// SPDX-License-Identifier: GPL-2.0-only #ifndef KVM_X86_MMU_SPTE_H #define KVM_X86_MMU_SPTE_H #include #include "mmu.h" #include "mmu_internal.h" /* * A MMU present SPTE is backed by actual memory and may or may not be present * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it * is ignored by all flavors of SPTEs and checking a low bit often generates * better code than for a high bit, e.g. 56+. MMU present checks are pervasive * enough that the improved code generation is noticeable in KVM's footprint. */ #define SPTE_MMU_PRESENT_MASK BIT_ULL(11) /* * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that * is must be employed for a given TDP SPTE. * * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE * paging, including NPT PAE. This scheme works because legacy shadow paging * is guaranteed to have A/D bits and write-protection is forced only for * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it * must be restricted to 64-bit KVM. */ #define SPTE_TDP_AD_SHIFT 52 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_ENABLED (0ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_DISABLED (1ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_WRPROT_ONLY (2ULL << SPTE_TDP_AD_SHIFT) static_assert(SPTE_TDP_AD_ENABLED == 0); #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK #define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) #else #define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) #endif #define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | shadow_x_mask | shadow_nx_mask | shadow_me_mask) #define ACC_EXEC_MASK 1 #define ACC_WRITE_MASK PT_WRITABLE_MASK #define ACC_USER_MASK PT_USER_MASK #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) /* The mask for the R/X bits in EPT PTEs */ #define SPTE_EPT_READABLE_MASK 0x1ull #define SPTE_EPT_EXECUTABLE_MASK 0x4ull #define SPTE_LEVEL_BITS 9 #define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS) #define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS) #define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS) /* * The mask/shift to use for saving the original R/X bits when marking the PTE * as not-present for access tracking purposes. We do not save the W bit as the * PTEs being access tracked also need to be dirty tracked, so the W bit will be * restored only when a write is attempted to the page. This mask obviously * must not overlap the A/D type mask. */ #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \ SPTE_EPT_EXECUTABLE_MASK) #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); /* * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given * SPTE is write-protected. See is_writable_pte() for details. */ /* Bits 9 and 10 are ignored by all non-EPT PTEs. */ #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) /* * Low ignored bits are at a premium for EPT, use high ignored bits, taking care * to not overlap the A/D type mask or the saved access bits of access-tracked * SPTEs when A/D bits are disabled. */ #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); /* Defined only to keep the above static asserts readable. */ #undef SHADOW_ACC_TRACK_SAVED_MASK /* * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of * the memslots generation and is derived as follows: * * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 * * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in * the MMIO generation number, as doing so would require stealing a bit from * the "real" generation number and thus effectively halve the maximum number * of MMIO generations that can be handled before encountering a wrap (which * requires a full MMU zap). The flag is instead explicitly queried when * checking for MMIO spte cache hits. */ #define MMIO_SPTE_GEN_LOW_START 3 #define MMIO_SPTE_GEN_LOW_END 10 #define MMIO_SPTE_GEN_HIGH_START 52 #define MMIO_SPTE_GEN_HIGH_END 62 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ MMIO_SPTE_GEN_LOW_START) #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ MMIO_SPTE_GEN_HIGH_START) static_assert(!(SPTE_MMU_PRESENT_MASK & (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); /* * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the * MMU-present bit. The generation obviously co-exists with the magic MMIO * mask/value, and MMIO SPTEs are considered !MMU-present. * * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO * and so they're off-limits for generation; additional checks ensure the mask * doesn't overlap legal PA bits), and bit 63 (carved out for future usage). */ #define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0)) static_assert(!(SPTE_MMIO_ALLOWED_MASK & (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) /* remember to adjust the comment above as well if you change these */ static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) /* * Non-present SPTE value needs to set bit 63 for TDX, in order to suppress * #VE and get EPT violations on non-present PTEs. We can use the * same value also without TDX for both VMX and SVM: * * For SVM NPT, for non-present spte (bit 0 = 0), other bits are ignored. * For VMX EPT, bit 63 is ignored if #VE is disabled. (EPT_VIOLATION_VE=0) * bit 63 is #VE suppress if #VE is enabled. (EPT_VIOLATION_VE=1) */ #ifdef CONFIG_X86_64 #define SHADOW_NONPRESENT_VALUE BIT_ULL(63) static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK)); #else #define SHADOW_NONPRESENT_VALUE 0ULL #endif extern u64 __read_mostly shadow_host_writable_mask; extern u64 __read_mostly shadow_mmu_writable_mask; extern u64 __read_mostly shadow_nx_mask; extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ extern u64 __read_mostly shadow_user_mask; extern u64 __read_mostly shadow_accessed_mask; extern u64 __read_mostly shadow_dirty_mask; extern u64 __read_mostly shadow_mmio_value; extern u64 __read_mostly shadow_mmio_mask; extern u64 __read_mostly shadow_mmio_access_mask; extern u64 __read_mostly shadow_present_mask; extern u64 __read_mostly shadow_memtype_mask; extern u64 __read_mostly shadow_me_value; extern u64 __read_mostly shadow_me_mask; /* * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED; * shadow_acc_track_mask is the set of bits to be cleared in non-accessed * pages. */ extern u64 __read_mostly shadow_acc_track_mask; /* * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order * to guard against L1TF attacks. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; /* * The number of high-order 1 bits to use in the mask above. */ #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 /* * If a thread running without exclusive control of the MMU lock must perform a * multi-part operation on an SPTE, it can set the SPTE to FROZEN_SPTE as a * non-present intermediate value. Other threads which encounter this value * should not modify the SPTE. * * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF * vulnerability. * * Only used by the TDP MMU. */ #define FROZEN_SPTE (SHADOW_NONPRESENT_VALUE | 0x5a0ULL) /* Removed SPTEs must not be misconstrued as shadow present PTEs. */ static_assert(!(FROZEN_SPTE & SPTE_MMU_PRESENT_MASK)); static inline bool is_frozen_spte(u64 spte) { return spte == FROZEN_SPTE; } /* Get an SPTE's index into its parent's page table (and the spt array). */ static inline int spte_index(u64 *sptep) { return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1); } /* * In some cases, we need to preserve the GFN of a non-present or reserved * SPTE when we usurp the upper five bits of the physical address space to * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask * left into the reserved bits, i.e. the GFN in the SPTE will be split into * high and low parts. This mask covers the lower bits of the GFN. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page) { struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT); return (struct kvm_mmu_page *)page_private(page); } static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte) { return to_shadow_page(spte & SPTE_BASE_ADDR_MASK); } static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep) { return to_shadow_page(__pa(sptep)); } static inline struct kvm_mmu_page *root_to_sp(hpa_t root) { if (kvm_mmu_is_dummy_root(root)) return NULL; /* * The "root" may be a special root, e.g. a PAE entry, treat it as a * SPTE to ensure any non-PA bits are dropped. */ return spte_to_child_sp(root); } static inline bool is_mmio_spte(struct kvm *kvm, u64 spte) { return (spte & shadow_mmio_mask) == kvm->arch.shadow_mmio_value && likely(enable_mmio_caching); } static inline bool is_shadow_present_pte(u64 pte) { return !!(pte & SPTE_MMU_PRESENT_MASK); } static inline bool is_ept_ve_possible(u64 spte) { return (shadow_present_mask & VMX_EPT_SUPPRESS_VE_BIT) && !(spte & VMX_EPT_SUPPRESS_VE_BIT) && (spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE; } /* * Returns true if A/D bits are supported in hardware and are enabled by KVM. * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the * scenario where KVM is using A/D bits for L1, but not L2. */ static inline bool kvm_ad_enabled(void) { return !!shadow_accessed_mask; } static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) { return sp->role.ad_disabled; } static inline bool spte_ad_enabled(u64 spte) { KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED; } static inline bool spte_ad_need_write_protect(u64 spte) { KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); /* * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED is '0', * and non-TDP SPTEs will never set these bits. Optimize for 64-bit * TDP and do the A/D type check unconditionally. */ return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED; } static inline u64 spte_shadow_accessed_mask(u64 spte) { KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; } static inline u64 spte_shadow_dirty_mask(u64 spte) { KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; } static inline bool is_access_track_spte(u64 spte) { return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; } static inline bool is_large_pte(u64 pte) { return pte & PT_PAGE_SIZE_MASK; } static inline bool is_last_spte(u64 pte, int level) { return (level == PG_LEVEL_4K) || is_large_pte(pte); } static inline bool is_executable_pte(u64 spte) { return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; } static inline kvm_pfn_t spte_to_pfn(u64 pte) { return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT; } static inline bool is_accessed_spte(u64 spte) { u64 accessed_mask = spte_shadow_accessed_mask(spte); return accessed_mask ? spte & accessed_mask : !is_access_track_spte(spte); } static inline bool is_dirty_spte(u64 spte) { u64 dirty_mask = spte_shadow_dirty_mask(spte); return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; } static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) { int bit7 = (pte >> 7) & 1; return rsvd_check->rsvd_bits_mask[bit7][level-1]; } static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) { return pte & get_rsvd_bits(rsvd_check, pte, level); } static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) { return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); } static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, u64 spte, int level) { return __is_bad_mt_xwr(rsvd_check, spte) || __is_rsvd_bits_set(rsvd_check, spte, level); } /* * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: * * 1. To intercept writes for dirty logging. KVM write-protects huge pages * so that they can be split down into the dirty logging * granularity (4KiB) whenever the guest writes to them. KVM also * write-protects 4KiB pages so that writes can be recorded in the dirty log * (e.g. if not using PML). SPTEs are write-protected for dirty logging * during the VM-iotcls that enable dirty logging. * * 2. To intercept writes to guest page tables that KVM is shadowing. When a * guest writes to its page table the corresponding shadow page table will * be marked "unsync". That way KVM knows which shadow page tables need to * be updated on the next TLB flush, INVLPG, etc. and which do not. * * 3. To prevent guest writes to read-only memory, such as for memory in a * read-only memslot or guest memory backed by a read-only VMA. Writes to * such pages are disallowed entirely. * * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this * case, the SPTE is access-protected, not just write-protected! * * For cases #1 and #4, KVM can safely make such SPTEs writable without taking * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits * in the SPTE: * * shadow_mmu_writable_mask, aka MMU-writable - * Cleared on SPTEs that KVM is currently write-protecting for shadow paging * purposes (case 2 above). * * shadow_host_writable_mask, aka Host-writable - * Cleared on SPTEs that are not host-writable (case 3 above) * * Note, not all possible combinations of PT_WRITABLE_MASK, * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given * SPTE can be in only one of the following states, which map to the * aforementioned 3 cases: * * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK * ------------------------- | ------------------------ | ---------------- * 1 | 1 | 1 (writable) * 1 | 1 | 0 (case 1) * 1 | 0 | 0 (case 2) * 0 | 0 | 0 (case 3) * * The valid combinations of these bits are checked by * check_spte_writable_invariants() whenever an SPTE is modified. * * Clearing the MMU-writable bit is always done under the MMU lock and always * accompanied by a TLB flush before dropping the lock to avoid corrupting the * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging * (which does not clear the MMU-writable bit), does not flush TLBs before * dropping the lock, as it only needs to synchronize guest writes with the * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for * access-tracking via the clear_young() MMU notifier also does not flush TLBs. * * So, there is the problem: clearing the MMU-writable bit can encounter a * write-protected SPTE while CPUs still have writable mappings for that SPTE * cached in their TLB. To address this, KVM always flushes TLBs when * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. * * The Host-writable bit is not modified on present SPTEs, it is only set or * cleared when an SPTE is first faulted in from non-present and then remains * immutable. */ static inline bool is_writable_pte(unsigned long pte) { return pte & PT_WRITABLE_MASK; } /* Note: spte must be a shadow-present leaf SPTE. */ static inline void check_spte_writable_invariants(u64 spte) { if (spte & shadow_mmu_writable_mask) WARN_ONCE(!(spte & shadow_host_writable_mask), KBUILD_MODNAME ": MMU-writable SPTE is not Host-writable: %llx", spte); else WARN_ONCE(is_writable_pte(spte), KBUILD_MODNAME ": Writable SPTE is not MMU-writable: %llx", spte); } static inline bool is_mmu_writable_spte(u64 spte) { return spte & shadow_mmu_writable_mask; } static inline u64 get_mmio_spte_generation(u64 spte) { u64 gen; gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; return gen; } bool spte_has_volatile_bits(u64 spte); bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool prefetch, bool can_unsync, bool host_writable, u64 *new_spte); u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, int index); u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); u64 mark_spte_for_access_track(u64 spte); /* Restore an acc-track PTE back to a regular PTE */ static inline u64 restore_acc_track_spte(u64 spte) { u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) & SHADOW_ACC_TRACK_SAVED_BITS_MASK; spte &= ~shadow_acc_track_mask; spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); spte |= saved_bits; return spte; } void __init kvm_mmu_spte_module_init(void); void kvm_mmu_reset_all_pte_masks(void); #endif