/* SPDX-License-Identifier: GPL-2.0 */ /* * linux/arch/x86_64/entry.S * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs * Copyright (C) 2000 Pavel Machek * * entry.S contains the system-call and fault low-level handling routines. * * Some of this is documented in Documentation/x86/entry_64.rst * * A note on terminology: * - iret frame: Architecture defined interrupt frame from SS to RIP * at the top of the kernel process stack. * * Some macro usage: * - SYM_FUNC_START/END:Define functions in the symbol table. * - idtentry: Define exception entry points. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "calling.h" .code64 .section .entry.text, "ax" /* * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. * * This is the only entry point used for 64-bit system calls. The * hardware interface is reasonably well designed and the register to * argument mapping Linux uses fits well with the registers that are * available when SYSCALL is used. * * SYSCALL instructions can be found inlined in libc implementations as * well as some other programs and libraries. There are also a handful * of SYSCALL instructions in the vDSO used, for example, as a * clock_gettimeofday fallback. * * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, * then loads new ss, cs, and rip from previously programmed MSRs. * rflags gets masked by a value from another MSR (so CLD and CLAC * are not needed). SYSCALL does not save anything on the stack * and does not change rsp. * * Registers on entry: * rax system call number * rcx return address * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) * rdi arg0 * rsi arg1 * rdx arg2 * r10 arg3 (needs to be moved to rcx to conform to C ABI) * r8 arg4 * r9 arg5 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) * * Only called from user space. * * When user can change pt_regs->foo always force IRET. That is because * it deals with uncanonical addresses better. SYSRET has trouble * with them due to bugs in both AMD and Intel CPUs. */ SYM_CODE_START(entry_SYSCALL_64) UNWIND_HINT_ENTRY ENDBR swapgs /* tss.sp2 is scratch space. */ movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) ANNOTATE_NOENDBR /* Construct struct pt_regs on stack */ pushq $__USER_DS /* pt_regs->ss */ pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ pushq %r11 /* pt_regs->flags */ pushq $__USER_CS /* pt_regs->cs */ pushq %rcx /* pt_regs->ip */ SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) pushq %rax /* pt_regs->orig_ax */ PUSH_AND_CLEAR_REGS rax=$-ENOSYS /* IRQs are off. */ movq %rsp, %rdi /* Sign extend the lower 32bit as syscall numbers are treated as int */ movslq %eax, %rsi /* clobbers %rax, make sure it is after saving the syscall nr */ IBRS_ENTER UNTRAIN_RET call do_syscall_64 /* returns with IRQs disabled */ /* * Try to use SYSRET instead of IRET if we're returning to * a completely clean 64-bit userspace context. If we're not, * go to the slow exit path. * In the Xen PV case we must use iret anyway. */ ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ X86_FEATURE_XENPV movq RCX(%rsp), %rcx movq RIP(%rsp), %r11 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ jne swapgs_restore_regs_and_return_to_usermode /* * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP * in kernel space. This essentially lets the user take over * the kernel, since userspace controls RSP. * * If width of "canonical tail" ever becomes variable, this will need * to be updated to remain correct on both old and new CPUs. * * Change top bits to match most significant bit (47th or 56th bit * depending on paging mode) in the address. */ #ifdef CONFIG_X86_5LEVEL ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 #else shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx #endif /* If this changed %rcx, it was not canonical */ cmpq %rcx, %r11 jne swapgs_restore_regs_and_return_to_usermode cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ jne swapgs_restore_regs_and_return_to_usermode movq R11(%rsp), %r11 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ jne swapgs_restore_regs_and_return_to_usermode /* * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot * restore RF properly. If the slowpath sets it for whatever reason, we * need to restore it correctly. * * SYSRET can restore TF, but unlike IRET, restoring TF results in a * trap from userspace immediately after SYSRET. This would cause an * infinite loop whenever #DB happens with register state that satisfies * the opportunistic SYSRET conditions. For example, single-stepping * this user code: * * movq $stuck_here, %rcx * pushfq * popq %r11 * stuck_here: * * would never get past 'stuck_here'. */ testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 jnz swapgs_restore_regs_and_return_to_usermode /* nothing to check for RSP */ cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ jne swapgs_restore_regs_and_return_to_usermode /* * We win! This label is here just for ease of understanding * perf profiles. Nothing jumps here. */ syscall_return_via_sysret: IBRS_EXIT POP_REGS pop_rdi=0 /* * Now all regs are restored except RSP and RDI. * Save old stack pointer and switch to trampoline stack. */ movq %rsp, %rdi movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp UNWIND_HINT_EMPTY pushq RSP-RDI(%rdi) /* RSP */ pushq (%rdi) /* RDI */ /* * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ STACKLEAK_ERASE_NOCLOBBER SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi popq %rdi popq %rsp SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) ANNOTATE_NOENDBR swapgs sysretq SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) ANNOTATE_NOENDBR int3 SYM_CODE_END(entry_SYSCALL_64) /* * %rdi: prev task * %rsi: next task */ .pushsection .text, "ax" SYM_FUNC_START(__switch_to_asm) /* * Save callee-saved registers * This must match the order in inactive_task_frame */ pushq %rbp pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 /* switch stack */ movq %rsp, TASK_threadsp(%rdi) movq TASK_threadsp(%rsi), %rsp #ifdef CONFIG_STACKPROTECTOR movq TASK_stack_canary(%rsi), %rbx movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset #endif /* * When switching from a shallower to a deeper call stack * the RSB may either underflow or use entries populated * with userspace addresses. On CPUs where those concerns * exist, overwrite the RSB with entries which capture * speculative execution to prevent attack. */ FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW /* restore callee-saved registers */ popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx popq %rbp jmp __switch_to SYM_FUNC_END(__switch_to_asm) .popsection /* * A newly forked process directly context switches into this address. * * rax: prev task we switched from * rbx: kernel thread func (NULL for user thread) * r12: kernel thread arg */ .pushsection .text, "ax" __FUNC_ALIGN SYM_CODE_START_NOALIGN(ret_from_fork) UNWIND_HINT_EMPTY ANNOTATE_NOENDBR // copy_thread movq %rax, %rdi call schedule_tail /* rdi: 'prev' task parameter */ testq %rbx, %rbx /* from kernel_thread? */ jnz 1f /* kernel threads are uncommon */ 2: UNWIND_HINT_REGS movq %rsp, %rdi call syscall_exit_to_user_mode /* returns with IRQs disabled */ jmp swapgs_restore_regs_and_return_to_usermode 1: /* kernel thread */ UNWIND_HINT_EMPTY movq %r12, %rdi CALL_NOSPEC rbx /* * A kernel thread is allowed to return here after successfully * calling kernel_execve(). Exit to userspace to complete the execve() * syscall. */ movq $0, RAX(%rsp) jmp 2b SYM_CODE_END(ret_from_fork) .popsection .macro DEBUG_ENTRY_ASSERT_IRQS_OFF #ifdef CONFIG_DEBUG_ENTRY pushq %rax SAVE_FLAGS testl $X86_EFLAGS_IF, %eax jz .Lokay_\@ ud2 .Lokay_\@: popq %rax #endif .endm SYM_CODE_START_LOCAL(xen_error_entry) UNWIND_HINT_FUNC PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 UNTRAIN_RET RET SYM_CODE_END(xen_error_entry) /** * idtentry_body - Macro to emit code calling the C function * @cfunc: C function to be called * @has_error_code: Hardware pushed error code on stack */ .macro idtentry_body cfunc has_error_code:req /* * Call error_entry() and switch to the task stack if from userspace. * * When in XENPV, it is already in the task stack, and it can't fault * for native_iret() nor native_load_gs_index() since XENPV uses its * own pvops for IRET and load_gs_index(). And it doesn't need to * switch the CR3. So it can skip invoking error_entry(). */ ALTERNATIVE "call error_entry; movq %rax, %rsp", \ "call xen_error_entry", X86_FEATURE_XENPV ENCODE_FRAME_POINTER UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ .if \has_error_code == 1 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ .endif call \cfunc /* For some configurations \cfunc ends up being a noreturn. */ REACHABLE jmp error_return .endm /** * idtentry - Macro to generate entry stubs for simple IDT entries * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * @has_error_code: Hardware pushed error code on stack * * The macro emits code to set up the kernel context for straight forward * and simple IDT entries. No IST stack, no paranoid entry checks. */ .macro idtentry vector asmsym cfunc has_error_code:req SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS offset=\has_error_code*8 ENDBR ASM_CLAC cld .if \has_error_code == 0 pushq $-1 /* ORIG_RAX: no syscall to restart */ .endif .if \vector == X86_TRAP_BP /* * If coming from kernel space, create a 6-word gap to allow the * int3 handler to emulate a call instruction. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_no_gap_\@ .rept 6 pushq 5*8(%rsp) .endr UNWIND_HINT_IRET_REGS offset=8 .Lfrom_usermode_no_gap_\@: .endif idtentry_body \cfunc \has_error_code _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm /* * Interrupt entry/exit. * + The interrupt stubs push (vector) onto the stack, which is the error_code * position of idtentry exceptions, and jump to one of the two idtentry points * (common/spurious). * * common_interrupt is a hotpath, align it to a cache line */ .macro idtentry_irq vector cfunc .p2align CONFIG_X86_L1_CACHE_SHIFT idtentry \vector asm_\cfunc \cfunc has_error_code=1 .endm /* * System vectors which invoke their handlers directly and are not * going through the regular common device interrupt handling code. */ .macro idtentry_sysvec vector cfunc idtentry \vector asm_\cfunc \cfunc has_error_code=0 .endm /** * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * * The macro emits code to set up the kernel context for #MC and #DB * * If the entry comes from user space it uses the normal entry path * including the return to user space work and preemption checks on * exit. * * If hits in kernel mode then it needs to go through the paranoid * entry as the exception can hit any random state. No preemption * check on exit to keep the paranoid path simple. */ .macro idtentry_mce_db vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS ENDBR ASM_CLAC cld pushq $-1 /* ORIG_RAX: no syscall to restart */ /* * If the entry is from userspace, switch stacks and treat it as * a normal entry. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_switch_stack_\@ /* paranoid_entry returns GS information for paranoid_exit in EBX. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer */ call \cfunc jmp paranoid_exit /* Switch to the regular task stack and use the noist entry point */ .Lfrom_usermode_switch_stack_\@: idtentry_body noist_\cfunc, has_error_code=0 _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm #ifdef CONFIG_AMD_MEM_ENCRYPT /** * idtentry_vc - Macro to generate entry stub for #VC * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * * The macro emits code to set up the kernel context for #VC. The #VC handler * runs on an IST stack and needs to be able to cause nested #VC exceptions. * * To make this work the #VC entry code tries its best to pretend it doesn't use * an IST stack by switching to the task stack if coming from user-space (which * includes early SYSCALL entry path) or back to the stack in the IRET frame if * entered from kernel-mode. * * If entered from kernel-mode the return stack is validated first, and if it is * not safe to use (e.g. because it points to the entry stack) the #VC handler * will switch to a fall-back stack (VC2) and call a special handler function. * * The macro is only used for one vector, but it is planned to be extended in * the future for the #HV exception. */ .macro idtentry_vc vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS ENDBR ASM_CLAC cld /* * If the entry is from userspace, switch stacks and treat it as * a normal entry. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_switch_stack_\@ /* * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS */ call paranoid_entry UNWIND_HINT_REGS /* * Switch off the IST stack to make it free for nested exceptions. The * vc_switch_off_ist() function will switch back to the interrupted * stack if it is safe to do so. If not it switches to the VC fall-back * stack. */ movq %rsp, %rdi /* pt_regs pointer */ call vc_switch_off_ist movq %rax, %rsp /* Switch to new stack */ ENCODE_FRAME_POINTER UNWIND_HINT_REGS /* Update pt_regs */ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ movq %rsp, %rdi /* pt_regs pointer */ call kernel_\cfunc /* * No need to switch back to the IST stack. The current stack is either * identical to the stack in the IRET frame or the VC fall-back stack, * so it is definitely mapped even with PTI enabled. */ jmp paranoid_exit /* Switch to the regular task stack */ .Lfrom_usermode_switch_stack_\@: idtentry_body user_\cfunc, has_error_code=1 _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm #endif /* * Double fault entry. Straight paranoid. No checks from which context * this comes because for the espfix induced #DF this would do the wrong * thing. */ .macro idtentry_df vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS offset=8 ENDBR ASM_CLAC cld /* paranoid_entry returns GS information for paranoid_exit in EBX. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer into first argument */ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ call \cfunc /* For some configurations \cfunc ends up being a noreturn. */ REACHABLE jmp paranoid_exit _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm /* * Include the defines which emit the idt entries which are shared * shared between 32 and 64 bit and emit the __irqentry_text_* markers * so the stacktrace boundary checks work. */ __ALIGN .globl __irqentry_text_start __irqentry_text_start: #include __ALIGN .globl __irqentry_text_end __irqentry_text_end: ANNOTATE_NOENDBR SYM_CODE_START_LOCAL(common_interrupt_return) SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) IBRS_EXIT #ifdef CONFIG_DEBUG_ENTRY /* Assert that pt_regs indicates user mode. */ testb $3, CS(%rsp) jnz 1f ud2 1: #endif #ifdef CONFIG_XEN_PV ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV #endif POP_REGS pop_rdi=0 /* * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. * Save old stack pointer and switch to trampoline stack. */ movq %rsp, %rdi movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp UNWIND_HINT_EMPTY /* Copy the IRET frame to the trampoline stack. */ pushq 6*8(%rdi) /* SS */ pushq 5*8(%rdi) /* RSP */ pushq 4*8(%rdi) /* EFLAGS */ pushq 3*8(%rdi) /* CS */ pushq 2*8(%rdi) /* RIP */ /* Push user RDI on the trampoline stack. */ pushq (%rdi) /* * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ STACKLEAK_ERASE_NOCLOBBER SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi /* Restore RDI. */ popq %rdi swapgs jmp .Lnative_iret SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) #ifdef CONFIG_DEBUG_ENTRY /* Assert that pt_regs indicates kernel mode. */ testb $3, CS(%rsp) jz 1f ud2 1: #endif POP_REGS addq $8, %rsp /* skip regs->orig_ax */ /* * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization * when returning from IPI handler. */ #ifdef CONFIG_XEN_PV SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) ANNOTATE_NOENDBR .byte 0xe9 .long .Lnative_iret - (. + 4) #endif .Lnative_iret: UNWIND_HINT_IRET_REGS /* * Are we returning to a stack segment from the LDT? Note: in * 64-bit mode SS:RSP on the exception stack is always valid. */ #ifdef CONFIG_X86_ESPFIX64 testb $4, (SS-RIP)(%rsp) jnz native_irq_return_ldt #endif SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) ANNOTATE_NOENDBR // exc_double_fault /* * This may fault. Non-paranoid faults on return to userspace are * handled by fixup_bad_iret. These include #SS, #GP, and #NP. * Double-faults due to espfix64 are handled in exc_double_fault. * Other faults here are fatal. */ iretq #ifdef CONFIG_X86_ESPFIX64 native_irq_return_ldt: /* * We are running with user GSBASE. All GPRs contain their user * values. We have a percpu ESPFIX stack that is eight slots * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom * of the ESPFIX stack. * * We clobber RAX and RDI in this code. We stash RDI on the * normal stack and RAX on the ESPFIX stack. * * The ESPFIX stack layout we set up looks like this: * * --- top of ESPFIX stack --- * SS * RSP * RFLAGS * CS * RIP <-- RSP points here when we're done * RAX <-- espfix_waddr points here * --- bottom of ESPFIX stack --- */ pushq %rdi /* Stash user RDI */ swapgs /* to kernel GS */ SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ movq PER_CPU_VAR(espfix_waddr), %rdi movq %rax, (0*8)(%rdi) /* user RAX */ movq (1*8)(%rsp), %rax /* user RIP */ movq %rax, (1*8)(%rdi) movq (2*8)(%rsp), %rax /* user CS */ movq %rax, (2*8)(%rdi) movq (3*8)(%rsp), %rax /* user RFLAGS */ movq %rax, (3*8)(%rdi) movq (5*8)(%rsp), %rax /* user SS */ movq %rax, (5*8)(%rdi) movq (4*8)(%rsp), %rax /* user RSP */ movq %rax, (4*8)(%rdi) /* Now RAX == RSP. */ andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ /* * espfix_stack[31:16] == 0. The page tables are set up such that * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of * espfix_waddr for any X. That is, there are 65536 RO aliases of * the same page. Set up RSP so that RSP[31:16] contains the * respective 16 bits of the /userspace/ RSP and RSP nonetheless * still points to an RO alias of the ESPFIX stack. */ orq PER_CPU_VAR(espfix_stack), %rax SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi swapgs /* to user GS */ popq %rdi /* Restore user RDI */ movq %rax, %rsp UNWIND_HINT_IRET_REGS offset=8 /* * At this point, we cannot write to the stack any more, but we can * still read. */ popq %rax /* Restore user RAX */ /* * RSP now points to an ordinary IRET frame, except that the page * is read-only and RSP[31:16] are preloaded with the userspace * values. We can now IRET back to userspace. */ jmp native_irq_return_iret #endif SYM_CODE_END(common_interrupt_return) _ASM_NOKPROBE(common_interrupt_return) /* * Reload gs selector with exception handling * edi: new selector * * Is in entry.text as it shouldn't be instrumented. */ SYM_FUNC_START(asm_load_gs_index) FRAME_BEGIN swapgs .Lgs_change: ANNOTATE_NOENDBR // error_entry movl %edi, %gs 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE swapgs FRAME_END RET /* running with kernelgs */ .Lbad_gs: swapgs /* switch back to user gs */ .macro ZAP_GS /* This can't be a string because the preprocessor needs to see it. */ movl $__USER_DS, %eax movl %eax, %gs .endm ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG xorl %eax, %eax movl %eax, %gs jmp 2b _ASM_EXTABLE(.Lgs_change, .Lbad_gs) SYM_FUNC_END(asm_load_gs_index) EXPORT_SYMBOL(asm_load_gs_index) #ifdef CONFIG_XEN_PV /* * A note on the "critical region" in our callback handler. * We want to avoid stacking callback handlers due to events occurring * during handling of the last event. To do this, we keep events disabled * until we've done all processing. HOWEVER, we must enable events before * popping the stack frame (can't be done atomically) and so it would still * be possible to get enough handler activations to overflow the stack. * Although unlikely, bugs of that kind are hard to track down, so we'd * like to avoid the possibility. * So, on entry to the handler we detect whether we interrupted an * existing activation in its critical region -- if so, we pop the current * activation and restart the handler using the previous one. * * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) */ __FUNC_ALIGN SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) /* * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will * see the correct pointer to the pt_regs */ UNWIND_HINT_FUNC movq %rdi, %rsp /* we don't return, adjust the stack frame */ UNWIND_HINT_REGS call xen_pv_evtchn_do_upcall jmp error_return SYM_CODE_END(exc_xen_hypervisor_callback) /* * Hypervisor uses this for application faults while it executes. * We get here for two reasons: * 1. Fault while reloading DS, ES, FS or GS * 2. Fault while executing IRET * Category 1 we do not need to fix up as Xen has already reloaded all segment * registers that could be reloaded and zeroed the others. * Category 2 we fix up by killing the current process. We cannot use the * normal Linux return path in this case because if we use the IRET hypercall * to pop the stack frame we end up in an infinite loop of failsafe callbacks. * We distinguish between categories by comparing each saved segment register * with its current contents: any discrepancy means we in category 1. */ __FUNC_ALIGN SYM_CODE_START_NOALIGN(xen_failsafe_callback) UNWIND_HINT_EMPTY ENDBR movl %ds, %ecx cmpw %cx, 0x10(%rsp) jne 1f movl %es, %ecx cmpw %cx, 0x18(%rsp) jne 1f movl %fs, %ecx cmpw %cx, 0x20(%rsp) jne 1f movl %gs, %ecx cmpw %cx, 0x28(%rsp) jne 1f /* All segments match their saved values => Category 2 (Bad IRET). */ movq (%rsp), %rcx movq 8(%rsp), %r11 addq $0x30, %rsp pushq $0 /* RIP */ UNWIND_HINT_IRET_REGS offset=8 jmp asm_exc_general_protection 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ movq (%rsp), %rcx movq 8(%rsp), %r11 addq $0x30, %rsp UNWIND_HINT_IRET_REGS pushq $-1 /* orig_ax = -1 => not a system call */ PUSH_AND_CLEAR_REGS ENCODE_FRAME_POINTER jmp error_return SYM_CODE_END(xen_failsafe_callback) #endif /* CONFIG_XEN_PV */ /* * Save all registers in pt_regs. Return GSBASE related information * in EBX depending on the availability of the FSGSBASE instructions: * * FSGSBASE R/EBX * N 0 -> SWAPGS on exit * 1 -> no SWAPGS on exit * * Y GSBASE value at entry, must be restored in paranoid_exit * * R14 - old CR3 * R15 - old SPEC_CTRL */ SYM_CODE_START_LOCAL(paranoid_entry) UNWIND_HINT_FUNC PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 /* * Always stash CR3 in %r14. This value will be restored, * verbatim, at exit. Needed if paranoid_entry interrupted * another entry that already switched to the user CR3 value * but has not yet returned to userspace. * * This is also why CS (stashed in the "iret frame" by the * hardware at entry) can not be used: this may be a return * to kernel code, but with a user CR3 value. * * Switching CR3 does not depend on kernel GSBASE so it can * be done before switching to the kernel GSBASE. This is * required for FSGSBASE because the kernel GSBASE has to * be retrieved from a kernel internal table. */ SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 /* * Handling GSBASE depends on the availability of FSGSBASE. * * Without FSGSBASE the kernel enforces that negative GSBASE * values indicate kernel GSBASE. With FSGSBASE no assumptions * can be made about the GSBASE value when entering from user * space. */ ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE /* * Read the current GSBASE and store it in %rbx unconditionally, * retrieve and set the current CPUs kernel GSBASE. The stored value * has to be restored in paranoid_exit unconditionally. * * The unconditional write to GS base below ensures that no subsequent * loads based on a mispredicted GS base can happen, therefore no LFENCE * is needed here. */ SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx jmp .Lparanoid_gsbase_done .Lparanoid_entry_checkgs: /* EBX = 1 -> kernel GSBASE active, no restore required */ movl $1, %ebx /* * The kernel-enforced convention is a negative GSBASE indicates * a kernel value. No SWAPGS needed on entry and exit. */ movl $MSR_GS_BASE, %ecx rdmsr testl %edx, %edx js .Lparanoid_kernel_gsbase /* EBX = 0 -> SWAPGS required on exit */ xorl %ebx, %ebx swapgs .Lparanoid_kernel_gsbase: FENCE_SWAPGS_KERNEL_ENTRY .Lparanoid_gsbase_done: /* * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like * CR3 above, keep the old value in a callee saved register. */ IBRS_ENTER save_reg=%r15 UNTRAIN_RET RET SYM_CODE_END(paranoid_entry) /* * "Paranoid" exit path from exception stack. This is invoked * only on return from non-NMI IST interrupts that came * from kernel space. * * We may be returning to very strange contexts (e.g. very early * in syscall entry), so checking for preemption here would * be complicated. Fortunately, there's no good reason to try * to handle preemption here. * * R/EBX contains the GSBASE related information depending on the * availability of the FSGSBASE instructions: * * FSGSBASE R/EBX * N 0 -> SWAPGS on exit * 1 -> no SWAPGS on exit * * Y User space GSBASE, must be restored unconditionally * * R14 - old CR3 * R15 - old SPEC_CTRL */ SYM_CODE_START_LOCAL(paranoid_exit) UNWIND_HINT_REGS /* * Must restore IBRS state before both CR3 and %GS since we need access * to the per-CPU x86_spec_ctrl_shadow variable. */ IBRS_EXIT save_reg=%r15 /* * The order of operations is important. RESTORE_CR3 requires * kernel GSBASE. * * NB to anyone to try to optimize this code: this code does * not execute at all for exceptions from user mode. Those * exceptions go through error_exit instead. */ RESTORE_CR3 scratch_reg=%rax save_reg=%r14 /* Handle the three GSBASE cases */ ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE /* With FSGSBASE enabled, unconditionally restore GSBASE */ wrgsbase %rbx jmp restore_regs_and_return_to_kernel .Lparanoid_exit_checkgs: /* On non-FSGSBASE systems, conditionally do SWAPGS */ testl %ebx, %ebx jnz restore_regs_and_return_to_kernel /* We are returning to a context with user GSBASE */ swapgs jmp restore_regs_and_return_to_kernel SYM_CODE_END(paranoid_exit) /* * Switch GS and CR3 if needed. */ SYM_CODE_START_LOCAL(error_entry) UNWIND_HINT_FUNC PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 testb $3, CS+8(%rsp) jz .Lerror_kernelspace /* * We entered from user mode or we're pretending to have entered * from user mode due to an IRET fault. */ swapgs FENCE_SWAPGS_USER_ENTRY /* We have user CR3. Change to kernel CR3. */ SWITCH_TO_KERNEL_CR3 scratch_reg=%rax IBRS_ENTER UNTRAIN_RET leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ .Lerror_entry_from_usermode_after_swapgs: /* Put us onto the real thread stack. */ call sync_regs RET /* * There are two places in the kernel that can potentially fault with * usergs. Handle them here. B stepping K8s sometimes report a * truncated RIP for IRET exceptions returning to compat mode. Check * for these here too. */ .Lerror_kernelspace: leaq native_irq_return_iret(%rip), %rcx cmpq %rcx, RIP+8(%rsp) je .Lerror_bad_iret movl %ecx, %eax /* zero extend */ cmpq %rax, RIP+8(%rsp) je .Lbstep_iret cmpq $.Lgs_change, RIP+8(%rsp) jne .Lerror_entry_done_lfence /* * hack: .Lgs_change can fail with user gsbase. If this happens, fix up * gsbase and proceed. We'll fix up the exception and land in * .Lgs_change's error handler with kernel gsbase. */ swapgs /* * Issue an LFENCE to prevent GS speculation, regardless of whether it is a * kernel or user gsbase. */ .Lerror_entry_done_lfence: FENCE_SWAPGS_KERNEL_ENTRY leaq 8(%rsp), %rax /* return pt_regs pointer */ ANNOTATE_UNRET_END RET .Lbstep_iret: /* Fix truncated RIP */ movq %rcx, RIP+8(%rsp) /* fall through */ .Lerror_bad_iret: /* * We came from an IRET to user mode, so we have user * gsbase and CR3. Switch to kernel gsbase and CR3: */ swapgs FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rax IBRS_ENTER UNTRAIN_RET /* * Pretend that the exception came from user mode: set up pt_regs * as if we faulted immediately after IRET. */ leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ call fixup_bad_iret mov %rax, %rdi jmp .Lerror_entry_from_usermode_after_swapgs SYM_CODE_END(error_entry) SYM_CODE_START_LOCAL(error_return) UNWIND_HINT_REGS DEBUG_ENTRY_ASSERT_IRQS_OFF testb $3, CS(%rsp) jz restore_regs_and_return_to_kernel jmp swapgs_restore_regs_and_return_to_usermode SYM_CODE_END(error_return) /* * Runs on exception stack. Xen PV does not go through this path at all, * so we can use real assembly here. * * Registers: * %r14: Used to save/restore the CR3 of the interrupted context * when PAGE_TABLE_ISOLATION is in use. Do not clobber. */ SYM_CODE_START(asm_exc_nmi) UNWIND_HINT_IRET_REGS ENDBR /* * We allow breakpoints in NMIs. If a breakpoint occurs, then * the iretq it performs will take us out of NMI context. * This means that we can have nested NMIs where the next * NMI is using the top of the stack of the previous NMI. We * can't let it execute because the nested NMI will corrupt the * stack of the previous NMI. NMI handlers are not re-entrant * anyway. * * To handle this case we do the following: * Check the a special location on the stack that contains * a variable that is set when NMIs are executing. * The interrupted task's stack is also checked to see if it * is an NMI stack. * If the variable is not set and the stack is not the NMI * stack then: * o Set the special variable on the stack * o Copy the interrupt frame into an "outermost" location on the * stack * o Copy the interrupt frame into an "iret" location on the stack * o Continue processing the NMI * If the variable is set or the previous stack is the NMI stack: * o Modify the "iret" location to jump to the repeat_nmi * o return back to the first NMI * * Now on exit of the first NMI, we first clear the stack variable * The NMI stack will tell any nested NMIs at that point that it is * nested. Then we pop the stack normally with iret, and if there was * a nested NMI that updated the copy interrupt stack frame, a * jump will be made to the repeat_nmi code that will handle the second * NMI. * * However, espfix prevents us from directly returning to userspace * with a single IRET instruction. Similarly, IRET to user mode * can fault. We therefore handle NMIs from user space like * other IST entries. */ ASM_CLAC cld /* Use %rdx as our temp variable throughout */ pushq %rdx testb $3, CS-RIP+8(%rsp) jz .Lnmi_from_kernel /* * NMI from user mode. We need to run on the thread stack, but we * can't go through the normal entry paths: NMIs are masked, and * we don't want to enable interrupts, because then we'll end * up in an awkward situation in which IRQs are on but NMIs * are off. * * We also must not push anything to the stack before switching * stacks lest we corrupt the "NMI executing" variable. */ swapgs FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx movq %rsp, %rdx movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp UNWIND_HINT_IRET_REGS base=%rdx offset=8 pushq 5*8(%rdx) /* pt_regs->ss */ pushq 4*8(%rdx) /* pt_regs->rsp */ pushq 3*8(%rdx) /* pt_regs->flags */ pushq 2*8(%rdx) /* pt_regs->cs */ pushq 1*8(%rdx) /* pt_regs->rip */ UNWIND_HINT_IRET_REGS pushq $-1 /* pt_regs->orig_ax */ PUSH_AND_CLEAR_REGS rdx=(%rdx) ENCODE_FRAME_POINTER IBRS_ENTER UNTRAIN_RET /* * At this point we no longer need to worry about stack damage * due to nesting -- we're on the normal thread stack and we're * done with the NMI stack. */ movq %rsp, %rdi movq $-1, %rsi call exc_nmi /* * Return back to user mode. We must *not* do the normal exit * work, because we don't want to enable interrupts. */ jmp swapgs_restore_regs_and_return_to_usermode .Lnmi_from_kernel: /* * Here's what our stack frame will look like: * +---------------------------------------------------------+ * | original SS | * | original Return RSP | * | original RFLAGS | * | original CS | * | original RIP | * +---------------------------------------------------------+ * | temp storage for rdx | * +---------------------------------------------------------+ * | "NMI executing" variable | * +---------------------------------------------------------+ * | iret SS } Copied from "outermost" frame | * | iret Return RSP } on each loop iteration; overwritten | * | iret RFLAGS } by a nested NMI to force another | * | iret CS } iteration if needed. | * | iret RIP } | * +---------------------------------------------------------+ * | outermost SS } initialized in first_nmi; | * | outermost Return RSP } will not be changed before | * | outermost RFLAGS } NMI processing is done. | * | outermost CS } Copied to "iret" frame on each | * | outermost RIP } iteration. | * +---------------------------------------------------------+ * | pt_regs | * +---------------------------------------------------------+ * * The "original" frame is used by hardware. Before re-enabling * NMIs, we need to be done with it, and we need to leave enough * space for the asm code here. * * We return by executing IRET while RSP points to the "iret" frame. * That will either return for real or it will loop back into NMI * processing. * * The "outermost" frame is copied to the "iret" frame on each * iteration of the loop, so each iteration starts with the "iret" * frame pointing to the final return target. */ /* * Determine whether we're a nested NMI. * * If we interrupted kernel code between repeat_nmi and * end_repeat_nmi, then we are a nested NMI. We must not * modify the "iret" frame because it's being written by * the outer NMI. That's okay; the outer NMI handler is * about to about to call exc_nmi() anyway, so we can just * resume the outer NMI. */ movq $repeat_nmi, %rdx cmpq 8(%rsp), %rdx ja 1f movq $end_repeat_nmi, %rdx cmpq 8(%rsp), %rdx ja nested_nmi_out 1: /* * Now check "NMI executing". If it's set, then we're nested. * This will not detect if we interrupted an outer NMI just * before IRET. */ cmpl $1, -8(%rsp) je nested_nmi /* * Now test if the previous stack was an NMI stack. This covers * the case where we interrupt an outer NMI after it clears * "NMI executing" but before IRET. We need to be careful, though: * there is one case in which RSP could point to the NMI stack * despite there being no NMI active: naughty userspace controls * RSP at the very beginning of the SYSCALL targets. We can * pull a fast one on naughty userspace, though: we program * SYSCALL to mask DF, so userspace cannot cause DF to be set * if it controls the kernel's RSP. We set DF before we clear * "NMI executing". */ lea 6*8(%rsp), %rdx /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ cmpq %rdx, 4*8(%rsp) /* If the stack pointer is above the NMI stack, this is a normal NMI */ ja first_nmi subq $EXCEPTION_STKSZ, %rdx cmpq %rdx, 4*8(%rsp) /* If it is below the NMI stack, it is a normal NMI */ jb first_nmi /* Ah, it is within the NMI stack. */ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) jz first_nmi /* RSP was user controlled. */ /* This is a nested NMI. */ nested_nmi: /* * Modify the "iret" frame to point to repeat_nmi, forcing another * iteration of NMI handling. */ subq $8, %rsp leaq -10*8(%rsp), %rdx pushq $__KERNEL_DS pushq %rdx pushfq pushq $__KERNEL_CS pushq $repeat_nmi /* Put stack back */ addq $(6*8), %rsp nested_nmi_out: popq %rdx /* We are returning to kernel mode, so this cannot result in a fault. */ iretq first_nmi: /* Restore rdx. */ movq (%rsp), %rdx /* Make room for "NMI executing". */ pushq $0 /* Leave room for the "iret" frame */ subq $(5*8), %rsp /* Copy the "original" frame to the "outermost" frame */ .rept 5 pushq 11*8(%rsp) .endr UNWIND_HINT_IRET_REGS /* Everything up to here is safe from nested NMIs */ #ifdef CONFIG_DEBUG_ENTRY /* * For ease of testing, unmask NMIs right away. Disabled by * default because IRET is very expensive. */ pushq $0 /* SS */ pushq %rsp /* RSP (minus 8 because of the previous push) */ addq $8, (%rsp) /* Fix up RSP */ pushfq /* RFLAGS */ pushq $__KERNEL_CS /* CS */ pushq $1f /* RIP */ iretq /* continues at repeat_nmi below */ UNWIND_HINT_IRET_REGS 1: #endif repeat_nmi: ANNOTATE_NOENDBR // this code /* * If there was a nested NMI, the first NMI's iret will return * here. But NMIs are still enabled and we can take another * nested NMI. The nested NMI checks the interrupted RIP to see * if it is between repeat_nmi and end_repeat_nmi, and if so * it will just return, as we are about to repeat an NMI anyway. * This makes it safe to copy to the stack frame that a nested * NMI will update. * * RSP is pointing to "outermost RIP". gsbase is unknown, but, if * we're repeating an NMI, gsbase has the same value that it had on * the first iteration. paranoid_entry will load the kernel * gsbase if needed before we call exc_nmi(). "NMI executing" * is zero. */ movq $1, 10*8(%rsp) /* Set "NMI executing". */ /* * Copy the "outermost" frame to the "iret" frame. NMIs that nest * here must not modify the "iret" frame while we're writing to * it or it will end up containing garbage. */ addq $(10*8), %rsp .rept 5 pushq -6*8(%rsp) .endr subq $(5*8), %rsp end_repeat_nmi: ANNOTATE_NOENDBR // this code /* * Everything below this point can be preempted by a nested NMI. * If this happens, then the inner NMI will change the "iret" * frame to point back to repeat_nmi. */ pushq $-1 /* ORIG_RAX: no syscall to restart */ /* * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit * as we should not be calling schedule in NMI context. * Even with normal interrupts enabled. An NMI should not be * setting NEED_RESCHED or anything that normal interrupts and * exceptions might do. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi movq $-1, %rsi call exc_nmi /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ IBRS_EXIT save_reg=%r15 /* Always restore stashed CR3 value (see paranoid_entry) */ RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 /* * The above invocation of paranoid_entry stored the GSBASE * related information in R/EBX depending on the availability * of FSGSBASE. * * If FSGSBASE is enabled, restore the saved GSBASE value * unconditionally, otherwise take the conditional SWAPGS path. */ ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE wrgsbase %rbx jmp nmi_restore nmi_no_fsgsbase: /* EBX == 0 -> invoke SWAPGS */ testl %ebx, %ebx jnz nmi_restore nmi_swapgs: swapgs nmi_restore: POP_REGS /* * Skip orig_ax and the "outermost" frame to point RSP at the "iret" * at the "iret" frame. */ addq $6*8, %rsp /* * Clear "NMI executing". Set DF first so that we can easily * distinguish the remaining code between here and IRET from * the SYSCALL entry and exit paths. * * We arguably should just inspect RIP instead, but I (Andy) wrote * this code when I had the misapprehension that Xen PV supported * NMIs, and Xen PV would break that approach. */ std movq $0, 5*8(%rsp) /* clear "NMI executing" */ /* * iretq reads the "iret" frame and exits the NMI stack in a * single instruction. We are returning to kernel mode, so this * cannot result in a fault. Similarly, we don't need to worry * about espfix64 on the way back to kernel mode. */ iretq SYM_CODE_END(asm_exc_nmi) #ifndef CONFIG_IA32_EMULATION /* * This handles SYSCALL from 32-bit code. There is no way to program * MSRs to fully disable 32-bit SYSCALL. */ SYM_CODE_START(ignore_sysret) UNWIND_HINT_EMPTY ENDBR mov $-ENOSYS, %eax sysretl SYM_CODE_END(ignore_sysret) #endif .pushsection .text, "ax" __FUNC_ALIGN SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) UNWIND_HINT_FUNC /* Prevent any naive code from trying to unwind to our caller. */ xorl %ebp, %ebp movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax leaq -PTREGS_SIZE(%rax), %rsp UNWIND_HINT_REGS call make_task_dead SYM_CODE_END(rewind_stack_and_make_dead) .popsection