######################################################################## # Implement fast SHA-256 with AVX2 instructions. (x86_64) # # Copyright (C) 2013 Intel Corporation. # # Authors: # James Guilford # Kirk Yap # Tim Chen # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials # provided with the distribution. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ######################################################################## # # This code is described in an Intel White-Paper: # "Fast SHA-256 Implementations on Intel Architecture Processors" # # To find it, surf to http://www.intel.com/p/en_US/embedded # and search for that title. # ######################################################################## # This code schedules 2 blocks at a time, with 4 lanes per block ######################################################################## #include #include ## assume buffers not aligned #define VMOVDQ vmovdqu ################################ Define Macros # addm [mem], reg # Add reg to mem using reg-mem add and store .macro addm p1 p2 add \p1, \p2 mov \p2, \p1 .endm ################################ X0 = %ymm4 X1 = %ymm5 X2 = %ymm6 X3 = %ymm7 # XMM versions of above XWORD0 = %xmm4 XWORD1 = %xmm5 XWORD2 = %xmm6 XWORD3 = %xmm7 XTMP0 = %ymm0 XTMP1 = %ymm1 XTMP2 = %ymm2 XTMP3 = %ymm3 XTMP4 = %ymm8 XFER = %ymm9 XTMP5 = %ymm11 SHUF_00BA = %ymm10 # shuffle xBxA -> 00BA SHUF_DC00 = %ymm12 # shuffle xDxC -> DC00 BYTE_FLIP_MASK = %ymm13 X_BYTE_FLIP_MASK = %xmm13 # XMM version of BYTE_FLIP_MASK NUM_BLKS = %rdx # 3rd arg INP = %rsi # 2nd arg CTX = %rdi # 1st arg c = %ecx d = %r8d e = %edx # clobbers NUM_BLKS y3 = %esi # clobbers INP SRND = CTX # SRND is same register as CTX a = %eax b = %ebx f = %r9d g = %r10d h = %r11d old_h = %r11d T1 = %r12d y0 = %r13d y1 = %r14d y2 = %r15d _XFER_SIZE = 2*64*4 # 2 blocks, 64 rounds, 4 bytes/round _XMM_SAVE_SIZE = 0 _INP_END_SIZE = 8 _INP_SIZE = 8 _CTX_SIZE = 8 _XFER = 0 _XMM_SAVE = _XFER + _XFER_SIZE _INP_END = _XMM_SAVE + _XMM_SAVE_SIZE _INP = _INP_END + _INP_END_SIZE _CTX = _INP + _INP_SIZE STACK_SIZE = _CTX + _CTX_SIZE # rotate_Xs # Rotate values of symbols X0...X3 .macro rotate_Xs X_ = X0 X0 = X1 X1 = X2 X2 = X3 X3 = X_ .endm # ROTATE_ARGS # Rotate values of symbols a...h .macro ROTATE_ARGS old_h = h TMP_ = h h = g g = f f = e e = d d = c c = b b = a a = TMP_ .endm .macro FOUR_ROUNDS_AND_SCHED disp ################################### RND N + 0 ############################ mov a, y3 # y3 = a # MAJA rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B addl \disp(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7] mov f, y2 # y2 = f # CH rorx $13, a, T1 # T1 = a >> 13 # S0B xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 xor g, y2 # y2 = f^g # CH vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]# y1 = (e >> 6)# S1 rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $22, a, y1 # y1 = a >> 22 # S0A add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15] xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a, T1 # T1 = (a >> 2) # S0 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH vpsrld $7, XTMP1, XTMP2 xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- vpslld $(32-7), XTMP1, XTMP3 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- vpor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7 vpsrld $18, XTMP1, XTMP2 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- ROTATE_ARGS ################################### RND N + 1 ############################ mov a, y3 # y3 = a # MAJA rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B offset = \disp + 1*4 addl offset(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3 mov f, y2 # y2 = f # CH rorx $13, a, T1 # T1 = a >> 13 # S0B xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 xor g, y2 # y2 = f^g # CH rorx $6, e, y1 # y1 = (e >> 6) # S1 xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $22, a, y1 # y1 = a >> 22 # S0A and e, y2 # y2 = (f^g)&e # CH add h, d # d = k + w + h + d # -- vpslld $(32-18), XTMP1, XTMP1 and b, y3 # y3 = (a|c)&b # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 vpxor XTMP1, XTMP3, XTMP3 rorx $2, a, T1 # T1 = (a >> 2) # S0 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH vpxor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7 ^ W[-15] ror 18 xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0 vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} ROTATE_ARGS ################################### RND N + 2 ############################ mov a, y3 # y3 = a # MAJA rorx $25, e, y0 # y0 = e >> 25 # S1A offset = \disp + 2*4 addl offset(%rsp, SRND), h # h = k + w + h # -- vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xBxA} rorx $11, e, y1 # y1 = e >> 11 # S1B or c, y3 # y3 = a|c # MAJA mov f, y2 # y2 = f # CH xor g, y2 # y2 = f^g # CH rorx $13, a, T1 # T1 = a >> 13 # S0B xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xBxA} and e, y2 # y2 = (f^g)&e # CH rorx $6, e, y1 # y1 = (e >> 6) # S1 vpxor XTMP3, XTMP2, XTMP2 add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $22, a, y1 # y1 = a >> 22 # S0A vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA} xor g, y2 # y2 = CH = ((f^g)&e)^g # CH vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA} xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a ,T1 # T1 = (a >> 2) # S0 vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC} or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1,h # h = k + w + h + S0 # -- add y2,d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2,h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3,h # h = t1 + S0 + MAJ # -- ROTATE_ARGS ################################### RND N + 3 ############################ mov a, y3 # y3 = a # MAJA rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B offset = \disp + 3*4 addl offset(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC} mov f, y2 # y2 = f # CH rorx $13, a, T1 # T1 = a >> 13 # S0B xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 xor g, y2 # y2 = f^g # CH vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xDxC} rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xDxC} xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH vpxor XTMP3, XTMP2, XTMP2 rorx $22, a, y1 # y1 = a >> 22 # S0A add y0, y2 # y2 = S1 + CH # -- vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC} xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- rorx $2, a, T1 # T1 = (a >> 2) # S0 vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00} vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]} xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- ROTATE_ARGS rotate_Xs .endm .macro DO_4ROUNDS disp ################################### RND N + 0 ########################### mov f, y2 # y2 = f # CH rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $13, a, T1 # T1 = a >> 13 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $22, a, y1 # y1 = a >> 22 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a, T1 # T1 = (a >> 2) # S0 addl \disp(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- ROTATE_ARGS ################################### RND N + 1 ########################### add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $13, a, T1 # T1 = a >> 13 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $22, a, y1 # y1 = a >> 22 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a, T1 # T1 = (a >> 2) # S0 offset = 4*1 + \disp addl offset(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- ROTATE_ARGS ################################### RND N + 2 ############################## add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $13, a, T1 # T1 = a >> 13 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $22, a, y1 # y1 = a >> 22 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a, T1 # T1 = (a >> 2) # S0 offset = 4*2 + \disp addl offset(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- ROTATE_ARGS ################################### RND N + 3 ########################### add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $25, e, y0 # y0 = e >> 25 # S1A rorx $11, e, y1 # y1 = e >> 11 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 rorx $6, e, y1 # y1 = (e >> 6) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 rorx $13, a, T1 # T1 = a >> 13 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $22, a, y1 # y1 = a >> 22 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 rorx $2, a, T1 # T1 = (a >> 2) # S0 offset = 4*3 + \disp addl offset(%rsp, SRND), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- ROTATE_ARGS .endm ######################################################################## ## void sha256_transform_rorx(struct sha256_state *state, const u8 *data, int blocks) ## arg 1 : pointer to state ## arg 2 : pointer to input data ## arg 3 : Num blocks ######################################################################## .text SYM_TYPED_FUNC_START(sha256_transform_rorx) pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 push %rbp mov %rsp, %rbp subq $STACK_SIZE, %rsp and $-32, %rsp # align rsp to 32 byte boundary shl $6, NUM_BLKS # convert to bytes jz .Ldone_hash lea -64(INP, NUM_BLKS), NUM_BLKS # pointer to last block mov NUM_BLKS, _INP_END(%rsp) cmp NUM_BLKS, INP je .Lonly_one_block ## load initial digest mov (CTX), a mov 4*1(CTX), b mov 4*2(CTX), c mov 4*3(CTX), d mov 4*4(CTX), e mov 4*5(CTX), f mov 4*6(CTX), g mov 4*7(CTX), h vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK vmovdqa _SHUF_00BA(%rip), SHUF_00BA vmovdqa _SHUF_DC00(%rip), SHUF_DC00 mov CTX, _CTX(%rsp) .Lloop0: ## Load first 16 dwords from two blocks VMOVDQ 0*32(INP),XTMP0 VMOVDQ 1*32(INP),XTMP1 VMOVDQ 2*32(INP),XTMP2 VMOVDQ 3*32(INP),XTMP3 ## byte swap data vpshufb BYTE_FLIP_MASK, XTMP0, XTMP0 vpshufb BYTE_FLIP_MASK, XTMP1, XTMP1 vpshufb BYTE_FLIP_MASK, XTMP2, XTMP2 vpshufb BYTE_FLIP_MASK, XTMP3, XTMP3 ## transpose data into high/low halves vperm2i128 $0x20, XTMP2, XTMP0, X0 vperm2i128 $0x31, XTMP2, XTMP0, X1 vperm2i128 $0x20, XTMP3, XTMP1, X2 vperm2i128 $0x31, XTMP3, XTMP1, X3 .Llast_block_enter: add $64, INP mov INP, _INP(%rsp) ## schedule 48 input dwords, by doing 3 rounds of 12 each xor SRND, SRND .align 16 .Lloop1: leaq K256+0*32(%rip), INP ## reuse INP as scratch reg vpaddd (INP, SRND), X0, XFER vmovdqa XFER, 0*32+_XFER(%rsp, SRND) FOUR_ROUNDS_AND_SCHED (_XFER + 0*32) leaq K256+1*32(%rip), INP vpaddd (INP, SRND), X0, XFER vmovdqa XFER, 1*32+_XFER(%rsp, SRND) FOUR_ROUNDS_AND_SCHED (_XFER + 1*32) leaq K256+2*32(%rip), INP vpaddd (INP, SRND), X0, XFER vmovdqa XFER, 2*32+_XFER(%rsp, SRND) FOUR_ROUNDS_AND_SCHED (_XFER + 2*32) leaq K256+3*32(%rip), INP vpaddd (INP, SRND), X0, XFER vmovdqa XFER, 3*32+_XFER(%rsp, SRND) FOUR_ROUNDS_AND_SCHED (_XFER + 3*32) add $4*32, SRND cmp $3*4*32, SRND jb .Lloop1 .Lloop2: ## Do last 16 rounds with no scheduling leaq K256+0*32(%rip), INP vpaddd (INP, SRND), X0, XFER vmovdqa XFER, 0*32+_XFER(%rsp, SRND) DO_4ROUNDS (_XFER + 0*32) leaq K256+1*32(%rip), INP vpaddd (INP, SRND), X1, XFER vmovdqa XFER, 1*32+_XFER(%rsp, SRND) DO_4ROUNDS (_XFER + 1*32) add $2*32, SRND vmovdqa X2, X0 vmovdqa X3, X1 cmp $4*4*32, SRND jb .Lloop2 mov _CTX(%rsp), CTX mov _INP(%rsp), INP addm (4*0)(CTX),a addm (4*1)(CTX),b addm (4*2)(CTX),c addm (4*3)(CTX),d addm (4*4)(CTX),e addm (4*5)(CTX),f addm (4*6)(CTX),g addm (4*7)(CTX),h cmp _INP_END(%rsp), INP ja .Ldone_hash #### Do second block using previously scheduled results xor SRND, SRND .align 16 .Lloop3: DO_4ROUNDS (_XFER + 0*32 + 16) DO_4ROUNDS (_XFER + 1*32 + 16) add $2*32, SRND cmp $4*4*32, SRND jb .Lloop3 mov _CTX(%rsp), CTX mov _INP(%rsp), INP add $64, INP addm (4*0)(CTX),a addm (4*1)(CTX),b addm (4*2)(CTX),c addm (4*3)(CTX),d addm (4*4)(CTX),e addm (4*5)(CTX),f addm (4*6)(CTX),g addm (4*7)(CTX),h cmp _INP_END(%rsp), INP jb .Lloop0 ja .Ldone_hash .Ldo_last_block: VMOVDQ 0*16(INP),XWORD0 VMOVDQ 1*16(INP),XWORD1 VMOVDQ 2*16(INP),XWORD2 VMOVDQ 3*16(INP),XWORD3 vpshufb X_BYTE_FLIP_MASK, XWORD0, XWORD0 vpshufb X_BYTE_FLIP_MASK, XWORD1, XWORD1 vpshufb X_BYTE_FLIP_MASK, XWORD2, XWORD2 vpshufb X_BYTE_FLIP_MASK, XWORD3, XWORD3 jmp .Llast_block_enter .Lonly_one_block: ## load initial digest mov (4*0)(CTX),a mov (4*1)(CTX),b mov (4*2)(CTX),c mov (4*3)(CTX),d mov (4*4)(CTX),e mov (4*5)(CTX),f mov (4*6)(CTX),g mov (4*7)(CTX),h vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK vmovdqa _SHUF_00BA(%rip), SHUF_00BA vmovdqa _SHUF_DC00(%rip), SHUF_DC00 mov CTX, _CTX(%rsp) jmp .Ldo_last_block .Ldone_hash: mov %rbp, %rsp pop %rbp popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx vzeroupper RET SYM_FUNC_END(sha256_transform_rorx) .section .rodata.cst512.K256, "aM", @progbits, 512 .align 64 K256: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32 .align 32 PSHUFFLE_BYTE_FLIP_MASK: .octa 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203 # shuffle xBxA -> 00BA .section .rodata.cst32._SHUF_00BA, "aM", @progbits, 32 .align 32 _SHUF_00BA: .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100 # shuffle xDxC -> DC00 .section .rodata.cst32._SHUF_DC00, "aM", @progbits, 32 .align 32 _SHUF_DC00: .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF