// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" int is_skas_winch(int pid, int fd, void *data) { return pid == getpgrp(); } static const char *ptrace_reg_name(int idx) { #define R(n) case HOST_##n: return #n switch (idx) { #ifdef __x86_64__ R(BX); R(CX); R(DI); R(SI); R(DX); R(BP); R(AX); R(R8); R(R9); R(R10); R(R11); R(R12); R(R13); R(R14); R(R15); R(ORIG_AX); R(CS); R(SS); R(EFLAGS); #elif defined(__i386__) R(IP); R(SP); R(EFLAGS); R(AX); R(BX); R(CX); R(DX); R(SI); R(DI); R(BP); R(CS); R(SS); R(DS); R(FS); R(ES); R(GS); R(ORIG_AX); #endif } return ""; } static int ptrace_dump_regs(int pid) { unsigned long regs[MAX_REG_NR]; int i; if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) return -errno; printk(UM_KERN_ERR "Stub registers -\n"); for (i = 0; i < ARRAY_SIZE(regs); i++) { const char *regname = ptrace_reg_name(i); printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]); } return 0; } /* * Signals that are OK to receive in the stub - we'll just continue it. * SIGWINCH will happen when UML is inside a detached screen. */ #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH)) /* Signals that the stub will finish with - anything else is an error */ #define STUB_DONE_MASK (1 << SIGTRAP) void wait_stub_done(int pid) { int n, status, err; while (1) { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if ((n < 0) || !WIFSTOPPED(status)) goto bad_wait; if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) break; err = ptrace(PTRACE_CONT, pid, 0, 0); if (err) { printk(UM_KERN_ERR "%s : continue failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } } if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) return; bad_wait: err = ptrace_dump_regs(pid); if (err) printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n", -err); printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n", __func__, pid, n, errno, status); fatal_sigsegv(); } extern unsigned long current_stub_stack(void); static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs) { int err; err = get_fp_registers(pid, aux_fp_regs); if (err < 0) { printk(UM_KERN_ERR "save_fp_registers returned %d\n", err); fatal_sigsegv(); } err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); if (err) { printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " "errno = %d\n", pid, errno); fatal_sigsegv(); } wait_stub_done(pid); /* * faultinfo is prepared by the stub_segv_handler at start of * the stub stack page. We just have to copy it. */ memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); err = put_fp_registers(pid, aux_fp_regs); if (err < 0) { printk(UM_KERN_ERR "put_fp_registers returned %d\n", err); fatal_sigsegv(); } } static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs) { get_skas_faultinfo(pid, ®s->faultinfo, aux_fp_regs); segv(regs->faultinfo, 0, 1, NULL); } static void handle_trap(int pid, struct uml_pt_regs *regs) { if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) fatal_sigsegv(); handle_syscall(regs); } extern char __syscall_stub_start[]; /** * userspace_tramp() - userspace trampoline * @stack: pointer to the new userspace stack page * * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed. * This function will run on a temporary stack page. * It ptrace()'es itself, then * Two pages are mapped into the userspace address space: * - STUB_CODE (with EXEC), which contains the skas stub code * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel. * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process. * And last the process stops itself to give control to the UML kernel for this userspace process. * * Return: Always zero, otherwise the current userspace process is ended with non null exit() call */ static int userspace_tramp(void *stack) { struct sigaction sa; void *addr; int fd; unsigned long long offset; unsigned long segv_handler = STUB_CODE + (unsigned long) stub_segv_handler - (unsigned long) __syscall_stub_start; ptrace(PTRACE_TRACEME, 0, 0, 0); signal(SIGTERM, SIG_DFL); signal(SIGWINCH, SIG_IGN); fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset); addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE, PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset); if (addr == MAP_FAILED) { os_info("mapping mmap stub at 0x%lx failed, errno = %d\n", STUB_CODE, errno); exit(1); } fd = phys_mapping(uml_to_phys(stack), &offset); addr = mmap((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, fd, offset); if (addr == MAP_FAILED) { os_info("mapping segfault stack at 0x%lx failed, errno = %d\n", STUB_DATA, errno); exit(1); } set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE); sigemptyset(&sa.sa_mask); sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO; sa.sa_sigaction = (void *) segv_handler; sa.sa_restorer = NULL; if (sigaction(SIGSEGV, &sa, NULL) < 0) { os_info("%s - setting SIGSEGV handler failed - errno = %d\n", __func__, errno); exit(1); } kill(os_getpid(), SIGSTOP); return 0; } int userspace_pid[NR_CPUS]; int kill_userspace_mm[NR_CPUS]; /** * start_userspace() - prepare a new userspace process * @stub_stack: pointer to the stub stack. * * Setups a new temporary stack page that is used while userspace_tramp() runs * Clones the kernel process into a new userspace process, with FDs only. * * Return: When positive: the process id of the new userspace process, * when negative: an error number. * FIXME: can PIDs become negative?! */ int start_userspace(unsigned long stub_stack) { void *stack; unsigned long sp; int pid, status, n, flags, err; /* setup a temporary stack page */ stack = mmap(NULL, UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (stack == MAP_FAILED) { err = -errno; printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n", __func__, errno); return err; } /* set stack pointer to the end of the stack page, so it can grow downwards */ sp = (unsigned long)stack + UM_KERN_PAGE_SIZE; flags = CLONE_FILES | SIGCHLD; /* clone into new userspace process */ pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack); if (pid < 0) { err = -errno; printk(UM_KERN_ERR "%s : clone failed, errno = %d\n", __func__, errno); return err; } do { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if (n < 0) { err = -errno; printk(UM_KERN_ERR "%s : wait failed, errno = %d\n", __func__, errno); goto out_kill; } } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM)); if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { err = -EINVAL; printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n", __func__, status); goto out_kill; } if (ptrace(PTRACE_SETOPTIONS, pid, NULL, (void *) PTRACE_O_TRACESYSGOOD) < 0) { err = -errno; printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n", __func__, errno); goto out_kill; } if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { err = -errno; printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n", __func__, errno); goto out_kill; } return pid; out_kill: os_kill_ptraced_process(pid, 1); return err; } void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs) { int err, status, op, pid = userspace_pid[0]; siginfo_t si; /* Handle any immediate reschedules or signals */ interrupt_end(); while (1) { time_travel_print_bc_msg(); if (kill_userspace_mm[0]) fatal_sigsegv(); /* * This can legitimately fail if the process loads a * bogus value into a segment register. It will * segfault and PTRACE_GETREGS will read that value * out of the process. However, PTRACE_SETREGS will * fail. In this case, there is nothing to do but * just kill the process. */ if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) { printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (put_fp_registers(pid, regs->fp)) { printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (singlestepping()) op = PTRACE_SYSEMU_SINGLESTEP; else op = PTRACE_SYSEMU; if (ptrace(op, pid, 0, 0)) { printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n", __func__, op, errno); fatal_sigsegv(); } CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); if (err < 0) { printk(UM_KERN_ERR "%s - wait failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } regs->is_user = 1; if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (get_fp_registers(pid, regs->fp)) { printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ if (WIFSTOPPED(status)) { int sig = WSTOPSIG(status); /* These signal handlers need the si argument. * The SIGIO and SIGALARM handlers which constitute the * majority of invocations, do not use it. */ switch (sig) { case SIGSEGV: case SIGTRAP: case SIGILL: case SIGBUS: case SIGFPE: case SIGWINCH: ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si); break; } switch (sig) { case SIGSEGV: if (PTRACE_FULL_FAULTINFO) { get_skas_faultinfo(pid, ®s->faultinfo, aux_fp_regs); (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si, regs); } else handle_segv(pid, regs, aux_fp_regs); break; case SIGTRAP + 0x80: handle_trap(pid, regs); break; case SIGTRAP: relay_signal(SIGTRAP, (struct siginfo *)&si, regs); break; case SIGALRM: break; case SIGIO: case SIGILL: case SIGBUS: case SIGFPE: case SIGWINCH: block_signals_trace(); (*sig_info[sig])(sig, (struct siginfo *)&si, regs); unblock_signals_trace(); break; default: printk(UM_KERN_ERR "%s - child stopped with signal %d\n", __func__, sig); fatal_sigsegv(); } pid = userspace_pid[0]; interrupt_end(); /* Avoid -ERESTARTSYS handling in host */ if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) PT_SYSCALL_NR(regs->gp) = -1; } } } static unsigned long thread_regs[MAX_REG_NR]; static unsigned long thread_fp_regs[FP_SIZE]; static int __init init_thread_regs(void) { get_safe_registers(thread_regs, thread_fp_regs); /* Set parent's instruction pointer to start of clone-stub */ thread_regs[REGS_IP_INDEX] = STUB_CODE + (unsigned long) stub_clone_handler - (unsigned long) __syscall_stub_start; /* syscall data as a temporary stack area (top half). */ thread_regs[REGS_SP_INDEX] = STUB_DATA + offsetof(struct stub_data, syscall_data) + sizeof(((struct stub_data *) 0)->syscall_data) - sizeof(void *); return 0; } __initcall(init_thread_regs); int copy_context_skas0(unsigned long new_stack, int pid) { int err; unsigned long current_stack = current_stub_stack(); struct stub_data *data = (struct stub_data *) current_stack; struct stub_data *child_data = (struct stub_data *) new_stack; unsigned long long new_offset; int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset); /* * prepare offset and fd of child's stack as argument for parent's * and child's mmap2 calls */ *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset), .fd = new_fd, .err = -ESRCH, .child_err = 0, }); *child_data = ((struct stub_data) { .child_err = -ESRCH, }); err = ptrace_setregs(pid, thread_regs); if (err < 0) { err = -errno; printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n", __func__, pid, -err); return err; } err = put_fp_registers(pid, thread_fp_regs); if (err < 0) { printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n", __func__, pid, err); return err; } /* * Wait, until parent has finished its work: read child's pid from * parent's stack, and check, if bad result. */ err = ptrace(PTRACE_CONT, pid, 0, 0); if (err) { err = -errno; printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n", pid, errno); return err; } wait_stub_done(pid); pid = data->err; if (pid < 0) { printk(UM_KERN_ERR "%s - stub-parent reports error %d\n", __func__, -pid); return pid; } /* * Wait, until child has finished too: read child's result from * child's stack and check it. */ wait_stub_done(pid); if (child_data->child_err != STUB_DATA) { printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n", __func__, pid, data->child_err); err = data->child_err; goto out_kill; } if (ptrace(PTRACE_SETOPTIONS, pid, NULL, (void *)PTRACE_O_TRACESYSGOOD) < 0) { err = -errno; printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n", __func__, errno); goto out_kill; } return pid; out_kill: os_kill_ptraced_process(pid, 1); return err; } void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) { (*buf)[0].JB_IP = (unsigned long) handler; (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); } #define INIT_JMP_NEW_THREAD 0 #define INIT_JMP_CALLBACK 1 #define INIT_JMP_HALT 2 #define INIT_JMP_REBOOT 3 void switch_threads(jmp_buf *me, jmp_buf *you) { if (UML_SETJMP(me) == 0) UML_LONGJMP(you, 1); } static jmp_buf initial_jmpbuf; /* XXX Make these percpu */ static void (*cb_proc)(void *arg); static void *cb_arg; static jmp_buf *cb_back; int start_idle_thread(void *stack, jmp_buf *switch_buf) { int n; set_handler(SIGWINCH); /* * Can't use UML_SETJMP or UML_LONGJMP here because they save * and restore signals, with the possible side-effect of * trying to handle any signals which came when they were * blocked, which can't be done on this stack. * Signals must be blocked when jumping back here and restored * after returning to the jumper. */ n = setjmp(initial_jmpbuf); switch (n) { case INIT_JMP_NEW_THREAD: (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup; (*switch_buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); break; case INIT_JMP_CALLBACK: (*cb_proc)(cb_arg); longjmp(*cb_back, 1); break; case INIT_JMP_HALT: kmalloc_ok = 0; return 0; case INIT_JMP_REBOOT: kmalloc_ok = 0; return 1; default: printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n", __func__, n); fatal_sigsegv(); } longjmp(*switch_buf, 1); /* unreachable */ printk(UM_KERN_ERR "impossible long jump!"); fatal_sigsegv(); return 0; } void initial_thread_cb_skas(void (*proc)(void *), void *arg) { jmp_buf here; cb_proc = proc; cb_arg = arg; cb_back = &here; block_signals_trace(); if (UML_SETJMP(&here) == 0) UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); unblock_signals_trace(); cb_proc = NULL; cb_arg = NULL; cb_back = NULL; } void halt_skas(void) { block_signals_trace(); UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); } static bool noreboot; static int __init noreboot_cmd_param(char *str, int *add) { noreboot = true; return 0; } __uml_setup("noreboot", noreboot_cmd_param, "noreboot\n" " Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n" " This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n" " crashes in CI\n"); void reboot_skas(void) { block_signals_trace(); UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT); } void __switch_mm(struct mm_id *mm_idp) { userspace_pid[0] = mm_idp->u.pid; kill_userspace_mm[0] = mm_idp->kill; }