// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2019 Western Digital Corporation or its affiliates. * Copyright (C) 2020 FORTH-ICS/CARV * Nick Kossifidis */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_RELOCATABLE #include #endif #include #include #include #include #include #include #include #include #include #include #include "../kernel/head.h" u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1]; struct kernel_mapping kernel_map __ro_after_init; EXPORT_SYMBOL(kernel_map); #ifdef CONFIG_XIP_KERNEL #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) #endif #ifdef CONFIG_64BIT u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; #else u64 satp_mode __ro_after_init = SATP_MODE_32; #endif EXPORT_SYMBOL(satp_mode); #ifdef CONFIG_64BIT bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); EXPORT_SYMBOL(pgtable_l4_enabled); EXPORT_SYMBOL(pgtable_l5_enabled); #endif phys_addr_t phys_ram_base __ro_after_init; EXPORT_SYMBOL(phys_ram_base); unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss; EXPORT_SYMBOL(empty_zero_page); extern char _start[]; void *_dtb_early_va __initdata; uintptr_t _dtb_early_pa __initdata; phys_addr_t dma32_phys_limit __initdata; static void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; free_area_init(max_zone_pfns); } #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) #define LOG2_SZ_1K ilog2(SZ_1K) #define LOG2_SZ_1M ilog2(SZ_1M) #define LOG2_SZ_1G ilog2(SZ_1G) #define LOG2_SZ_1T ilog2(SZ_1T) static inline void print_mlk(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, (((t) - (b)) >> LOG2_SZ_1K)); } static inline void print_mlm(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, (((t) - (b)) >> LOG2_SZ_1M)); } static inline void print_mlg(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, (((t) - (b)) >> LOG2_SZ_1G)); } #ifdef CONFIG_64BIT static inline void print_mlt(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, (((t) - (b)) >> LOG2_SZ_1T)); } #else #define print_mlt(n, b, t) do {} while (0) #endif static inline void print_ml(char *name, unsigned long b, unsigned long t) { unsigned long diff = t - b; if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) print_mlt(name, b, t); else if ((diff >> LOG2_SZ_1G) >= 10) print_mlg(name, b, t); else if ((diff >> LOG2_SZ_1M) >= 10) print_mlm(name, b, t); else print_mlk(name, b, t); } static void __init print_vm_layout(void) { pr_notice("Virtual kernel memory layout:\n"); print_ml("fixmap", (unsigned long)FIXADDR_START, (unsigned long)FIXADDR_TOP); print_ml("pci io", (unsigned long)PCI_IO_START, (unsigned long)PCI_IO_END); print_ml("vmemmap", (unsigned long)VMEMMAP_START, (unsigned long)VMEMMAP_END); print_ml("vmalloc", (unsigned long)VMALLOC_START, (unsigned long)VMALLOC_END); #ifdef CONFIG_64BIT print_ml("modules", (unsigned long)MODULES_VADDR, (unsigned long)MODULES_END); #endif print_ml("lowmem", (unsigned long)PAGE_OFFSET, (unsigned long)high_memory); if (IS_ENABLED(CONFIG_64BIT)) { #ifdef CONFIG_KASAN print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); #endif print_ml("kernel", (unsigned long)kernel_map.virt_addr, (unsigned long)ADDRESS_SPACE_END); } } #else static void print_vm_layout(void) { } #endif /* CONFIG_DEBUG_VM */ void __init mem_init(void) { bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); #ifdef CONFIG_FLATMEM BUG_ON(!mem_map); #endif /* CONFIG_FLATMEM */ if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && dma_cache_alignment != 1) { /* * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb * buffer per 1GB of RAM for kmalloc() bouncing on * non-coherent platforms. */ unsigned long size = DIV_ROUND_UP(memblock_phys_mem_size(), 1024); swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); swiotlb = true; } swiotlb_init(swiotlb, SWIOTLB_VERBOSE); memblock_free_all(); print_vm_layout(); } /* Limit the memory size via mem. */ static phys_addr_t memory_limit; #ifdef CONFIG_XIP_KERNEL #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit)) #endif /* CONFIG_XIP_KERNEL */ static int __init early_mem(char *p) { u64 size; if (!p) return 1; size = memparse(p, &p) & PAGE_MASK; memory_limit = min_t(u64, size, memory_limit); pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); return 0; } early_param("mem", early_mem); static void __init setup_bootmem(void) { phys_addr_t vmlinux_end = __pa_symbol(&_end); phys_addr_t max_mapped_addr; phys_addr_t phys_ram_end, vmlinux_start; if (IS_ENABLED(CONFIG_XIP_KERNEL)) vmlinux_start = __pa_symbol(&_sdata); else vmlinux_start = __pa_symbol(&_start); memblock_enforce_memory_limit(memory_limit); /* * Make sure we align the reservation on PMD_SIZE since we will * map the kernel in the linear mapping as read-only: we do not want * any allocation to happen between _end and the next pmd aligned page. */ if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; /* * Reserve from the start of the kernel to the end of the kernel */ memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); /* * Make sure we align the start of the memory on a PMD boundary so that * at worst, we map the linear mapping with PMD mappings. */ if (!IS_ENABLED(CONFIG_XIP_KERNEL)) phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; /* * In 64-bit, any use of __va/__pa before this point is wrong as we * did not know the start of DRAM before. */ if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; /* * The size of the linear page mapping may restrict the amount of * usable RAM. */ if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) { max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE; memblock_cap_memory_range(phys_ram_base, max_mapped_addr - phys_ram_base); } /* * Reserve physical address space that would be mapped to virtual * addresses greater than (void *)(-PAGE_SIZE) because: * - This memory would overlap with ERR_PTR * - This memory belongs to high memory, which is not supported * * This is not applicable to 64-bit kernel, because virtual addresses * after (void *)(-PAGE_SIZE) are not linearly mapped: they are * occupied by kernel mapping. Also it is unrealistic for high memory * to exist on 64-bit platforms. */ if (!IS_ENABLED(CONFIG_64BIT)) { max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); } phys_ram_end = memblock_end_of_DRAM(); min_low_pfn = PFN_UP(phys_ram_base); max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); reserve_initrd_mem(); /* * No allocation should be done before reserving the memory as defined * in the device tree, otherwise the allocation could end up in a * reserved region. */ early_init_fdt_scan_reserved_mem(); /* * If DTB is built in, no need to reserve its memblock. * Otherwise, do reserve it but avoid using * early_init_fdt_reserve_self() since __pa() does * not work for DTB pointers that are fixmap addresses */ if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); dma_contiguous_reserve(dma32_phys_limit); if (IS_ENABLED(CONFIG_64BIT)) hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); } #ifdef CONFIG_MMU struct pt_alloc_ops pt_ops __meminitdata; pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) #endif /* CONFIG_XIP_KERNEL */ static const pgprot_t protection_map[16] = { [VM_NONE] = PAGE_NONE, [VM_READ] = PAGE_READ, [VM_WRITE] = PAGE_COPY, [VM_WRITE | VM_READ] = PAGE_COPY, [VM_EXEC] = PAGE_EXEC, [VM_EXEC | VM_READ] = PAGE_READ_EXEC, [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, [VM_SHARED] = PAGE_NONE, [VM_SHARED | VM_READ] = PAGE_READ, [VM_SHARED | VM_WRITE] = PAGE_SHARED, [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, [VM_SHARED | VM_EXEC] = PAGE_EXEC, [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC }; DECLARE_VM_GET_PAGE_PROT void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) { unsigned long addr = __fix_to_virt(idx); pte_t *ptep; BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); ptep = &fixmap_pte[pte_index(addr)]; if (pgprot_val(prot)) set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); else pte_clear(&init_mm, addr, ptep); local_flush_tlb_page(addr); } static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) { return (pte_t *)((uintptr_t)pa); } static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_PTE); return (pte_t *)set_fixmap_offset(FIX_PTE, pa); } static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) { return (pte_t *) __va(pa); } static inline phys_addr_t __init alloc_pte_early(uintptr_t va) { /* * We only create PMD or PGD early mappings so we * should never reach here with MMU disabled. */ BUG(); } static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __meminit alloc_pte_late(uintptr_t va) { struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc)); return __pa((pte_t *)ptdesc_address(ptdesc)); } static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { uintptr_t pte_idx = pte_index(va); BUG_ON(sz != PAGE_SIZE); if (pte_none(ptep[pte_idx])) ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); } #ifndef __PAGETABLE_PMD_FOLDED static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) #endif /* CONFIG_XIP_KERNEL */ static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) #endif /* CONFIG_XIP_KERNEL */ static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) #endif /* CONFIG_XIP_KERNEL */ static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) { /* Before MMU is enabled */ return (pmd_t *)((uintptr_t)pa); } static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_PMD); return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); } static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) { return (pmd_t *) __va(pa); } static phys_addr_t __init alloc_pmd_early(uintptr_t va) { BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); return (uintptr_t)early_pmd; } static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) { struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc)); return __pa((pmd_t *)ptdesc_address(ptdesc)); } static void __meminit create_pmd_mapping(pmd_t *pmdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pte_t *ptep; phys_addr_t pte_phys; uintptr_t pmd_idx = pmd_index(va); if (sz == PMD_SIZE) { if (pmd_none(pmdp[pmd_idx])) pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); return; } if (pmd_none(pmdp[pmd_idx])) { pte_phys = pt_ops.alloc_pte(va); pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); ptep = pt_ops.get_pte_virt(pte_phys); memset(ptep, 0, PAGE_SIZE); } else { pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); ptep = pt_ops.get_pte_virt(pte_phys); } create_pte_mapping(ptep, va, pa, sz, prot); } static pud_t *__init get_pud_virt_early(phys_addr_t pa) { return (pud_t *)((uintptr_t)pa); } static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_PUD); return (pud_t *)set_fixmap_offset(FIX_PUD, pa); } static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) { return (pud_t *)__va(pa); } static phys_addr_t __init alloc_pud_early(uintptr_t va) { /* Only one PUD is available for early mapping */ BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); return (uintptr_t)early_pud; } static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __meminit alloc_pud_late(uintptr_t va) { unsigned long vaddr; vaddr = __get_free_page(GFP_KERNEL); BUG_ON(!vaddr); return __pa(vaddr); } static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) { return (p4d_t *)((uintptr_t)pa); } static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_P4D); return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); } static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) { return (p4d_t *)__va(pa); } static phys_addr_t __init alloc_p4d_early(uintptr_t va) { /* Only one P4D is available for early mapping */ BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); return (uintptr_t)early_p4d; } static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) { unsigned long vaddr; vaddr = __get_free_page(GFP_KERNEL); BUG_ON(!vaddr); return __pa(vaddr); } static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pmd_t *nextp; phys_addr_t next_phys; uintptr_t pud_index = pud_index(va); if (sz == PUD_SIZE) { if (pud_val(pudp[pud_index]) == 0) pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); return; } if (pud_val(pudp[pud_index]) == 0) { next_phys = pt_ops.alloc_pmd(va); pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); nextp = pt_ops.get_pmd_virt(next_phys); memset(nextp, 0, PAGE_SIZE); } else { next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); nextp = pt_ops.get_pmd_virt(next_phys); } create_pmd_mapping(nextp, va, pa, sz, prot); } static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pud_t *nextp; phys_addr_t next_phys; uintptr_t p4d_index = p4d_index(va); if (sz == P4D_SIZE) { if (p4d_val(p4dp[p4d_index]) == 0) p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); return; } if (p4d_val(p4dp[p4d_index]) == 0) { next_phys = pt_ops.alloc_pud(va); p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); nextp = pt_ops.get_pud_virt(next_phys); memset(nextp, 0, PAGE_SIZE); } else { next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); nextp = pt_ops.get_pud_virt(next_phys); } create_pud_mapping(nextp, va, pa, sz, prot); } #define pgd_next_t p4d_t #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ (pgtable_l5_enabled ? \ create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ (pgtable_l4_enabled ? \ create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) #define fixmap_pgd_next (pgtable_l5_enabled ? \ (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) #define trampoline_pgd_next (pgtable_l5_enabled ? \ (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) #else #define pgd_next_t pte_t #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ create_pte_mapping(__nextp, __va, __pa, __sz, __prot) #define fixmap_pgd_next ((uintptr_t)fixmap_pte) #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) #endif /* __PAGETABLE_PMD_FOLDED */ void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pgd_next_t *nextp; phys_addr_t next_phys; uintptr_t pgd_idx = pgd_index(va); if (sz == PGDIR_SIZE) { if (pgd_val(pgdp[pgd_idx]) == 0) pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); return; } if (pgd_val(pgdp[pgd_idx]) == 0) { next_phys = alloc_pgd_next(va); pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); nextp = get_pgd_next_virt(next_phys); memset(nextp, 0, PAGE_SIZE); } else { next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); nextp = get_pgd_next_virt(next_phys); } create_pgd_next_mapping(nextp, va, pa, sz, prot); } static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) { if (debug_pagealloc_enabled()) return PAGE_SIZE; if (pgtable_l5_enabled && !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) return P4D_SIZE; if (pgtable_l4_enabled && !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) return PUD_SIZE; if (IS_ENABLED(CONFIG_64BIT) && !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) return PMD_SIZE; return PAGE_SIZE; } #ifdef CONFIG_XIP_KERNEL #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) extern char _xiprom[], _exiprom[], __data_loc; /* called from head.S with MMU off */ asmlinkage void __init __copy_data(void) { void *from = (void *)(&__data_loc); void *to = (void *)CONFIG_PHYS_RAM_BASE; size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); memcpy(to, from, sz); } #endif #ifdef CONFIG_STRICT_KERNEL_RWX static __meminit pgprot_t pgprot_from_va(uintptr_t va) { if (is_va_kernel_text(va)) return PAGE_KERNEL_READ_EXEC; /* * In 64-bit kernel, the kernel mapping is outside the linear mapping so * we must protect its linear mapping alias from being executed and * written. * And rodata section is marked readonly in mark_rodata_ro. */ if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) return PAGE_KERNEL_READ; return PAGE_KERNEL; } void mark_rodata_ro(void) { set_kernel_memory(__start_rodata, _data, set_memory_ro); if (IS_ENABLED(CONFIG_64BIT)) set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), set_memory_ro); } #else static __meminit pgprot_t pgprot_from_va(uintptr_t va) { if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) return PAGE_KERNEL; return PAGE_KERNEL_EXEC; } #endif /* CONFIG_STRICT_KERNEL_RWX */ #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); static void __init disable_pgtable_l5(void) { pgtable_l5_enabled = false; kernel_map.page_offset = PAGE_OFFSET_L4; satp_mode = SATP_MODE_48; } static void __init disable_pgtable_l4(void) { pgtable_l4_enabled = false; kernel_map.page_offset = PAGE_OFFSET_L3; satp_mode = SATP_MODE_39; } static int __init print_no4lvl(char *p) { pr_info("Disabled 4-level and 5-level paging"); return 0; } early_param("no4lvl", print_no4lvl); static int __init print_no5lvl(char *p) { pr_info("Disabled 5-level paging"); return 0; } early_param("no5lvl", print_no5lvl); static void __init set_mmap_rnd_bits_max(void) { mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; } /* * There is a simple way to determine if 4-level is supported by the * underlying hardware: establish 1:1 mapping in 4-level page table mode * then read SATP to see if the configuration was taken into account * meaning sv48 is supported. */ static __init void set_satp_mode(uintptr_t dtb_pa) { u64 identity_satp, hw_satp; uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); if (satp_mode_cmdline == SATP_MODE_57) { disable_pgtable_l5(); } else if (satp_mode_cmdline == SATP_MODE_48) { disable_pgtable_l5(); disable_pgtable_l4(); return; } create_p4d_mapping(early_p4d, set_satp_mode_pmd, (uintptr_t)early_pud, P4D_SIZE, PAGE_TABLE); create_pud_mapping(early_pud, set_satp_mode_pmd, (uintptr_t)early_pmd, PUD_SIZE, PAGE_TABLE); /* Handle the case where set_satp_mode straddles 2 PMDs */ create_pmd_mapping(early_pmd, set_satp_mode_pmd, set_satp_mode_pmd, PMD_SIZE, PAGE_KERNEL_EXEC); create_pmd_mapping(early_pmd, set_satp_mode_pmd + PMD_SIZE, set_satp_mode_pmd + PMD_SIZE, PMD_SIZE, PAGE_KERNEL_EXEC); retry: create_pgd_mapping(early_pg_dir, set_satp_mode_pmd, pgtable_l5_enabled ? (uintptr_t)early_p4d : (uintptr_t)early_pud, PGDIR_SIZE, PAGE_TABLE); identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; local_flush_tlb_all(); csr_write(CSR_SATP, identity_satp); hw_satp = csr_swap(CSR_SATP, 0ULL); local_flush_tlb_all(); if (hw_satp != identity_satp) { if (pgtable_l5_enabled) { disable_pgtable_l5(); memset(early_pg_dir, 0, PAGE_SIZE); goto retry; } disable_pgtable_l4(); } memset(early_pg_dir, 0, PAGE_SIZE); memset(early_p4d, 0, PAGE_SIZE); memset(early_pud, 0, PAGE_SIZE); memset(early_pmd, 0, PAGE_SIZE); } #endif /* * setup_vm() is called from head.S with MMU-off. * * Following requirements should be honoured for setup_vm() to work * correctly: * 1) It should use PC-relative addressing for accessing kernel symbols. * To achieve this we always use GCC cmodel=medany. * 2) The compiler instrumentation for FTRACE will not work for setup_vm() * so disable compiler instrumentation when FTRACE is enabled. * * Currently, the above requirements are honoured by using custom CFLAGS * for init.o in mm/Makefile. */ #ifndef __riscv_cmodel_medany #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." #endif #ifdef CONFIG_RELOCATABLE extern unsigned long __rela_dyn_start, __rela_dyn_end; static void __init relocate_kernel(void) { Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; /* * This holds the offset between the linked virtual address and the * relocated virtual address. */ uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; /* * This holds the offset between kernel linked virtual address and * physical address. */ uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); Elf64_Addr relocated_addr = rela->r_addend; if (rela->r_info != R_RISCV_RELATIVE) continue; /* * Make sure to not relocate vdso symbols like rt_sigreturn * which are linked from the address 0 in vmlinux since * vdso symbol addresses are actually used as an offset from * mm->context.vdso in VDSO_OFFSET macro. */ if (relocated_addr >= KERNEL_LINK_ADDR) relocated_addr += reloc_offset; *(Elf64_Addr *)addr = relocated_addr; } } #endif /* CONFIG_RELOCATABLE */ #ifdef CONFIG_XIP_KERNEL static void __init create_kernel_page_table(pgd_t *pgdir, __always_unused bool early) { uintptr_t va, start_va, end_va; /* Map the flash resident part */ end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) create_pgd_mapping(pgdir, va, kernel_map.xiprom + (va - kernel_map.virt_addr), PMD_SIZE, PAGE_KERNEL_EXEC); /* Map the data in RAM */ start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start; end_va = kernel_map.virt_addr + kernel_map.size; for (va = start_va; va < end_va; va += PMD_SIZE) create_pgd_mapping(pgdir, va, kernel_map.phys_addr + (va - start_va), PMD_SIZE, PAGE_KERNEL); } #else static void __init create_kernel_page_table(pgd_t *pgdir, bool early) { uintptr_t va, end_va; end_va = kernel_map.virt_addr + kernel_map.size; for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) create_pgd_mapping(pgdir, va, kernel_map.phys_addr + (va - kernel_map.virt_addr), PMD_SIZE, early ? PAGE_KERNEL_EXEC : pgprot_from_va(va)); } #endif /* * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR * entry. */ static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, uintptr_t dtb_pa) { #ifndef CONFIG_BUILTIN_DTB uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); /* Make sure the fdt fixmap address is always aligned on PMD size */ BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); /* In 32-bit only, the fdt lies in its own PGD */ if (!IS_ENABLED(CONFIG_64BIT)) { create_pgd_mapping(early_pg_dir, fix_fdt_va, pa, MAX_FDT_SIZE, PAGE_KERNEL); } else { create_pmd_mapping(fixmap_pmd, fix_fdt_va, pa, PMD_SIZE, PAGE_KERNEL); create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); } dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); #else /* * For 64-bit kernel, __va can't be used since it would return a linear * mapping address whereas dtb_early_va will be used before * setup_vm_final installs the linear mapping. For 32-bit kernel, as the * kernel is mapped in the linear mapping, that makes no difference. */ dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); #endif dtb_early_pa = dtb_pa; } /* * MMU is not enabled, the page tables are allocated directly using * early_pmd/pud/p4d and the address returned is the physical one. */ static void __init pt_ops_set_early(void) { pt_ops.alloc_pte = alloc_pte_early; pt_ops.get_pte_virt = get_pte_virt_early; #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = alloc_pmd_early; pt_ops.get_pmd_virt = get_pmd_virt_early; pt_ops.alloc_pud = alloc_pud_early; pt_ops.get_pud_virt = get_pud_virt_early; pt_ops.alloc_p4d = alloc_p4d_early; pt_ops.get_p4d_virt = get_p4d_virt_early; #endif } /* * MMU is enabled but page table setup is not complete yet. * fixmap page table alloc functions must be used as a means to temporarily * map the allocated physical pages since the linear mapping does not exist yet. * * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, * but it will be used as described above. */ static void __init pt_ops_set_fixmap(void) { pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); #endif } /* * MMU is enabled and page table setup is complete, so from now, we can use * generic page allocation functions to setup page table. */ static void __init pt_ops_set_late(void) { pt_ops.alloc_pte = alloc_pte_late; pt_ops.get_pte_virt = get_pte_virt_late; #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = alloc_pmd_late; pt_ops.get_pmd_virt = get_pmd_virt_late; pt_ops.alloc_pud = alloc_pud_late; pt_ops.get_pud_virt = get_pud_virt_late; pt_ops.alloc_p4d = alloc_p4d_late; pt_ops.get_p4d_virt = get_p4d_virt_late; #endif } #ifdef CONFIG_RANDOMIZE_BASE extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa); static int __init print_nokaslr(char *p) { pr_info("Disabled KASLR"); return 0; } early_param("nokaslr", print_nokaslr); unsigned long kaslr_offset(void) { return kernel_map.virt_offset; } #endif asmlinkage void __init setup_vm(uintptr_t dtb_pa) { pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; #ifdef CONFIG_RANDOMIZE_BASE if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa); u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); u32 nr_pos; if (kaslr_seed == 0) kaslr_seed = __pi_get_kaslr_seed(dtb_pa); /* * Compute the number of positions available: we are limited * by the early page table that only has one PUD and we must * be aligned on PMD_SIZE. */ nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; } #endif kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; #ifdef CONFIG_XIP_KERNEL #ifdef CONFIG_64BIT kernel_map.page_offset = PAGE_OFFSET_L3; #else kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); #endif kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); phys_ram_base = CONFIG_PHYS_RAM_BASE; kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start); kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr + (uintptr_t)&_sdata - (uintptr_t)&_start; #else kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); kernel_map.phys_addr = (uintptr_t)(&_start); kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; #endif #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) set_satp_mode(dtb_pa); set_mmap_rnd_bits_max(); #endif /* * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, * where we have the system memory layout: this allows us to align * the physical and virtual mappings and then make use of PUD/P4D/PGD * for the linear mapping. This is only possible because the kernel * mapping lies outside the linear mapping. * In 32-bit however, as the kernel resides in the linear mapping, * setup_vm_final can not change the mapping established here, * otherwise the same kernel addresses would get mapped to different * physical addresses (if the start of dram is different from the * kernel physical address start). */ kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 0UL : PAGE_OFFSET - kernel_map.phys_addr; memory_limit = KERN_VIRT_SIZE; /* Sanity check alignment and size */ BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); #ifdef CONFIG_64BIT /* * The last 4K bytes of the addressable memory can not be mapped because * of IS_ERR_VALUE macro. */ BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); #endif #ifdef CONFIG_RELOCATABLE /* * Early page table uses only one PUD, which makes it possible * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset * makes the kernel cross over a PUD_SIZE boundary, raise a bug * since a part of the kernel would not get mapped. */ BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); relocate_kernel(); #endif apply_early_boot_alternatives(); pt_ops_set_early(); /* Setup early PGD for fixmap */ create_pgd_mapping(early_pg_dir, FIXADDR_START, fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); #ifndef __PAGETABLE_PMD_FOLDED /* Setup fixmap P4D and PUD */ if (pgtable_l5_enabled) create_p4d_mapping(fixmap_p4d, FIXADDR_START, (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); /* Setup fixmap PUD and PMD */ if (pgtable_l4_enabled) create_pud_mapping(fixmap_pud, FIXADDR_START, (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); create_pmd_mapping(fixmap_pmd, FIXADDR_START, (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); /* Setup trampoline PGD and PMD */ create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); if (pgtable_l5_enabled) create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); if (pgtable_l4_enabled) create_pud_mapping(trampoline_pud, kernel_map.virt_addr, (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); #ifdef CONFIG_XIP_KERNEL create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); #else create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); #endif #else /* Setup trampoline PGD */ create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); #endif /* * Setup early PGD covering entire kernel which will allow * us to reach paging_init(). We map all memory banks later * in setup_vm_final() below. */ create_kernel_page_table(early_pg_dir, true); /* Setup early mapping for FDT early scan */ create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); /* * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap * range can not span multiple pmds. */ BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); #ifndef __PAGETABLE_PMD_FOLDED /* * Early ioremap fixmap is already created as it lies within first 2MB * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn * the user if not. */ fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { WARN_ON(1); pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", fix_to_virt(FIX_BTMAP_BEGIN)); pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", fix_to_virt(FIX_BTMAP_END)); pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); } #endif pt_ops_set_fixmap(); } static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, uintptr_t fixed_map_size, const pgprot_t *pgprot) { phys_addr_t pa; uintptr_t va, map_size; for (pa = start; pa < end; pa += map_size) { va = (uintptr_t)__va(pa); map_size = fixed_map_size ? fixed_map_size : best_map_size(pa, va, end - pa); create_pgd_mapping(swapper_pg_dir, va, pa, map_size, pgprot ? *pgprot : pgprot_from_va(va)); } } static void __init create_linear_mapping_page_table(void) { phys_addr_t start, end; phys_addr_t kfence_pool __maybe_unused; u64 i; #ifdef CONFIG_STRICT_KERNEL_RWX phys_addr_t ktext_start = __pa_symbol(_start); phys_addr_t ktext_size = __init_data_begin - _start; phys_addr_t krodata_start = __pa_symbol(__start_rodata); phys_addr_t krodata_size = _data - __start_rodata; /* Isolate kernel text and rodata so they don't get mapped with a PUD */ memblock_mark_nomap(ktext_start, ktext_size); memblock_mark_nomap(krodata_start, krodata_size); #endif #ifdef CONFIG_KFENCE /* * kfence pool must be backed by PAGE_SIZE mappings, so allocate it * before we setup the linear mapping so that we avoid using hugepages * for this region. */ kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); BUG_ON(!kfence_pool); memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); __kfence_pool = __va(kfence_pool); #endif /* Map all memory banks in the linear mapping */ for_each_mem_range(i, &start, &end) { if (start >= end) break; if (start <= __pa(PAGE_OFFSET) && __pa(PAGE_OFFSET) < end) start = __pa(PAGE_OFFSET); create_linear_mapping_range(start, end, 0, NULL); } #ifdef CONFIG_STRICT_KERNEL_RWX create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); memblock_clear_nomap(ktext_start, ktext_size); memblock_clear_nomap(krodata_start, krodata_size); #endif #ifdef CONFIG_KFENCE create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); #endif } static void __init setup_vm_final(void) { /* Setup swapper PGD for fixmap */ #if !defined(CONFIG_64BIT) /* * In 32-bit, the device tree lies in a pgd entry, so it must be copied * directly in swapper_pg_dir in addition to the pgd entry that points * to fixmap_pte. */ unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); #endif create_pgd_mapping(swapper_pg_dir, FIXADDR_START, __pa_symbol(fixmap_pgd_next), PGDIR_SIZE, PAGE_TABLE); /* Map the linear mapping */ create_linear_mapping_page_table(); /* Map the kernel */ if (IS_ENABLED(CONFIG_64BIT)) create_kernel_page_table(swapper_pg_dir, false); #ifdef CONFIG_KASAN kasan_swapper_init(); #endif /* Clear fixmap PTE and PMD mappings */ clear_fixmap(FIX_PTE); clear_fixmap(FIX_PMD); clear_fixmap(FIX_PUD); clear_fixmap(FIX_P4D); /* Move to swapper page table */ csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); local_flush_tlb_all(); pt_ops_set_late(); } #else asmlinkage void __init setup_vm(uintptr_t dtb_pa) { dtb_early_va = (void *)dtb_pa; dtb_early_pa = dtb_pa; } static inline void setup_vm_final(void) { } #endif /* CONFIG_MMU */ /* * reserve_crashkernel() - reserves memory for crash kernel * * This function reserves memory area given in "crashkernel=" kernel command * line parameter. The memory reserved is used by dump capture kernel when * primary kernel is crashing. */ static void __init arch_reserve_crashkernel(void) { unsigned long long low_size = 0; unsigned long long crash_base, crash_size; char *cmdline = boot_command_line; bool high = false; int ret; if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) return; ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), &crash_size, &crash_base, &low_size, &high); if (ret) return; reserve_crashkernel_generic(cmdline, crash_size, crash_base, low_size, high); } void __init paging_init(void) { setup_bootmem(); setup_vm_final(); /* Depend on that Linear Mapping is ready */ memblock_allow_resize(); } void __init misc_mem_init(void) { early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); arch_numa_init(); sparse_init(); #ifdef CONFIG_SPARSEMEM_VMEMMAP /* The entire VMEMMAP region has been populated. Flush TLB for this region */ local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); #endif zone_sizes_init(); arch_reserve_crashkernel(); memblock_dump_all(); } #ifdef CONFIG_SPARSEMEM_VMEMMAP void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, unsigned long addr, unsigned long next) { pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); } int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, unsigned long addr, unsigned long next) { vmemmap_verify((pte_t *)pmdp, node, addr, next); return 1; } int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { /* * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we * can't use hugepage mappings for 2-level page table because in case of * memory hotplug, we are not able to update all the page tables with * the new PMDs. */ return vmemmap_populate_hugepages(start, end, node, altmap); } #endif #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) /* * Pre-allocates page-table pages for a specific area in the kernel * page-table. Only the level which needs to be synchronized between * all page-tables is allocated because the synchronization can be * expensive. */ static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, const char *area) { unsigned long addr; const char *lvl; for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; lvl = "p4d"; p4d = p4d_alloc(&init_mm, pgd, addr); if (!p4d) goto failed; if (pgtable_l5_enabled) continue; lvl = "pud"; pud = pud_alloc(&init_mm, p4d, addr); if (!pud) goto failed; if (pgtable_l4_enabled) continue; lvl = "pmd"; pmd = pmd_alloc(&init_mm, pud, addr); if (!pmd) goto failed; } return; failed: /* * The pages have to be there now or they will be missing in * process page-tables later. */ panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); } #define PAGE_END KASAN_SHADOW_START void __init pgtable_cache_init(void) { preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); if (IS_ENABLED(CONFIG_MODULES)) preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); if (IS_ENABLED(CONFIG_KASAN)) preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); } } #endif #ifdef CONFIG_EXECMEM #ifdef CONFIG_MMU static struct execmem_info execmem_info __ro_after_init; struct execmem_info __init *execmem_arch_setup(void) { execmem_info = (struct execmem_info){ .ranges = { [EXECMEM_DEFAULT] = { .start = MODULES_VADDR, .end = MODULES_END, .pgprot = PAGE_KERNEL, .alignment = 1, }, [EXECMEM_KPROBES] = { .start = VMALLOC_START, .end = VMALLOC_END, .pgprot = PAGE_KERNEL_READ_EXEC, .alignment = 1, }, [EXECMEM_BPF] = { .start = BPF_JIT_REGION_START, .end = BPF_JIT_REGION_END, .pgprot = PAGE_KERNEL, .alignment = PAGE_SIZE, }, }, }; return &execmem_info; } #endif /* CONFIG_MMU */ #endif /* CONFIG_EXECMEM */ #ifdef CONFIG_MEMORY_HOTPLUG static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) { struct page *page = pmd_page(*pmd); struct ptdesc *ptdesc = page_ptdesc(page); pte_t *pte; int i; for (i = 0; i < PTRS_PER_PTE; i++) { pte = pte_start + i; if (!pte_none(*pte)) return; } pagetable_pte_dtor(ptdesc); if (PageReserved(page)) free_reserved_page(page); else pagetable_free(ptdesc); pmd_clear(pmd); } static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) { struct page *page = pud_page(*pud); struct ptdesc *ptdesc = page_ptdesc(page); pmd_t *pmd; int i; for (i = 0; i < PTRS_PER_PMD; i++) { pmd = pmd_start + i; if (!pmd_none(*pmd)) return; } pagetable_pmd_dtor(ptdesc); if (PageReserved(page)) free_reserved_page(page); else pagetable_free(ptdesc); pud_clear(pud); } static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) { struct page *page = p4d_page(*p4d); pud_t *pud; int i; for (i = 0; i < PTRS_PER_PUD; i++) { pud = pud_start + i; if (!pud_none(*pud)) return; } if (PageReserved(page)) free_reserved_page(page); else free_pages((unsigned long)page_address(page), 0); p4d_clear(p4d); } static void __meminit free_vmemmap_storage(struct page *page, size_t size, struct vmem_altmap *altmap) { int order = get_order(size); if (altmap) { vmem_altmap_free(altmap, size >> PAGE_SHIFT); return; } if (PageReserved(page)) { unsigned int nr_pages = 1 << order; while (nr_pages--) free_reserved_page(page++); return; } free_pages((unsigned long)page_address(page), order); } static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, bool is_vmemmap, struct vmem_altmap *altmap) { unsigned long next; pte_t *ptep, pte; for (; addr < end; addr = next) { next = (addr + PAGE_SIZE) & PAGE_MASK; if (next > end) next = end; ptep = pte_base + pte_index(addr); pte = ptep_get(ptep); if (!pte_present(*ptep)) continue; pte_clear(&init_mm, addr, ptep); if (is_vmemmap) free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); } } static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, bool is_vmemmap, struct vmem_altmap *altmap) { unsigned long next; pte_t *pte_base; pmd_t *pmdp, pmd; for (; addr < end; addr = next) { next = pmd_addr_end(addr, end); pmdp = pmd_base + pmd_index(addr); pmd = pmdp_get(pmdp); if (!pmd_present(pmd)) continue; if (pmd_leaf(pmd)) { pmd_clear(pmdp); if (is_vmemmap) free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); continue; } pte_base = (pte_t *)pmd_page_vaddr(*pmdp); remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); free_pte_table(pte_base, pmdp); } } static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, bool is_vmemmap, struct vmem_altmap *altmap) { unsigned long next; pud_t *pudp, pud; pmd_t *pmd_base; for (; addr < end; addr = next) { next = pud_addr_end(addr, end); pudp = pud_base + pud_index(addr); pud = pudp_get(pudp); if (!pud_present(pud)) continue; if (pud_leaf(pud)) { if (pgtable_l4_enabled) { pud_clear(pudp); if (is_vmemmap) free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); } continue; } pmd_base = pmd_offset(pudp, 0); remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); if (pgtable_l4_enabled) free_pmd_table(pmd_base, pudp); } } static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, bool is_vmemmap, struct vmem_altmap *altmap) { unsigned long next; p4d_t *p4dp, p4d; pud_t *pud_base; for (; addr < end; addr = next) { next = p4d_addr_end(addr, end); p4dp = p4d_base + p4d_index(addr); p4d = p4dp_get(p4dp); if (!p4d_present(p4d)) continue; if (p4d_leaf(p4d)) { if (pgtable_l5_enabled) { p4d_clear(p4dp); if (is_vmemmap) free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); } continue; } pud_base = pud_offset(p4dp, 0); remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); if (pgtable_l5_enabled) free_pud_table(pud_base, p4dp); } } static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, struct vmem_altmap *altmap) { unsigned long addr, next; p4d_t *p4d_base; pgd_t *pgd; for (addr = va; addr < end; addr = next) { next = pgd_addr_end(addr, end); pgd = pgd_offset_k(addr); if (!pgd_present(*pgd)) continue; if (pgd_leaf(*pgd)) continue; p4d_base = p4d_offset(pgd, 0); remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); } flush_tlb_all(); } static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) { unsigned long va = (unsigned long)__va(start); unsigned long end = (unsigned long)__va(start + size); remove_pgd_mapping(va, end, false, NULL); } struct range arch_get_mappable_range(void) { struct range mhp_range; mhp_range.start = __pa(PAGE_OFFSET); mhp_range.end = __pa(PAGE_END - 1); return mhp_range; } int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) { int ret = 0; create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); if (ret) { remove_linear_mapping(start, size); goto out; } max_pfn = PFN_UP(start + size); max_low_pfn = max_pfn; out: flush_tlb_all(); return ret; } void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) { __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); remove_linear_mapping(start, size); flush_tlb_all(); } void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { remove_pgd_mapping(start, end, true, altmap); } #endif /* CONFIG_MEMORY_HOTPLUG */