rmpentry(pfn, &assigned, &level); if (rc || !assigned) return PG_LEVEL_4K; return level; }