// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * Macros and functions to access KVM PTEs (also known as SPTEs) * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2020 Red Hat, Inc. and/or its affiliates. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include "mmu.h" #include "mmu_internal.h" #include "x86.h" #include "spte.h" #include #include #include bool __read_mostly enable_mmio_caching = true; static bool __ro_after_init allow_mmio_caching; module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); EXPORT_SYMBOL_GPL(enable_mmio_caching); u64 __read_mostly shadow_host_writable_mask; u64 __read_mostly shadow_mmu_writable_mask; u64 __read_mostly shadow_nx_mask; u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ u64 __read_mostly shadow_user_mask; u64 __read_mostly shadow_accessed_mask; u64 __read_mostly shadow_dirty_mask; u64 __read_mostly shadow_mmio_value; u64 __read_mostly shadow_mmio_mask; u64 __read_mostly shadow_mmio_access_mask; u64 __read_mostly shadow_present_mask; u64 __read_mostly shadow_memtype_mask; u64 __read_mostly shadow_me_value; u64 __read_mostly shadow_me_mask; u64 __read_mostly shadow_acc_track_mask; u64 __read_mostly shadow_nonpresent_or_rsvd_mask; u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; static u8 __init kvm_get_host_maxphyaddr(void) { /* * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected * in CPU detection code, but the processor treats those reduced bits as * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR, * when reasoning about CPU behavior with respect to MAXPHYADDR. */ if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) return cpuid_eax(0x80000008) & 0xff; /* * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with * custom CPUID. Proceed with whatever the kernel found since these features * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). */ return boot_cpu_data.x86_phys_bits; } void __init kvm_mmu_spte_module_init(void) { /* * Snapshot userspace's desire to allow MMIO caching. Whether or not * KVM can actually enable MMIO caching depends on vendor-specific * hardware capabilities and other module params that can't be resolved * until the vendor module is loaded, i.e. enable_mmio_caching can and * will change when the vendor module is (re)loaded. */ allow_mmio_caching = enable_mmio_caching; kvm_host.maxphyaddr = kvm_get_host_maxphyaddr(); } static u64 generation_mmio_spte_mask(u64 gen) { u64 mask; WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK); mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; return mask; } u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) { u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; u64 spte = generation_mmio_spte_mask(gen); u64 gpa = gfn << PAGE_SHIFT; WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value); access &= shadow_mmio_access_mask; spte |= vcpu->kvm->arch.shadow_mmio_value | access; spte |= gpa | shadow_nonpresent_or_rsvd_mask; spte |= (gpa & shadow_nonpresent_or_rsvd_mask) << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; return spte; } static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) { if (pfn_valid(pfn)) return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && /* * Some reserved pages, such as those from NVDIMM * DAX devices, are not for MMIO, and can be mapped * with cached memory type for better performance. * However, the above check misconceives those pages * as MMIO, and results in KVM mapping them with UC * memory type, which would hurt the performance. * Therefore, we check the host memory type in addition * and only treat UC/UC-/WC pages as MMIO. */ (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); return !e820__mapped_raw_any(pfn_to_hpa(pfn), pfn_to_hpa(pfn + 1) - 1, E820_TYPE_RAM); } /* * Returns true if the SPTE has bits that may be set without holding mmu_lock. * The caller is responsible for checking if the SPTE is shadow-present, and * for determining whether or not the caller cares about non-leaf SPTEs. */ bool spte_has_volatile_bits(u64 spte) { /* * Always atomically update spte if it can be updated * out of mmu-lock, it can ensure dirty bit is not lost, * also, it can help us to get a stable is_writable_pte() * to ensure tlb flush is not missed. */ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) return true; if (is_access_track_spte(spte)) return true; if (spte_ad_enabled(spte)) { if (!(spte & shadow_accessed_mask) || (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) return true; } return false; } bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool prefetch, bool can_unsync, bool host_writable, u64 *new_spte) { int level = sp->role.level; u64 spte = SPTE_MMU_PRESENT_MASK; bool wrprot = false; /* * For the EPT case, shadow_present_mask has no RWX bits set if * exec-only page table entries are supported. In that case, * ACC_USER_MASK and shadow_user_mask are used to represent * read access. See FNAME(gpte_access) in paging_tmpl.h. */ WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE); if (sp->role.ad_disabled) spte |= SPTE_TDP_AD_DISABLED; else if (kvm_mmu_page_ad_need_write_protect(sp)) spte |= SPTE_TDP_AD_WRPROT_ONLY; spte |= shadow_present_mask; if (!prefetch) spte |= spte_shadow_accessed_mask(spte); /* * For simplicity, enforce the NX huge page mitigation even if not * strictly necessary. KVM could ignore the mitigation if paging is * disabled in the guest, as the guest doesn't have any page tables to * abuse. But to safely ignore the mitigation, KVM would have to * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG * is toggled on, and that's a net negative for performance when TDP is * enabled. When TDP is disabled, KVM will always switch to a new MMU * when CR0.PG is toggled, but leveraging that to ignore the mitigation * would tie make_spte() further to vCPU/MMU state, and add complexity * just to optimize a mode that is anything but performance critical. */ if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(vcpu->kvm)) { pte_access &= ~ACC_EXEC_MASK; } if (pte_access & ACC_EXEC_MASK) spte |= shadow_x_mask; else spte |= shadow_nx_mask; if (pte_access & ACC_USER_MASK) spte |= shadow_user_mask; if (level > PG_LEVEL_4K) spte |= PT_PAGE_SIZE_MASK; if (shadow_memtype_mask) spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn, kvm_is_mmio_pfn(pfn)); if (host_writable) spte |= shadow_host_writable_mask; else pte_access &= ~ACC_WRITE_MASK; if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) spte |= shadow_me_value; spte |= (u64)pfn << PAGE_SHIFT; if (pte_access & ACC_WRITE_MASK) { spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; /* * Optimization: for pte sync, if spte was writable the hash * lookup is unnecessary (and expensive). Write protection * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. * Same reasoning can be applied to dirty page accounting. */ if (is_writable_pte(old_spte)) goto out; /* * Unsync shadow pages that are reachable by the new, writable * SPTE. Write-protect the SPTE if the page can't be unsync'd, * e.g. it's write-tracked (upper-level SPs) or has one or more * shadow pages and unsync'ing pages is not allowed. */ if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { wrprot = true; pte_access &= ~ACC_WRITE_MASK; spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); } } if (pte_access & ACC_WRITE_MASK) spte |= spte_shadow_dirty_mask(spte); out: if (prefetch) spte = mark_spte_for_access_track(spte); WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { /* Enforced by kvm_mmu_hugepage_adjust. */ WARN_ON_ONCE(level > PG_LEVEL_4K); mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); } *new_spte = spte; return wrprot; } static u64 make_spte_executable(u64 spte) { bool is_access_track = is_access_track_spte(spte); if (is_access_track) spte = restore_acc_track_spte(spte); spte &= ~shadow_nx_mask; spte |= shadow_x_mask; if (is_access_track) spte = mark_spte_for_access_track(spte); return spte; } /* * Construct an SPTE that maps a sub-page of the given huge page SPTE where * `index` identifies which sub-page. * * This is used during huge page splitting to build the SPTEs that make up the * new page table. */ u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, int index) { u64 child_spte = huge_spte; KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm); /* * The child_spte already has the base address of the huge page being * split. So we just have to OR in the offset to the page at the next * lower level for the given index. */ child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; if (role.level == PG_LEVEL_4K) { child_spte &= ~PT_PAGE_SIZE_MASK; /* * When splitting to a 4K page where execution is allowed, mark * the page executable as the NX hugepage mitigation no longer * applies. */ if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) child_spte = make_spte_executable(child_spte); } return child_spte; } u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) { u64 spte = SPTE_MMU_PRESENT_MASK; spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | shadow_user_mask | shadow_x_mask | shadow_me_value; if (ad_disabled) spte |= SPTE_TDP_AD_DISABLED; else spte |= shadow_accessed_mask; return spte; } u64 mark_spte_for_access_track(u64 spte) { if (spte_ad_enabled(spte)) return spte & ~shadow_accessed_mask; if (is_access_track_spte(spte)) return spte; check_spte_writable_invariants(spte); WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), "Access Tracking saved bit locations are not zero\n"); spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; spte &= ~shadow_acc_track_mask; return spte; } void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) { BUG_ON((u64)(unsigned)access_mask != access_mask); WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); /* * Reset to the original module param value to honor userspace's desire * to (dis)allow MMIO caching. Update the param itself so that * userspace can see whether or not KVM is actually using MMIO caching. */ enable_mmio_caching = allow_mmio_caching; if (!enable_mmio_caching) mmio_value = 0; /* * The mask must contain only bits that are carved out specifically for * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO * generation. */ if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) mmio_value = 0; /* * Disable MMIO caching if the MMIO value collides with the bits that * are used to hold the relocated GFN when the L1TF mitigation is * enabled. This should never fire as there is no known hardware that * can trigger this condition, e.g. SME/SEV CPUs that require a custom * MMIO value are not susceptible to L1TF. */ if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) mmio_value = 0; /* * The masked MMIO value must obviously match itself and a removed SPTE * must not get a false positive. Removed SPTEs and MMIO SPTEs should * never collide as MMIO must set some RWX bits, and removed SPTEs must * not set any RWX bits. */ if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value)) mmio_value = 0; if (!mmio_value) enable_mmio_caching = false; shadow_mmio_value = mmio_value; shadow_mmio_mask = mmio_mask; shadow_mmio_access_mask = access_mask; } EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) { /* shadow_me_value must be a subset of shadow_me_mask */ if (WARN_ON(me_value & ~me_mask)) me_value = me_mask = 0; shadow_me_value = me_value; shadow_me_mask = me_mask; } EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) { shadow_user_mask = VMX_EPT_READABLE_MASK; shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; shadow_nx_mask = 0ull; shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */ shadow_present_mask = (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT; /* * EPT overrides the host MTRRs, and so KVM must program the desired * memtype directly into the SPTEs. Note, this mask is just the mask * of all bits that factor into the memtype, the actual memtype must be * dynamically calculated, e.g. to ensure host MMIO is mapped UC. */ shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; shadow_acc_track_mask = VMX_EPT_RWX_MASK; shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; /* * EPT Misconfigurations are generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). */ kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0); } EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); void kvm_mmu_reset_all_pte_masks(void) { u8 low_phys_bits; u64 mask; /* * If the CPU has 46 or less physical address bits, then set an * appropriate mask to guard against L1TF attacks. Otherwise, it is * assumed that the CPU is not vulnerable to L1TF. * * Some Intel CPUs address the L1 cache using more PA bits than are * reported by CPUID. Use the PA width of the L1 cache when possible * to achieve more effective mitigation, e.g. if system RAM overlaps * the most significant bits of legal physical address space. */ shadow_nonpresent_or_rsvd_mask = 0; low_phys_bits = boot_cpu_data.x86_phys_bits; if (boot_cpu_has_bug(X86_BUG_L1TF) && !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { low_phys_bits = boot_cpu_data.x86_cache_bits - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; shadow_nonpresent_or_rsvd_mask = rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); } shadow_nonpresent_or_rsvd_lower_gfn_mask = GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); shadow_user_mask = PT_USER_MASK; shadow_accessed_mask = PT_ACCESSED_MASK; shadow_dirty_mask = PT_DIRTY_MASK; shadow_nx_mask = PT64_NX_MASK; shadow_x_mask = 0; shadow_present_mask = PT_PRESENT_MASK; /* * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB * memtype in the SPTEs, i.e. relies on host MTRRs to provide the * correct memtype (WB is the "weakest" memtype). */ shadow_memtype_mask = 0; shadow_acc_track_mask = 0; shadow_me_mask = 0; shadow_me_value = 0; shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; /* * Set a reserved PA bit in MMIO SPTEs to generate page faults with * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports * 52-bit physical addresses then there are no reserved PA bits in the * PTEs and so the reserved PA approach must be disabled. */ if (kvm_host.maxphyaddr < 52) mask = BIT_ULL(51) | PT_PRESENT_MASK; else mask = 0; kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); }