/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_S390_PCI_IO_H #define _ASM_S390_PCI_IO_H #ifdef CONFIG_PCI #include #include #include /* I/O size constraints */ #define ZPCI_MAX_READ_SIZE 8 #define ZPCI_MAX_WRITE_SIZE 128 #define ZPCI_BOUNDARY_SIZE (1 << 12) #define ZPCI_BOUNDARY_MASK (ZPCI_BOUNDARY_SIZE - 1) /* I/O Map */ #define ZPCI_IOMAP_SHIFT 48 #define ZPCI_IOMAP_ADDR_SHIFT 62 #define ZPCI_IOMAP_ADDR_BASE (1UL << ZPCI_IOMAP_ADDR_SHIFT) #define ZPCI_IOMAP_ADDR_OFF_MASK ((1UL << ZPCI_IOMAP_SHIFT) - 1) #define ZPCI_IOMAP_MAX_ENTRIES \ (1UL << (ZPCI_IOMAP_ADDR_SHIFT - ZPCI_IOMAP_SHIFT)) #define ZPCI_IOMAP_ADDR_IDX_MASK \ ((ZPCI_IOMAP_ADDR_BASE - 1) & ~ZPCI_IOMAP_ADDR_OFF_MASK) struct zpci_iomap_entry { u32 fh; u8 bar; u16 count; }; extern struct zpci_iomap_entry *zpci_iomap_start; #define ZPCI_ADDR(idx) (ZPCI_IOMAP_ADDR_BASE | ((u64) idx << ZPCI_IOMAP_SHIFT)) #define ZPCI_IDX(addr) \ (((__force u64) addr & ZPCI_IOMAP_ADDR_IDX_MASK) >> ZPCI_IOMAP_SHIFT) #define ZPCI_OFFSET(addr) \ ((__force u64) addr & ZPCI_IOMAP_ADDR_OFF_MASK) #define ZPCI_CREATE_REQ(handle, space, len) \ ((u64) handle << 32 | space << 16 | len) #define zpci_read(LENGTH, RETTYPE) \ static inline RETTYPE zpci_read_##RETTYPE(const volatile void __iomem *addr) \ { \ u64 data; \ int rc; \ \ rc = zpci_load(&data, addr, LENGTH); \ if (rc) \ data = -1ULL; \ return (RETTYPE) data; \ } #define zpci_write(LENGTH, VALTYPE) \ static inline void zpci_write_##VALTYPE(VALTYPE val, \ const volatile void __iomem *addr) \ { \ u64 data = (VALTYPE) val; \ \ zpci_store(addr, data, LENGTH); \ } zpci_read(8, u64) zpci_read(4, u32) zpci_read(2, u16) zpci_read(1, u8) zpci_write(8, u64) zpci_write(4, u32) zpci_write(2, u16) zpci_write(1, u8) static inline int zpci_write_single(volatile void __iomem *dst, const void *src, unsigned long len) { u64 val; switch (len) { case 1: val = (u64) *((u8 *) src); break; case 2: val = (u64) *((u16 *) src); break; case 4: val = (u64) *((u32 *) src); break; case 8: val = (u64) *((u64 *) src); break; default: val = 0; /* let FW report error */ break; } return zpci_store(dst, val, len); } static inline int zpci_read_single(void *dst, const volatile void __iomem *src, unsigned long len) { u64 data; int cc; cc = zpci_load(&data, src, len); if (cc) goto out; switch (len) { case 1: *((u8 *) dst) = (u8) data; break; case 2: *((u16 *) dst) = (u16) data; break; case 4: *((u32 *) dst) = (u32) data; break; case 8: *((u64 *) dst) = (u64) data; break; } out: return cc; } int zpci_write_block(volatile void __iomem *dst, const void *src, unsigned long len); static inline int zpci_get_max_io_size(u64 src, u64 dst, int len, int max) { int offset = dst & ZPCI_BOUNDARY_MASK; int size; size = min3(len, ZPCI_BOUNDARY_SIZE - offset, max); if (IS_ALIGNED(src, 8) && IS_ALIGNED(dst, 8) && IS_ALIGNED(size, 8)) return size; if (size >= 8) return 8; return rounddown_pow_of_two(size); } static inline int zpci_memcpy_fromio(void *dst, const volatile void __iomem *src, size_t n) { int size, rc = 0; while (n > 0) { size = zpci_get_max_io_size((u64 __force) src, (u64) dst, n, ZPCI_MAX_READ_SIZE); rc = zpci_read_single(dst, src, size); if (rc) break; src += size; dst += size; n -= size; } return rc; } static inline int zpci_memcpy_toio(volatile void __iomem *dst, const void *src, size_t n) { int size, rc = 0; if (!src) return -EINVAL; while (n > 0) { size = zpci_get_max_io_size((u64 __force) dst, (u64) src, n, ZPCI_MAX_WRITE_SIZE); if (size > 8) /* main path */ rc = zpci_write_block(dst, src, size); else rc = zpci_write_single(dst, src, size); if (rc) break; src += size; dst += size; n -= size; } return rc; } static inline int zpci_memset_io(volatile void __iomem *dst, int val, size_t count) { u8 *src = kmalloc(count, GFP_KERNEL); int rc; if (src == NULL) return -ENOMEM; memset(src, val, count); rc = zpci_memcpy_toio(dst, src, count); kfree(src); return rc; } #endif /* CONFIG_PCI */ #endif /* _ASM_S390_PCI_IO_H */