/* * arch/sh/kernel/cpu/clock.c - SuperH clock framework * * Copyright (C) 2005 - 2009 Paul Mundt * * This clock framework is derived from the OMAP version by: * * Copyright (C) 2004 - 2008 Nokia Corporation * Written by Tuukka Tikkanen * * Modified for omap shared clock framework by Tony Lindgren * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(clock_list); static DEFINE_SPINLOCK(clock_lock); static DEFINE_MUTEX(clock_list_sem); void clk_rate_table_build(struct clk *clk, struct cpufreq_frequency_table *freq_table, int nr_freqs, struct clk_div_mult_table *src_table, unsigned long *bitmap) { unsigned long mult, div; unsigned long freq; int i; for (i = 0; i < nr_freqs; i++) { div = 1; mult = 1; if (src_table->divisors && i < src_table->nr_divisors) div = src_table->divisors[i]; if (src_table->multipliers && i < src_table->nr_multipliers) mult = src_table->multipliers[i]; if (!div || !mult || (bitmap && !test_bit(i, bitmap))) freq = CPUFREQ_ENTRY_INVALID; else freq = clk->parent->rate * mult / div; freq_table[i].index = i; freq_table[i].frequency = freq; } /* Termination entry */ freq_table[i].index = i; freq_table[i].frequency = CPUFREQ_TABLE_END; } long clk_rate_table_round(struct clk *clk, struct cpufreq_frequency_table *freq_table, unsigned long rate) { unsigned long rate_error, rate_error_prev = ~0UL; unsigned long rate_best_fit = rate; unsigned long highest, lowest; int i; highest = lowest = 0; for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { unsigned long freq = freq_table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; if (freq > highest) highest = freq; if (freq < lowest) lowest = freq; rate_error = abs(freq - rate); if (rate_error < rate_error_prev) { rate_best_fit = freq; rate_error_prev = rate_error; } if (rate_error == 0) break; } if (rate >= highest) rate_best_fit = highest; if (rate <= lowest) rate_best_fit = lowest; return rate_best_fit; } int clk_rate_table_find(struct clk *clk, struct cpufreq_frequency_table *freq_table, unsigned long rate) { int i; for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { unsigned long freq = freq_table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; if (freq == rate) return i; } return -ENOENT; } /* Used for clocks that always have same value as the parent clock */ unsigned long followparent_recalc(struct clk *clk) { return clk->parent ? clk->parent->rate : 0; } int clk_reparent(struct clk *child, struct clk *parent) { list_del_init(&child->sibling); if (parent) list_add(&child->sibling, &parent->children); child->parent = parent; /* now do the debugfs renaming to reattach the child to the proper parent */ return 0; } /* Propagate rate to children */ void propagate_rate(struct clk *tclk) { struct clk *clkp; list_for_each_entry(clkp, &tclk->children, sibling) { if (clkp->ops && clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } static void __clk_disable(struct clk *clk) { if (clk->usecount == 0) { printk(KERN_ERR "Trying disable clock %s with 0 usecount\n", clk->name); WARN_ON(1); return; } if (!(--clk->usecount)) { if (likely(clk->ops && clk->ops->disable)) clk->ops->disable(clk); if (likely(clk->parent)) __clk_disable(clk->parent); } } void clk_disable(struct clk *clk) { unsigned long flags; if (!clk) return; spin_lock_irqsave(&clock_lock, flags); __clk_disable(clk); spin_unlock_irqrestore(&clock_lock, flags); } EXPORT_SYMBOL_GPL(clk_disable); static int __clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (clk->parent) { ret = __clk_enable(clk->parent); if (unlikely(ret)) goto err; } if (clk->ops && clk->ops->enable) { ret = clk->ops->enable(clk); if (ret) { if (clk->parent) __clk_disable(clk->parent); goto err; } } } return ret; err: clk->usecount--; return ret; } int clk_enable(struct clk *clk) { unsigned long flags; int ret; if (!clk) return -EINVAL; spin_lock_irqsave(&clock_lock, flags); ret = __clk_enable(clk); spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_enable); static LIST_HEAD(root_clks); /** * recalculate_root_clocks - recalculate and propagate all root clocks * * Recalculates all root clocks (clocks with no parent), which if the * clock's .recalc is set correctly, should also propagate their rates. * Called at init. */ void recalculate_root_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &root_clks, sibling) { if (clkp->ops && clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } int clk_register(struct clk *clk) { if (clk == NULL || IS_ERR(clk)) return -EINVAL; /* * trap out already registered clocks */ if (clk->node.next || clk->node.prev) return 0; mutex_lock(&clock_list_sem); INIT_LIST_HEAD(&clk->children); clk->usecount = 0; if (clk->parent) list_add(&clk->sibling, &clk->parent->children); else list_add(&clk->sibling, &root_clks); list_add(&clk->node, &clock_list); if (clk->ops && clk->ops->init) clk->ops->init(clk); mutex_unlock(&clock_list_sem); return 0; } EXPORT_SYMBOL_GPL(clk_register); void clk_unregister(struct clk *clk) { mutex_lock(&clock_list_sem); list_del(&clk->sibling); list_del(&clk->node); mutex_unlock(&clock_list_sem); } EXPORT_SYMBOL_GPL(clk_unregister); static void clk_enable_init_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &clock_list, node) if (clkp->flags & CLK_ENABLE_ON_INIT) clk_enable(clkp); } unsigned long clk_get_rate(struct clk *clk) { return clk->rate; } EXPORT_SYMBOL_GPL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { return clk_set_rate_ex(clk, rate, 0); } EXPORT_SYMBOL_GPL(clk_set_rate); int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id) { int ret = -EOPNOTSUPP; unsigned long flags; spin_lock_irqsave(&clock_lock, flags); if (likely(clk->ops && clk->ops->set_rate)) { ret = clk->ops->set_rate(clk, rate, algo_id); if (ret != 0) goto out_unlock; } else { clk->rate = rate; ret = 0; } if (clk->ops && clk->ops->recalc) clk->rate = clk->ops->recalc(clk); propagate_rate(clk); out_unlock: spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_set_rate_ex); int clk_set_parent(struct clk *clk, struct clk *parent) { unsigned long flags; int ret = -EINVAL; if (!parent || !clk) return ret; if (clk->parent == parent) return 0; spin_lock_irqsave(&clock_lock, flags); if (clk->usecount == 0) { if (clk->ops->set_parent) ret = clk->ops->set_parent(clk, parent); else ret = clk_reparent(clk, parent); if (ret == 0) { pr_debug("clock: set parent of %s to %s (new rate %ld)\n", clk->name, clk->parent->name, clk->rate); if (clk->ops->recalc) clk->rate = clk->ops->recalc(clk); propagate_rate(clk); } } else ret = -EBUSY; spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { return clk->parent; } EXPORT_SYMBOL_GPL(clk_get_parent); long clk_round_rate(struct clk *clk, unsigned long rate) { if (likely(clk->ops && clk->ops->round_rate)) { unsigned long flags, rounded; spin_lock_irqsave(&clock_lock, flags); rounded = clk->ops->round_rate(clk, rate); spin_unlock_irqrestore(&clock_lock, flags); return rounded; } return clk_get_rate(clk); } EXPORT_SYMBOL_GPL(clk_round_rate); /* * Returns a clock. Note that we first try to use device id on the bus * and clock name. If this fails, we try to use clock name only. */ struct clk *clk_get(struct device *dev, const char *id) { const char *dev_id = dev ? dev_name(dev) : NULL; struct clk *p, *clk = ERR_PTR(-ENOENT); int idno; clk = clk_get_sys(dev_id, id); if (clk && !IS_ERR(clk)) return clk; if (dev == NULL || dev->bus != &platform_bus_type) idno = -1; else idno = to_platform_device(dev)->id; mutex_lock(&clock_list_sem); list_for_each_entry(p, &clock_list, node) { if (p->name && p->id == idno && strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; goto found; } } list_for_each_entry(p, &clock_list, node) { if (p->name && strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; break; } } found: mutex_unlock(&clock_list_sem); return clk; } EXPORT_SYMBOL_GPL(clk_get); void clk_put(struct clk *clk) { if (clk && !IS_ERR(clk)) module_put(clk->owner); } EXPORT_SYMBOL_GPL(clk_put); #ifdef CONFIG_PM static int clks_sysdev_suspend(struct sys_device *dev, pm_message_t state) { static pm_message_t prev_state; struct clk *clkp; switch (state.event) { case PM_EVENT_ON: /* Resumeing from hibernation */ if (prev_state.event != PM_EVENT_FREEZE) break; list_for_each_entry(clkp, &clock_list, node) { if (likely(clkp->ops)) { unsigned long rate = clkp->rate; if (likely(clkp->ops->set_parent)) clkp->ops->set_parent(clkp, clkp->parent); if (likely(clkp->ops->set_rate)) clkp->ops->set_rate(clkp, rate, NO_CHANGE); else if (likely(clkp->ops->recalc)) clkp->rate = clkp->ops->recalc(clkp); } } break; case PM_EVENT_FREEZE: break; case PM_EVENT_SUSPEND: break; } prev_state = state; return 0; } static int clks_sysdev_resume(struct sys_device *dev) { return clks_sysdev_suspend(dev, PMSG_ON); } static struct sysdev_class clks_sysdev_class = { .name = "clks", }; static struct sysdev_driver clks_sysdev_driver = { .suspend = clks_sysdev_suspend, .resume = clks_sysdev_resume, }; static struct sys_device clks_sysdev_dev = { .cls = &clks_sysdev_class, }; static int __init clk_sysdev_init(void) { sysdev_class_register(&clks_sysdev_class); sysdev_driver_register(&clks_sysdev_class, &clks_sysdev_driver); sysdev_register(&clks_sysdev_dev); return 0; } subsys_initcall(clk_sysdev_init); #endif int __init clk_init(void) { int ret; ret = arch_clk_init(); if (unlikely(ret)) { pr_err("%s: CPU clock registration failed.\n", __func__); return ret; } if (sh_mv.mv_clk_init) { ret = sh_mv.mv_clk_init(); if (unlikely(ret)) { pr_err("%s: machvec clock initialization failed.\n", __func__); return ret; } } /* Kick the child clocks.. */ recalculate_root_clocks(); /* Enable the necessary init clocks */ clk_enable_init_clocks(); return ret; } /* * debugfs support to trace clock tree hierarchy and attributes */ static struct dentry *clk_debugfs_root; static int clk_debugfs_register_one(struct clk *c) { int err; struct dentry *d, *child, *child_tmp; struct clk *pa = c->parent; char s[255]; char *p = s; p += sprintf(p, "%s", c->name); if (c->id >= 0) sprintf(p, ":%d", c->id); d = debugfs_create_dir(s, pa ? pa->dentry : clk_debugfs_root); if (!d) return -ENOMEM; c->dentry = d; d = debugfs_create_u8("usecount", S_IRUGO, c->dentry, (u8 *)&c->usecount); if (!d) { err = -ENOMEM; goto err_out; } d = debugfs_create_u32("rate", S_IRUGO, c->dentry, (u32 *)&c->rate); if (!d) { err = -ENOMEM; goto err_out; } d = debugfs_create_x32("flags", S_IRUGO, c->dentry, (u32 *)&c->flags); if (!d) { err = -ENOMEM; goto err_out; } return 0; err_out: d = c->dentry; list_for_each_entry_safe(child, child_tmp, &d->d_subdirs, d_u.d_child) debugfs_remove(child); debugfs_remove(c->dentry); return err; } static int clk_debugfs_register(struct clk *c) { int err; struct clk *pa = c->parent; if (pa && !pa->dentry) { err = clk_debugfs_register(pa); if (err) return err; } if (!c->dentry && c->name) { err = clk_debugfs_register_one(c); if (err) return err; } return 0; } static int __init clk_debugfs_init(void) { struct clk *c; struct dentry *d; int err; d = debugfs_create_dir("clock", NULL); if (!d) return -ENOMEM; clk_debugfs_root = d; list_for_each_entry(c, &clock_list, node) { err = clk_debugfs_register(c); if (err) goto err_out; } return 0; err_out: debugfs_remove(clk_debugfs_root); /* REVISIT: Cleanup correctly */ return err; } late_initcall(clk_debugfs_init);