// SPDX-License-Identifier: GPL-2.0 /* * FPU register's regset abstraction, for ptrace, core dumps, etc. */ #include #include #include #include #include #include #include "context.h" #include "internal.h" #include "legacy.h" #include "xstate.h" /* * The xstateregs_active() routine is the same as the regset_fpregs_active() routine, * as the "regset->n" for the xstate regset will be updated based on the feature * capabilities supported by the xsave. */ int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset) { return regset->n; } int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset) { if (boot_cpu_has(X86_FEATURE_FXSR)) return regset->n; else return 0; } /* * The regset get() functions are invoked from: * * - coredump to dump the current task's fpstate. If the current task * owns the FPU then the memory state has to be synchronized and the * FPU register state preserved. Otherwise fpstate is already in sync. * * - ptrace to dump fpstate of a stopped task, in which case the registers * have already been saved to fpstate on context switch. */ static void sync_fpstate(struct fpu *fpu) { if (fpu == ¤t->thread.fpu) fpu_sync_fpstate(fpu); } /* * Invalidate cached FPU registers before modifying the stopped target * task's fpstate. * * This forces the target task on resume to restore the FPU registers from * modified fpstate. Otherwise the task might skip the restore and operate * with the cached FPU registers which discards the modifications. */ static void fpu_force_restore(struct fpu *fpu) { /* * Only stopped child tasks can be used to modify the FPU * state in the fpstate buffer: */ WARN_ON_FPU(fpu == ¤t->thread.fpu); __fpu_invalidate_fpregs_state(fpu); } int xfpregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct fpu *fpu = &target->thread.fpu; if (!cpu_feature_enabled(X86_FEATURE_FXSR)) return -ENODEV; sync_fpstate(fpu); if (!use_xsave()) { return membuf_write(&to, &fpu->fpstate->regs.fxsave, sizeof(fpu->fpstate->regs.fxsave)); } copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX); return 0; } int xfpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct fxregs_state newstate; int ret; if (!cpu_feature_enabled(X86_FEATURE_FXSR)) return -ENODEV; /* No funny business with partial or oversized writes is permitted. */ if (pos != 0 || count != sizeof(newstate)) return -EINVAL; ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1); if (ret) return ret; /* Do not allow an invalid MXCSR value. */ if (newstate.mxcsr & ~mxcsr_feature_mask) return -EINVAL; fpu_force_restore(fpu); /* Copy the state */ memcpy(&fpu->fpstate->regs.fxsave, &newstate, sizeof(newstate)); /* Clear xmm8..15 for 32-bit callers */ BUILD_BUG_ON(sizeof(fpu->__fpstate.regs.fxsave.xmm_space) != 16 * 16); if (in_ia32_syscall()) memset(&fpu->fpstate->regs.fxsave.xmm_space[8*4], 0, 8 * 16); /* Mark FP and SSE as in use when XSAVE is enabled */ if (use_xsave()) fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE; return 0; } int xstateregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) return -ENODEV; sync_fpstate(&target->thread.fpu); copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE); return 0; } int xstateregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct xregs_state *tmpbuf = NULL; int ret; if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) return -ENODEV; /* * A whole standard-format XSAVE buffer is needed: */ if (pos != 0 || count != fpu_user_cfg.max_size) return -EFAULT; if (!kbuf) { tmpbuf = vmalloc(count); if (!tmpbuf) return -ENOMEM; if (copy_from_user(tmpbuf, ubuf, count)) { ret = -EFAULT; goto out; } } fpu_force_restore(fpu); ret = copy_uabi_from_kernel_to_xstate(fpu->fpstate, kbuf ?: tmpbuf, &target->thread.pkru); out: vfree(tmpbuf); return ret; } #ifdef CONFIG_X86_USER_SHADOW_STACK int ssp_active(struct task_struct *target, const struct user_regset *regset) { if (target->thread.features & ARCH_SHSTK_SHSTK) return regset->n; return 0; } int ssp_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct fpu *fpu = &target->thread.fpu; struct cet_user_state *cetregs; if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK) || !ssp_active(target, regset)) return -ENODEV; sync_fpstate(fpu); cetregs = get_xsave_addr(&fpu->fpstate->regs.xsave, XFEATURE_CET_USER); if (WARN_ON(!cetregs)) { /* * This shouldn't ever be NULL because shadow stack was * verified to be enabled above. This means * MSR_IA32_U_CET.CET_SHSTK_EN should be 1 and so * XFEATURE_CET_USER should not be in the init state. */ return -ENODEV; } return membuf_write(&to, (unsigned long *)&cetregs->user_ssp, sizeof(cetregs->user_ssp)); } int ssp_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct xregs_state *xsave = &fpu->fpstate->regs.xsave; struct cet_user_state *cetregs; unsigned long user_ssp; int r; if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK) || !ssp_active(target, regset)) return -ENODEV; if (pos != 0 || count != sizeof(user_ssp)) return -EINVAL; r = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_ssp, 0, -1); if (r) return r; /* * Some kernel instructions (IRET, etc) can cause exceptions in the case * of disallowed CET register values. Just prevent invalid values. */ if (user_ssp >= TASK_SIZE_MAX || !IS_ALIGNED(user_ssp, 8)) return -EINVAL; fpu_force_restore(fpu); cetregs = get_xsave_addr(xsave, XFEATURE_CET_USER); if (WARN_ON(!cetregs)) { /* * This shouldn't ever be NULL because shadow stack was * verified to be enabled above. This means * MSR_IA32_U_CET.CET_SHSTK_EN should be 1 and so * XFEATURE_CET_USER should not be in the init state. */ return -ENODEV; } cetregs->user_ssp = user_ssp; return 0; } #endif /* CONFIG_X86_USER_SHADOW_STACK */ #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION /* * FPU tag word conversions. */ static inline unsigned short twd_i387_to_fxsr(unsigned short twd) { unsigned int tmp; /* to avoid 16 bit prefixes in the code */ /* Transform each pair of bits into 01 (valid) or 00 (empty) */ tmp = ~twd; tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */ /* and move the valid bits to the lower byte. */ tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */ tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */ tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */ return tmp; } #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16) #define FP_EXP_TAG_VALID 0 #define FP_EXP_TAG_ZERO 1 #define FP_EXP_TAG_SPECIAL 2 #define FP_EXP_TAG_EMPTY 3 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave) { struct _fpxreg *st; u32 tos = (fxsave->swd >> 11) & 7; u32 twd = (unsigned long) fxsave->twd; u32 tag; u32 ret = 0xffff0000u; int i; for (i = 0; i < 8; i++, twd >>= 1) { if (twd & 0x1) { st = FPREG_ADDR(fxsave, (i - tos) & 7); switch (st->exponent & 0x7fff) { case 0x7fff: tag = FP_EXP_TAG_SPECIAL; break; case 0x0000: if (!st->significand[0] && !st->significand[1] && !st->significand[2] && !st->significand[3]) tag = FP_EXP_TAG_ZERO; else tag = FP_EXP_TAG_SPECIAL; break; default: if (st->significand[3] & 0x8000) tag = FP_EXP_TAG_VALID; else tag = FP_EXP_TAG_SPECIAL; break; } } else { tag = FP_EXP_TAG_EMPTY; } ret |= tag << (2 * i); } return ret; } /* * FXSR floating point environment conversions. */ static void __convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk, struct fxregs_state *fxsave) { struct _fpreg *to = (struct _fpreg *) &env->st_space[0]; struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0]; int i; env->cwd = fxsave->cwd | 0xffff0000u; env->swd = fxsave->swd | 0xffff0000u; env->twd = twd_fxsr_to_i387(fxsave); #ifdef CONFIG_X86_64 env->fip = fxsave->rip; env->foo = fxsave->rdp; /* * should be actually ds/cs at fpu exception time, but * that information is not available in 64bit mode. */ env->fcs = task_pt_regs(tsk)->cs; if (tsk == current) { savesegment(ds, env->fos); } else { env->fos = tsk->thread.ds; } env->fos |= 0xffff0000; #else env->fip = fxsave->fip; env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16); env->foo = fxsave->foo; env->fos = fxsave->fos; #endif for (i = 0; i < 8; ++i) memcpy(&to[i], &from[i], sizeof(to[0])); } void convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk) { __convert_from_fxsr(env, tsk, &tsk->thread.fpu.fpstate->regs.fxsave); } void convert_to_fxsr(struct fxregs_state *fxsave, const struct user_i387_ia32_struct *env) { struct _fpreg *from = (struct _fpreg *) &env->st_space[0]; struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0]; int i; fxsave->cwd = env->cwd; fxsave->swd = env->swd; fxsave->twd = twd_i387_to_fxsr(env->twd); fxsave->fop = (u16) ((u32) env->fcs >> 16); #ifdef CONFIG_X86_64 fxsave->rip = env->fip; fxsave->rdp = env->foo; /* cs and ds ignored */ #else fxsave->fip = env->fip; fxsave->fcs = (env->fcs & 0xffff); fxsave->foo = env->foo; fxsave->fos = env->fos; #endif for (i = 0; i < 8; ++i) memcpy(&to[i], &from[i], sizeof(from[0])); } int fpregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct fpu *fpu = &target->thread.fpu; struct user_i387_ia32_struct env; struct fxregs_state fxsave, *fx; sync_fpstate(fpu); if (!cpu_feature_enabled(X86_FEATURE_FPU)) return fpregs_soft_get(target, regset, to); if (!cpu_feature_enabled(X86_FEATURE_FXSR)) { return membuf_write(&to, &fpu->fpstate->regs.fsave, sizeof(struct fregs_state)); } if (use_xsave()) { struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) }; /* Handle init state optimized xstate correctly */ copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP); fx = &fxsave; } else { fx = &fpu->fpstate->regs.fxsave; } __convert_from_fxsr(&env, target, fx); return membuf_write(&to, &env, sizeof(env)); } int fpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct user_i387_ia32_struct env; int ret; /* No funny business with partial or oversized writes is permitted. */ if (pos != 0 || count != sizeof(struct user_i387_ia32_struct)) return -EINVAL; if (!cpu_feature_enabled(X86_FEATURE_FPU)) return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1); if (ret) return ret; fpu_force_restore(fpu); if (cpu_feature_enabled(X86_FEATURE_FXSR)) convert_to_fxsr(&fpu->fpstate->regs.fxsave, &env); else memcpy(&fpu->fpstate->regs.fsave, &env, sizeof(env)); /* * Update the header bit in the xsave header, indicating the * presence of FP. */ if (cpu_feature_enabled(X86_FEATURE_XSAVE)) fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FP; return 0; } #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */