// SPDX-License-Identifier: GPL-2.0-only /* * Resource Director Technology(RDT) * - Cache Allocation code. * * Copyright (C) 2016 Intel Corporation * * Authors: * Fenghua Yu * Tony Luck * Vikas Shivappa * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual June 2016, volume 3, section 17.17. */ #define pr_fmt(fmt) "resctrl: " fmt #include #include #include #include #include #include #include "internal.h" /* * rdt_domain structures are kfree()d when their last CPU goes offline, * and allocated when the first CPU in a new domain comes online. * The rdt_resource's domain list is updated when this happens. Readers of * the domain list must either take cpus_read_lock(), or rely on an RCU * read-side critical section, to avoid observing concurrent modification. * All writers take this mutex: */ static DEFINE_MUTEX(domain_list_lock); /* * The cached resctrl_pqr_state is strictly per CPU and can never be * updated from a remote CPU. Functions which modify the state * are called with interrupts disabled and no preemption, which * is sufficient for the protection. */ DEFINE_PER_CPU(struct resctrl_pqr_state, pqr_state); /* * Used to store the max resource name width and max resource data width * to display the schemata in a tabular format */ int max_name_width, max_data_width; /* * Global boolean for rdt_alloc which is true if any * resource allocation is enabled. */ bool rdt_alloc_capable; static void mba_wrmsr_intel(struct msr_param *m); static void cat_wrmsr(struct msr_param *m); static void mba_wrmsr_amd(struct msr_param *m); #define ctrl_domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].r_resctrl.ctrl_domains) #define mon_domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].r_resctrl.mon_domains) struct rdt_hw_resource rdt_resources_all[] = { [RDT_RESOURCE_L3] = { .r_resctrl = { .rid = RDT_RESOURCE_L3, .name = "L3", .ctrl_scope = RESCTRL_L3_CACHE, .mon_scope = RESCTRL_L3_CACHE, .ctrl_domains = ctrl_domain_init(RDT_RESOURCE_L3), .mon_domains = mon_domain_init(RDT_RESOURCE_L3), .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, .msr_base = MSR_IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, }, [RDT_RESOURCE_L2] = { .r_resctrl = { .rid = RDT_RESOURCE_L2, .name = "L2", .ctrl_scope = RESCTRL_L2_CACHE, .ctrl_domains = ctrl_domain_init(RDT_RESOURCE_L2), .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, .msr_base = MSR_IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, }, [RDT_RESOURCE_MBA] = { .r_resctrl = { .rid = RDT_RESOURCE_MBA, .name = "MB", .ctrl_scope = RESCTRL_L3_CACHE, .ctrl_domains = ctrl_domain_init(RDT_RESOURCE_MBA), .parse_ctrlval = parse_bw, .format_str = "%d=%*u", .fflags = RFTYPE_RES_MB, }, }, [RDT_RESOURCE_SMBA] = { .r_resctrl = { .rid = RDT_RESOURCE_SMBA, .name = "SMBA", .ctrl_scope = RESCTRL_L3_CACHE, .ctrl_domains = ctrl_domain_init(RDT_RESOURCE_SMBA), .parse_ctrlval = parse_bw, .format_str = "%d=%*u", .fflags = RFTYPE_RES_MB, }, }, }; /* * cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs * as they do not have CPUID enumeration support for Cache allocation. * The check for Vendor/Family/Model is not enough to guarantee that * the MSRs won't #GP fault because only the following SKUs support * CAT: * Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz * Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz * Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz * Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz * Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz * Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz * * Probe by trying to write the first of the L3 cache mask registers * and checking that the bits stick. Max CLOSids is always 4 and max cbm length * is always 20 on hsw server parts. The minimum cache bitmask length * allowed for HSW server is always 2 bits. Hardcode all of them. */ static inline void cache_alloc_hsw_probe(void) { struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_L3]; struct rdt_resource *r = &hw_res->r_resctrl; u64 max_cbm = BIT_ULL_MASK(20) - 1, l3_cbm_0; if (wrmsrl_safe(MSR_IA32_L3_CBM_BASE, max_cbm)) return; rdmsrl(MSR_IA32_L3_CBM_BASE, l3_cbm_0); /* If all the bits were set in MSR, return success */ if (l3_cbm_0 != max_cbm) return; hw_res->num_closid = 4; r->default_ctrl = max_cbm; r->cache.cbm_len = 20; r->cache.shareable_bits = 0xc0000; r->cache.min_cbm_bits = 2; r->cache.arch_has_sparse_bitmasks = false; r->alloc_capable = true; rdt_alloc_capable = true; } bool is_mba_sc(struct rdt_resource *r) { if (!r) return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.mba_sc; /* * The software controller support is only applicable to MBA resource. * Make sure to check for resource type. */ if (r->rid != RDT_RESOURCE_MBA) return false; return r->membw.mba_sc; } /* * rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values * exposed to user interface and the h/w understandable delay values. * * The non-linear delay values have the granularity of power of two * and also the h/w does not guarantee a curve for configured delay * values vs. actual b/w enforced. * Hence we need a mapping that is pre calibrated so the user can * express the memory b/w as a percentage value. */ static inline bool rdt_get_mb_table(struct rdt_resource *r) { /* * There are no Intel SKUs as of now to support non-linear delay. */ pr_info("MBA b/w map not implemented for cpu:%d, model:%d", boot_cpu_data.x86, boot_cpu_data.x86_model); return false; } static bool __get_mem_config_intel(struct rdt_resource *r) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); union cpuid_0x10_3_eax eax; union cpuid_0x10_x_edx edx; u32 ebx, ecx, max_delay; cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full); hw_res->num_closid = edx.split.cos_max + 1; max_delay = eax.split.max_delay + 1; r->default_ctrl = MAX_MBA_BW; r->membw.arch_needs_linear = true; if (ecx & MBA_IS_LINEAR) { r->membw.delay_linear = true; r->membw.min_bw = MAX_MBA_BW - max_delay; r->membw.bw_gran = MAX_MBA_BW - max_delay; } else { if (!rdt_get_mb_table(r)) return false; r->membw.arch_needs_linear = false; } r->data_width = 3; if (boot_cpu_has(X86_FEATURE_PER_THREAD_MBA)) r->membw.throttle_mode = THREAD_THROTTLE_PER_THREAD; else r->membw.throttle_mode = THREAD_THROTTLE_MAX; thread_throttle_mode_init(); r->alloc_capable = true; return true; } static bool __rdt_get_mem_config_amd(struct rdt_resource *r) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); u32 eax, ebx, ecx, edx, subleaf; /* * Query CPUID_Fn80000020_EDX_x01 for MBA and * CPUID_Fn80000020_EDX_x02 for SMBA */ subleaf = (r->rid == RDT_RESOURCE_SMBA) ? 2 : 1; cpuid_count(0x80000020, subleaf, &eax, &ebx, &ecx, &edx); hw_res->num_closid = edx + 1; r->default_ctrl = 1 << eax; /* AMD does not use delay */ r->membw.delay_linear = false; r->membw.arch_needs_linear = false; /* * AMD does not use memory delay throttle model to control * the allocation like Intel does. */ r->membw.throttle_mode = THREAD_THROTTLE_UNDEFINED; r->membw.min_bw = 0; r->membw.bw_gran = 1; /* Max value is 2048, Data width should be 4 in decimal */ r->data_width = 4; r->alloc_capable = true; return true; } static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); union cpuid_0x10_1_eax eax; union cpuid_0x10_x_ecx ecx; union cpuid_0x10_x_edx edx; u32 ebx; cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx.full, &edx.full); hw_res->num_closid = edx.split.cos_max + 1; r->cache.cbm_len = eax.split.cbm_len + 1; r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1; r->cache.shareable_bits = ebx & r->default_ctrl; r->data_width = (r->cache.cbm_len + 3) / 4; if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) r->cache.arch_has_sparse_bitmasks = ecx.split.noncont; r->alloc_capable = true; } static void rdt_get_cdp_config(int level) { /* * By default, CDP is disabled. CDP can be enabled by mount parameter * "cdp" during resctrl file system mount time. */ rdt_resources_all[level].cdp_enabled = false; rdt_resources_all[level].r_resctrl.cdp_capable = true; } static void rdt_get_cdp_l3_config(void) { rdt_get_cdp_config(RDT_RESOURCE_L3); } static void rdt_get_cdp_l2_config(void) { rdt_get_cdp_config(RDT_RESOURCE_L2); } static void mba_wrmsr_amd(struct msr_param *m) { struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom); struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res); unsigned int i; for (i = m->low; i < m->high; i++) wrmsrl(hw_res->msr_base + i, hw_dom->ctrl_val[i]); } /* * Map the memory b/w percentage value to delay values * that can be written to QOS_MSRs. * There are currently no SKUs which support non linear delay values. */ static u32 delay_bw_map(unsigned long bw, struct rdt_resource *r) { if (r->membw.delay_linear) return MAX_MBA_BW - bw; pr_warn_once("Non Linear delay-bw map not supported but queried\n"); return r->default_ctrl; } static void mba_wrmsr_intel(struct msr_param *m) { struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom); struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res); unsigned int i; /* Write the delay values for mba. */ for (i = m->low; i < m->high; i++) wrmsrl(hw_res->msr_base + i, delay_bw_map(hw_dom->ctrl_val[i], m->res)); } static void cat_wrmsr(struct msr_param *m) { struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom); struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res); unsigned int i; for (i = m->low; i < m->high; i++) wrmsrl(hw_res->msr_base + i, hw_dom->ctrl_val[i]); } struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, struct rdt_resource *r) { struct rdt_ctrl_domain *d; lockdep_assert_cpus_held(); list_for_each_entry(d, &r->ctrl_domains, hdr.list) { /* Find the domain that contains this CPU */ if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) return d; } return NULL; } struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu, struct rdt_resource *r) { struct rdt_mon_domain *d; lockdep_assert_cpus_held(); list_for_each_entry(d, &r->mon_domains, hdr.list) { /* Find the domain that contains this CPU */ if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) return d; } return NULL; } u32 resctrl_arch_get_num_closid(struct rdt_resource *r) { return resctrl_to_arch_res(r)->num_closid; } void rdt_ctrl_update(void *arg) { struct rdt_hw_resource *hw_res; struct msr_param *m = arg; hw_res = resctrl_to_arch_res(m->res); hw_res->msr_update(m); } /* * rdt_find_domain - Search for a domain id in a resource domain list. * * Search the domain list to find the domain id. If the domain id is * found, return the domain. NULL otherwise. If the domain id is not * found (and NULL returned) then the first domain with id bigger than * the input id can be returned to the caller via @pos. */ struct rdt_domain_hdr *rdt_find_domain(struct list_head *h, int id, struct list_head **pos) { struct rdt_domain_hdr *d; struct list_head *l; list_for_each(l, h) { d = list_entry(l, struct rdt_domain_hdr, list); /* When id is found, return its domain. */ if (id == d->id) return d; /* Stop searching when finding id's position in sorted list. */ if (id < d->id) break; } if (pos) *pos = l; return NULL; } static void setup_default_ctrlval(struct rdt_resource *r, u32 *dc) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); int i; /* * Initialize the Control MSRs to having no control. * For Cache Allocation: Set all bits in cbm * For Memory Allocation: Set b/w requested to 100% */ for (i = 0; i < hw_res->num_closid; i++, dc++) *dc = r->default_ctrl; } static void ctrl_domain_free(struct rdt_hw_ctrl_domain *hw_dom) { kfree(hw_dom->ctrl_val); kfree(hw_dom); } static void mon_domain_free(struct rdt_hw_mon_domain *hw_dom) { kfree(hw_dom->arch_mbm_total); kfree(hw_dom->arch_mbm_local); kfree(hw_dom); } static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_ctrl_domain *d) { struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(d); struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); struct msr_param m; u32 *dc; dc = kmalloc_array(hw_res->num_closid, sizeof(*hw_dom->ctrl_val), GFP_KERNEL); if (!dc) return -ENOMEM; hw_dom->ctrl_val = dc; setup_default_ctrlval(r, dc); m.res = r; m.dom = d; m.low = 0; m.high = hw_res->num_closid; hw_res->msr_update(&m); return 0; } /** * arch_domain_mbm_alloc() - Allocate arch private storage for the MBM counters * @num_rmid: The size of the MBM counter array * @hw_dom: The domain that owns the allocated arrays */ static int arch_domain_mbm_alloc(u32 num_rmid, struct rdt_hw_mon_domain *hw_dom) { size_t tsize; if (is_mbm_total_enabled()) { tsize = sizeof(*hw_dom->arch_mbm_total); hw_dom->arch_mbm_total = kcalloc(num_rmid, tsize, GFP_KERNEL); if (!hw_dom->arch_mbm_total) return -ENOMEM; } if (is_mbm_local_enabled()) { tsize = sizeof(*hw_dom->arch_mbm_local); hw_dom->arch_mbm_local = kcalloc(num_rmid, tsize, GFP_KERNEL); if (!hw_dom->arch_mbm_local) { kfree(hw_dom->arch_mbm_total); hw_dom->arch_mbm_total = NULL; return -ENOMEM; } } return 0; } static int get_domain_id_from_scope(int cpu, enum resctrl_scope scope) { switch (scope) { case RESCTRL_L2_CACHE: case RESCTRL_L3_CACHE: return get_cpu_cacheinfo_id(cpu, scope); case RESCTRL_L3_NODE: return cpu_to_node(cpu); default: break; } return -EINVAL; } static void domain_add_cpu_ctrl(int cpu, struct rdt_resource *r) { int id = get_domain_id_from_scope(cpu, r->ctrl_scope); struct rdt_hw_ctrl_domain *hw_dom; struct list_head *add_pos = NULL; struct rdt_domain_hdr *hdr; struct rdt_ctrl_domain *d; int err; lockdep_assert_held(&domain_list_lock); if (id < 0) { pr_warn_once("Can't find control domain id for CPU:%d scope:%d for resource %s\n", cpu, r->ctrl_scope, r->name); return; } hdr = rdt_find_domain(&r->ctrl_domains, id, &add_pos); if (hdr) { if (WARN_ON_ONCE(hdr->type != RESCTRL_CTRL_DOMAIN)) return; d = container_of(hdr, struct rdt_ctrl_domain, hdr); cpumask_set_cpu(cpu, &d->hdr.cpu_mask); if (r->cache.arch_has_per_cpu_cfg) rdt_domain_reconfigure_cdp(r); return; } hw_dom = kzalloc_node(sizeof(*hw_dom), GFP_KERNEL, cpu_to_node(cpu)); if (!hw_dom) return; d = &hw_dom->d_resctrl; d->hdr.id = id; d->hdr.type = RESCTRL_CTRL_DOMAIN; cpumask_set_cpu(cpu, &d->hdr.cpu_mask); rdt_domain_reconfigure_cdp(r); if (domain_setup_ctrlval(r, d)) { ctrl_domain_free(hw_dom); return; } list_add_tail_rcu(&d->hdr.list, add_pos); err = resctrl_online_ctrl_domain(r, d); if (err) { list_del_rcu(&d->hdr.list); synchronize_rcu(); ctrl_domain_free(hw_dom); } } static void domain_add_cpu_mon(int cpu, struct rdt_resource *r) { int id = get_domain_id_from_scope(cpu, r->mon_scope); struct list_head *add_pos = NULL; struct rdt_hw_mon_domain *hw_dom; struct rdt_domain_hdr *hdr; struct rdt_mon_domain *d; int err; lockdep_assert_held(&domain_list_lock); if (id < 0) { pr_warn_once("Can't find monitor domain id for CPU:%d scope:%d for resource %s\n", cpu, r->mon_scope, r->name); return; } hdr = rdt_find_domain(&r->mon_domains, id, &add_pos); if (hdr) { if (WARN_ON_ONCE(hdr->type != RESCTRL_MON_DOMAIN)) return; d = container_of(hdr, struct rdt_mon_domain, hdr); cpumask_set_cpu(cpu, &d->hdr.cpu_mask); return; } hw_dom = kzalloc_node(sizeof(*hw_dom), GFP_KERNEL, cpu_to_node(cpu)); if (!hw_dom) return; d = &hw_dom->d_resctrl; d->hdr.id = id; d->hdr.type = RESCTRL_MON_DOMAIN; d->ci = get_cpu_cacheinfo_level(cpu, RESCTRL_L3_CACHE); if (!d->ci) { pr_warn_once("Can't find L3 cache for CPU:%d resource %s\n", cpu, r->name); mon_domain_free(hw_dom); return; } cpumask_set_cpu(cpu, &d->hdr.cpu_mask); arch_mon_domain_online(r, d); if (arch_domain_mbm_alloc(r->num_rmid, hw_dom)) { mon_domain_free(hw_dom); return; } list_add_tail_rcu(&d->hdr.list, add_pos); err = resctrl_online_mon_domain(r, d); if (err) { list_del_rcu(&d->hdr.list); synchronize_rcu(); mon_domain_free(hw_dom); } } static void domain_add_cpu(int cpu, struct rdt_resource *r) { if (r->alloc_capable) domain_add_cpu_ctrl(cpu, r); if (r->mon_capable) domain_add_cpu_mon(cpu, r); } static void domain_remove_cpu_ctrl(int cpu, struct rdt_resource *r) { int id = get_domain_id_from_scope(cpu, r->ctrl_scope); struct rdt_hw_ctrl_domain *hw_dom; struct rdt_domain_hdr *hdr; struct rdt_ctrl_domain *d; lockdep_assert_held(&domain_list_lock); if (id < 0) { pr_warn_once("Can't find control domain id for CPU:%d scope:%d for resource %s\n", cpu, r->ctrl_scope, r->name); return; } hdr = rdt_find_domain(&r->ctrl_domains, id, NULL); if (!hdr) { pr_warn("Can't find control domain for id=%d for CPU %d for resource %s\n", id, cpu, r->name); return; } if (WARN_ON_ONCE(hdr->type != RESCTRL_CTRL_DOMAIN)) return; d = container_of(hdr, struct rdt_ctrl_domain, hdr); hw_dom = resctrl_to_arch_ctrl_dom(d); cpumask_clear_cpu(cpu, &d->hdr.cpu_mask); if (cpumask_empty(&d->hdr.cpu_mask)) { resctrl_offline_ctrl_domain(r, d); list_del_rcu(&d->hdr.list); synchronize_rcu(); /* * rdt_ctrl_domain "d" is going to be freed below, so clear * its pointer from pseudo_lock_region struct. */ if (d->plr) d->plr->d = NULL; ctrl_domain_free(hw_dom); return; } } static void domain_remove_cpu_mon(int cpu, struct rdt_resource *r) { int id = get_domain_id_from_scope(cpu, r->mon_scope); struct rdt_hw_mon_domain *hw_dom; struct rdt_domain_hdr *hdr; struct rdt_mon_domain *d; lockdep_assert_held(&domain_list_lock); if (id < 0) { pr_warn_once("Can't find monitor domain id for CPU:%d scope:%d for resource %s\n", cpu, r->mon_scope, r->name); return; } hdr = rdt_find_domain(&r->mon_domains, id, NULL); if (!hdr) { pr_warn("Can't find monitor domain for id=%d for CPU %d for resource %s\n", id, cpu, r->name); return; } if (WARN_ON_ONCE(hdr->type != RESCTRL_MON_DOMAIN)) return; d = container_of(hdr, struct rdt_mon_domain, hdr); hw_dom = resctrl_to_arch_mon_dom(d); cpumask_clear_cpu(cpu, &d->hdr.cpu_mask); if (cpumask_empty(&d->hdr.cpu_mask)) { resctrl_offline_mon_domain(r, d); list_del_rcu(&d->hdr.list); synchronize_rcu(); mon_domain_free(hw_dom); return; } } static void domain_remove_cpu(int cpu, struct rdt_resource *r) { if (r->alloc_capable) domain_remove_cpu_ctrl(cpu, r); if (r->mon_capable) domain_remove_cpu_mon(cpu, r); } static void clear_closid_rmid(int cpu) { struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state); state->default_closid = RESCTRL_RESERVED_CLOSID; state->default_rmid = RESCTRL_RESERVED_RMID; state->cur_closid = RESCTRL_RESERVED_CLOSID; state->cur_rmid = RESCTRL_RESERVED_RMID; wrmsr(MSR_IA32_PQR_ASSOC, RESCTRL_RESERVED_RMID, RESCTRL_RESERVED_CLOSID); } static int resctrl_arch_online_cpu(unsigned int cpu) { struct rdt_resource *r; mutex_lock(&domain_list_lock); for_each_capable_rdt_resource(r) domain_add_cpu(cpu, r); mutex_unlock(&domain_list_lock); clear_closid_rmid(cpu); resctrl_online_cpu(cpu); return 0; } static int resctrl_arch_offline_cpu(unsigned int cpu) { struct rdt_resource *r; resctrl_offline_cpu(cpu); mutex_lock(&domain_list_lock); for_each_capable_rdt_resource(r) domain_remove_cpu(cpu, r); mutex_unlock(&domain_list_lock); clear_closid_rmid(cpu); return 0; } /* * Choose a width for the resource name and resource data based on the * resource that has widest name and cbm. */ static __init void rdt_init_padding(void) { struct rdt_resource *r; for_each_alloc_capable_rdt_resource(r) { if (r->data_width > max_data_width) max_data_width = r->data_width; } } enum { RDT_FLAG_CMT, RDT_FLAG_MBM_TOTAL, RDT_FLAG_MBM_LOCAL, RDT_FLAG_L3_CAT, RDT_FLAG_L3_CDP, RDT_FLAG_L2_CAT, RDT_FLAG_L2_CDP, RDT_FLAG_MBA, RDT_FLAG_SMBA, RDT_FLAG_BMEC, }; #define RDT_OPT(idx, n, f) \ [idx] = { \ .name = n, \ .flag = f \ } struct rdt_options { char *name; int flag; bool force_off, force_on; }; static struct rdt_options rdt_options[] __initdata = { RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC), RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL), RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL), RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3), RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3), RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2), RDT_OPT(RDT_FLAG_L2_CDP, "l2cdp", X86_FEATURE_CDP_L2), RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA), RDT_OPT(RDT_FLAG_SMBA, "smba", X86_FEATURE_SMBA), RDT_OPT(RDT_FLAG_BMEC, "bmec", X86_FEATURE_BMEC), }; #define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options) static int __init set_rdt_options(char *str) { struct rdt_options *o; bool force_off; char *tok; if (*str == '=') str++; while ((tok = strsep(&str, ",")) != NULL) { force_off = *tok == '!'; if (force_off) tok++; for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { if (strcmp(tok, o->name) == 0) { if (force_off) o->force_off = true; else o->force_on = true; break; } } } return 1; } __setup("rdt", set_rdt_options); bool __init rdt_cpu_has(int flag) { bool ret = boot_cpu_has(flag); struct rdt_options *o; if (!ret) return ret; for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { if (flag == o->flag) { if (o->force_off) ret = false; if (o->force_on) ret = true; break; } } return ret; } static __init bool get_mem_config(void) { struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_MBA]; if (!rdt_cpu_has(X86_FEATURE_MBA)) return false; if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) return __get_mem_config_intel(&hw_res->r_resctrl); else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return __rdt_get_mem_config_amd(&hw_res->r_resctrl); return false; } static __init bool get_slow_mem_config(void) { struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_SMBA]; if (!rdt_cpu_has(X86_FEATURE_SMBA)) return false; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return __rdt_get_mem_config_amd(&hw_res->r_resctrl); return false; } static __init bool get_rdt_alloc_resources(void) { struct rdt_resource *r; bool ret = false; if (rdt_alloc_capable) return true; if (!boot_cpu_has(X86_FEATURE_RDT_A)) return false; if (rdt_cpu_has(X86_FEATURE_CAT_L3)) { r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; rdt_get_cache_alloc_cfg(1, r); if (rdt_cpu_has(X86_FEATURE_CDP_L3)) rdt_get_cdp_l3_config(); ret = true; } if (rdt_cpu_has(X86_FEATURE_CAT_L2)) { /* CPUID 0x10.2 fields are same format at 0x10.1 */ r = &rdt_resources_all[RDT_RESOURCE_L2].r_resctrl; rdt_get_cache_alloc_cfg(2, r); if (rdt_cpu_has(X86_FEATURE_CDP_L2)) rdt_get_cdp_l2_config(); ret = true; } if (get_mem_config()) ret = true; if (get_slow_mem_config()) ret = true; return ret; } static __init bool get_rdt_mon_resources(void) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC)) rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID); if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID); if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID); if (!rdt_mon_features) return false; return !rdt_get_mon_l3_config(r); } static __init void __check_quirks_intel(void) { switch (boot_cpu_data.x86_vfm) { case INTEL_HASWELL_X: if (!rdt_options[RDT_FLAG_L3_CAT].force_off) cache_alloc_hsw_probe(); break; case INTEL_SKYLAKE_X: if (boot_cpu_data.x86_stepping <= 4) set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat"); else set_rdt_options("!l3cat"); fallthrough; case INTEL_BROADWELL_X: intel_rdt_mbm_apply_quirk(); break; } } static __init void check_quirks(void) { if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) __check_quirks_intel(); } static __init bool get_rdt_resources(void) { rdt_alloc_capable = get_rdt_alloc_resources(); rdt_mon_capable = get_rdt_mon_resources(); return (rdt_mon_capable || rdt_alloc_capable); } static __init void rdt_init_res_defs_intel(void) { struct rdt_hw_resource *hw_res; struct rdt_resource *r; for_each_rdt_resource(r) { hw_res = resctrl_to_arch_res(r); if (r->rid == RDT_RESOURCE_L3 || r->rid == RDT_RESOURCE_L2) { r->cache.arch_has_per_cpu_cfg = false; r->cache.min_cbm_bits = 1; } else if (r->rid == RDT_RESOURCE_MBA) { hw_res->msr_base = MSR_IA32_MBA_THRTL_BASE; hw_res->msr_update = mba_wrmsr_intel; } } } static __init void rdt_init_res_defs_amd(void) { struct rdt_hw_resource *hw_res; struct rdt_resource *r; for_each_rdt_resource(r) { hw_res = resctrl_to_arch_res(r); if (r->rid == RDT_RESOURCE_L3 || r->rid == RDT_RESOURCE_L2) { r->cache.arch_has_sparse_bitmasks = true; r->cache.arch_has_per_cpu_cfg = true; r->cache.min_cbm_bits = 0; } else if (r->rid == RDT_RESOURCE_MBA) { hw_res->msr_base = MSR_IA32_MBA_BW_BASE; hw_res->msr_update = mba_wrmsr_amd; } else if (r->rid == RDT_RESOURCE_SMBA) { hw_res->msr_base = MSR_IA32_SMBA_BW_BASE; hw_res->msr_update = mba_wrmsr_amd; } } } static __init void rdt_init_res_defs(void) { if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) rdt_init_res_defs_intel(); else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) rdt_init_res_defs_amd(); } static enum cpuhp_state rdt_online; /* Runs once on the BSP during boot. */ void resctrl_cpu_detect(struct cpuinfo_x86 *c) { if (!cpu_has(c, X86_FEATURE_CQM_LLC)) { c->x86_cache_max_rmid = -1; c->x86_cache_occ_scale = -1; c->x86_cache_mbm_width_offset = -1; return; } /* will be overridden if occupancy monitoring exists */ c->x86_cache_max_rmid = cpuid_ebx(0xf); if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) || cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) || cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) { u32 eax, ebx, ecx, edx; /* QoS sub-leaf, EAX=0Fh, ECX=1 */ cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx); c->x86_cache_max_rmid = ecx; c->x86_cache_occ_scale = ebx; c->x86_cache_mbm_width_offset = eax & 0xff; if (c->x86_vendor == X86_VENDOR_AMD && !c->x86_cache_mbm_width_offset) c->x86_cache_mbm_width_offset = MBM_CNTR_WIDTH_OFFSET_AMD; } } static int __init resctrl_late_init(void) { struct rdt_resource *r; int state, ret; /* * Initialize functions(or definitions) that are different * between vendors here. */ rdt_init_res_defs(); check_quirks(); if (!get_rdt_resources()) return -ENODEV; rdt_init_padding(); state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/resctrl/cat:online:", resctrl_arch_online_cpu, resctrl_arch_offline_cpu); if (state < 0) return state; ret = rdtgroup_init(); if (ret) { cpuhp_remove_state(state); return ret; } rdt_online = state; for_each_alloc_capable_rdt_resource(r) pr_info("%s allocation detected\n", r->name); for_each_mon_capable_rdt_resource(r) pr_info("%s monitoring detected\n", r->name); return 0; } late_initcall(resctrl_late_init); static void __exit resctrl_exit(void) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; cpuhp_remove_state(rdt_online); rdtgroup_exit(); if (r->mon_capable) rdt_put_mon_l3_config(); } __exitcall(resctrl_exit);