/* SPDX-License-Identifier: GPL-2.0 */ /* * Fast user context implementation of clock_gettime, gettimeofday, and time. * * Copyright (C) 2019 ARM Limited. * Copyright 2006 Andi Kleen, SUSE Labs. * 32 Bit compat layer by Stefani Seibold * sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany */ #ifndef __ASM_VDSO_GETTIMEOFDAY_H #define __ASM_VDSO_GETTIMEOFDAY_H #ifndef __ASSEMBLY__ #include #include #include #include #include #include extern struct vdso_data vvar_page __attribute__((visibility("hidden"))); extern struct vdso_data timens_page __attribute__((visibility("hidden"))); #define VDSO_HAS_TIME 1 #define VDSO_HAS_CLOCK_GETRES 1 /* * Declare the memory-mapped vclock data pages. These come from hypervisors. * If we ever reintroduce something like direct access to an MMIO clock like * the HPET again, it will go here as well. * * A load from any of these pages will segfault if the clock in question is * disabled, so appropriate compiler barriers and checks need to be used * to prevent stray loads. * * These declarations MUST NOT be const. The compiler will assume that * an extern const variable has genuinely constant contents, and the * resulting code won't work, since the whole point is that these pages * change over time, possibly while we're accessing them. */ #ifdef CONFIG_PARAVIRT_CLOCK /* * This is the vCPU 0 pvclock page. We only use pvclock from the vDSO * if the hypervisor tells us that all vCPUs can get valid data from the * vCPU 0 page. */ extern struct pvclock_vsyscall_time_info pvclock_page __attribute__((visibility("hidden"))); #endif #ifdef CONFIG_HYPERV_TIMER extern struct ms_hyperv_tsc_page hvclock_page __attribute__((visibility("hidden"))); #endif #ifdef CONFIG_TIME_NS static __always_inline const struct vdso_data *__arch_get_timens_vdso_data(const struct vdso_data *vd) { return &timens_page; } #endif #ifndef BUILD_VDSO32 static __always_inline long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) { long ret; asm ("syscall" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_gettime), "D" (_clkid), "S" (_ts) : "rcx", "r11"); return ret; } static __always_inline long gettimeofday_fallback(struct __kernel_old_timeval *_tv, struct timezone *_tz) { long ret; asm("syscall" : "=a" (ret) : "0" (__NR_gettimeofday), "D" (_tv), "S" (_tz) : "memory"); return ret; } static __always_inline long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) { long ret; asm ("syscall" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_getres), "D" (_clkid), "S" (_ts) : "rcx", "r11"); return ret; } #else static __always_inline long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %[clock], %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_gettime64), [clock] "g" (_clkid), "c" (_ts) : "edx"); return ret; } static __always_inline long clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %[clock], %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_gettime), [clock] "g" (_clkid), "c" (_ts) : "edx"); return ret; } static __always_inline long gettimeofday_fallback(struct __kernel_old_timeval *_tv, struct timezone *_tz) { long ret; asm( "mov %%ebx, %%edx \n" "mov %2, %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret) : "0" (__NR_gettimeofday), "g" (_tv), "c" (_tz) : "memory", "edx"); return ret; } static __always_inline long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %[clock], %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_getres_time64), [clock] "g" (_clkid), "c" (_ts) : "edx"); return ret; } static __always_inline long clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %[clock], %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*_ts) : "0" (__NR_clock_getres), [clock] "g" (_clkid), "c" (_ts) : "edx"); return ret; } #endif #ifdef CONFIG_PARAVIRT_CLOCK static u64 vread_pvclock(void) { const struct pvclock_vcpu_time_info *pvti = &pvclock_page.pvti; u32 version; u64 ret; /* * Note: The kernel and hypervisor must guarantee that cpu ID * number maps 1:1 to per-CPU pvclock time info. * * Because the hypervisor is entirely unaware of guest userspace * preemption, it cannot guarantee that per-CPU pvclock time * info is updated if the underlying CPU changes or that that * version is increased whenever underlying CPU changes. * * On KVM, we are guaranteed that pvti updates for any vCPU are * atomic as seen by *all* vCPUs. This is an even stronger * guarantee than we get with a normal seqlock. * * On Xen, we don't appear to have that guarantee, but Xen still * supplies a valid seqlock using the version field. * * We only do pvclock vdso timing at all if * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to * mean that all vCPUs have matching pvti and that the TSC is * synced, so we can just look at vCPU 0's pvti. */ do { version = pvclock_read_begin(pvti); if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) return U64_MAX; ret = __pvclock_read_cycles(pvti, rdtsc_ordered()); } while (pvclock_read_retry(pvti, version)); return ret & S64_MAX; } #endif #ifdef CONFIG_HYPERV_TIMER static u64 vread_hvclock(void) { u64 tsc, time; if (hv_read_tsc_page_tsc(&hvclock_page, &tsc, &time)) return time & S64_MAX; return U64_MAX; } #endif static inline u64 __arch_get_hw_counter(s32 clock_mode, const struct vdso_data *vd) { if (likely(clock_mode == VDSO_CLOCKMODE_TSC)) return (u64)rdtsc_ordered() & S64_MAX; /* * For any memory-mapped vclock type, we need to make sure that gcc * doesn't cleverly hoist a load before the mode check. Otherwise we * might end up touching the memory-mapped page even if the vclock in * question isn't enabled, which will segfault. Hence the barriers. */ #ifdef CONFIG_PARAVIRT_CLOCK if (clock_mode == VDSO_CLOCKMODE_PVCLOCK) { barrier(); return vread_pvclock(); } #endif #ifdef CONFIG_HYPERV_TIMER if (clock_mode == VDSO_CLOCKMODE_HVCLOCK) { barrier(); return vread_hvclock(); } #endif return U64_MAX; } static __always_inline const struct vdso_data *__arch_get_vdso_data(void) { return &vvar_page; } static inline bool arch_vdso_clocksource_ok(const struct vdso_data *vd) { return true; } #define vdso_clocksource_ok arch_vdso_clocksource_ok /* * Clocksource read value validation to handle PV and HyperV clocksources * which can be invalidated asynchronously and indicate invalidation by * returning U64_MAX, which can be effectively tested by checking for a * negative value after casting it to s64. * * This effectively forces a S64_MAX mask on the calculations, unlike the * U64_MAX mask normally used by x86 clocksources. */ static inline bool arch_vdso_cycles_ok(u64 cycles) { return (s64)cycles >= 0; } #define vdso_cycles_ok arch_vdso_cycles_ok /* * x86 specific calculation of nanoseconds for the current cycle count * * The regular implementation assumes that clocksource reads are globally * monotonic. The TSC can be slightly off across sockets which can cause * the regular delta calculation (@cycles - @last) to return a huge time * jump. * * Therefore it needs to be verified that @cycles are greater than * @vd->cycles_last. If not then use @vd->cycles_last, which is the base * time of the current conversion period. * * This variant also uses a custom mask because while the clocksource mask of * all the VDSO capable clocksources on x86 is U64_MAX, the above code uses * U64_MASK as an exception value, additionally arch_vdso_cycles_ok() above * declares everything with the MSB/Sign-bit set as invalid. Therefore the * effective mask is S64_MAX. */ static __always_inline u64 vdso_calc_ns(const struct vdso_data *vd, u64 cycles, u64 base) { u64 delta = cycles - vd->cycle_last; /* * Negative motion and deltas which can cause multiplication * overflow require special treatment. This check covers both as * negative motion is guaranteed to be greater than @vd::max_cycles * due to unsigned comparison. * * Due to the MSB/Sign-bit being used as invalid marker (see * arch_vdso_cycles_ok() above), the effective mask is S64_MAX, but that * case is also unlikely and will also take the unlikely path here. */ if (unlikely(delta > vd->max_cycles)) { /* * Due to the above mentioned TSC wobbles, filter out * negative motion. Per the above masking, the effective * sign bit is now bit 62. */ if (delta & (1ULL << 62)) return base >> vd->shift; /* Handle multiplication overflow gracefully */ return mul_u64_u32_add_u64_shr(delta & S64_MAX, vd->mult, base, vd->shift); } return ((delta * vd->mult) + base) >> vd->shift; } #define vdso_calc_ns vdso_calc_ns #endif /* !__ASSEMBLY__ */ #endif /* __ASM_VDSO_GETTIMEOFDAY_H */