/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2017 SiFive */ #include #include #include #include #include #include #include #include #include #include #include .section .irqentry.text, "ax" .macro new_vmalloc_check REG_S a0, TASK_TI_A0(tp) csrr a0, CSR_CAUSE /* Exclude IRQs */ blt a0, zero, .Lnew_vmalloc_restore_context_a0 REG_S a1, TASK_TI_A1(tp) /* Only check new_vmalloc if we are in page/protection fault */ li a1, EXC_LOAD_PAGE_FAULT beq a0, a1, .Lnew_vmalloc_kernel_address li a1, EXC_STORE_PAGE_FAULT beq a0, a1, .Lnew_vmalloc_kernel_address li a1, EXC_INST_PAGE_FAULT bne a0, a1, .Lnew_vmalloc_restore_context_a1 .Lnew_vmalloc_kernel_address: /* Is it a kernel address? */ csrr a0, CSR_TVAL bge a0, zero, .Lnew_vmalloc_restore_context_a1 /* Check if a new vmalloc mapping appeared that could explain the trap */ REG_S a2, TASK_TI_A2(tp) /* * Computes: * a0 = &new_vmalloc[BIT_WORD(cpu)] * a1 = BIT_MASK(cpu) */ REG_L a2, TASK_TI_CPU(tp) /* * Compute the new_vmalloc element position: * (cpu / 64) * 8 = (cpu >> 6) << 3 */ srli a1, a2, 6 slli a1, a1, 3 la a0, new_vmalloc add a0, a0, a1 /* * Compute the bit position in the new_vmalloc element: * bit_pos = cpu % 64 = cpu - (cpu / 64) * 64 = cpu - (cpu >> 6) << 6 * = cpu - ((cpu >> 6) << 3) << 3 */ slli a1, a1, 3 sub a1, a2, a1 /* Compute the "get mask": 1 << bit_pos */ li a2, 1 sll a1, a2, a1 /* Check the value of new_vmalloc for this cpu */ REG_L a2, 0(a0) and a2, a2, a1 beq a2, zero, .Lnew_vmalloc_restore_context /* Atomically reset the current cpu bit in new_vmalloc */ amoxor.d a0, a1, (a0) /* Only emit a sfence.vma if the uarch caches invalid entries */ ALTERNATIVE("sfence.vma", "nop", 0, RISCV_ISA_EXT_SVVPTC, 1) REG_L a0, TASK_TI_A0(tp) REG_L a1, TASK_TI_A1(tp) REG_L a2, TASK_TI_A2(tp) csrw CSR_SCRATCH, x0 sret .Lnew_vmalloc_restore_context: REG_L a2, TASK_TI_A2(tp) .Lnew_vmalloc_restore_context_a1: REG_L a1, TASK_TI_A1(tp) .Lnew_vmalloc_restore_context_a0: REG_L a0, TASK_TI_A0(tp) .endm SYM_CODE_START(handle_exception) /* * If coming from userspace, preserve the user thread pointer and load * the kernel thread pointer. If we came from the kernel, the scratch * register will contain 0, and we should continue on the current TP. */ csrrw tp, CSR_SCRATCH, tp bnez tp, .Lsave_context .Lrestore_kernel_tpsp: csrr tp, CSR_SCRATCH #ifdef CONFIG_64BIT /* * The RISC-V kernel does not eagerly emit a sfence.vma after each * new vmalloc mapping, which may result in exceptions: * - if the uarch caches invalid entries, the new mapping would not be * observed by the page table walker and an invalidation is needed. * - if the uarch does not cache invalid entries, a reordered access * could "miss" the new mapping and traps: in that case, we only need * to retry the access, no sfence.vma is required. */ new_vmalloc_check #endif REG_S sp, TASK_TI_KERNEL_SP(tp) #ifdef CONFIG_VMAP_STACK addi sp, sp, -(PT_SIZE_ON_STACK) srli sp, sp, THREAD_SHIFT andi sp, sp, 0x1 bnez sp, handle_kernel_stack_overflow REG_L sp, TASK_TI_KERNEL_SP(tp) #endif .Lsave_context: REG_S sp, TASK_TI_USER_SP(tp) REG_L sp, TASK_TI_KERNEL_SP(tp) addi sp, sp, -(PT_SIZE_ON_STACK) REG_S x1, PT_RA(sp) REG_S x3, PT_GP(sp) REG_S x5, PT_T0(sp) save_from_x6_to_x31 /* * Disable user-mode memory access as it should only be set in the * actual user copy routines. * * Disable the FPU/Vector to detect illegal usage of floating point * or vector in kernel space. */ li t0, SR_SUM | SR_FS_VS REG_L s0, TASK_TI_USER_SP(tp) csrrc s1, CSR_STATUS, t0 csrr s2, CSR_EPC csrr s3, CSR_TVAL csrr s4, CSR_CAUSE csrr s5, CSR_SCRATCH REG_S s0, PT_SP(sp) REG_S s1, PT_STATUS(sp) REG_S s2, PT_EPC(sp) REG_S s3, PT_BADADDR(sp) REG_S s4, PT_CAUSE(sp) REG_S s5, PT_TP(sp) /* * Set the scratch register to 0, so that if a recursive exception * occurs, the exception vector knows it came from the kernel */ csrw CSR_SCRATCH, x0 /* Load the global pointer */ load_global_pointer /* Load the kernel shadow call stack pointer if coming from userspace */ scs_load_current_if_task_changed s5 #ifdef CONFIG_RISCV_ISA_V_PREEMPTIVE move a0, sp call riscv_v_context_nesting_start #endif move a0, sp /* pt_regs */ /* * MSB of cause differentiates between * interrupts and exceptions */ bge s4, zero, 1f /* Handle interrupts */ call do_irq j ret_from_exception 1: /* Handle other exceptions */ slli t0, s4, RISCV_LGPTR la t1, excp_vect_table la t2, excp_vect_table_end add t0, t1, t0 /* Check if exception code lies within bounds */ bgeu t0, t2, 3f REG_L t1, 0(t0) 2: jalr t1 j ret_from_exception 3: la t1, do_trap_unknown j 2b SYM_CODE_END(handle_exception) ASM_NOKPROBE(handle_exception) /* * The ret_from_exception must be called with interrupt disabled. Here is the * caller list: * - handle_exception * - ret_from_fork */ SYM_CODE_START_NOALIGN(ret_from_exception) REG_L s0, PT_STATUS(sp) #ifdef CONFIG_RISCV_M_MODE /* the MPP value is too large to be used as an immediate arg for addi */ li t0, SR_MPP and s0, s0, t0 #else andi s0, s0, SR_SPP #endif bnez s0, 1f #ifdef CONFIG_GCC_PLUGIN_STACKLEAK call stackleak_erase_on_task_stack #endif /* Save unwound kernel stack pointer in thread_info */ addi s0, sp, PT_SIZE_ON_STACK REG_S s0, TASK_TI_KERNEL_SP(tp) /* Save the kernel shadow call stack pointer */ scs_save_current /* * Save TP into the scratch register , so we can find the kernel data * structures again. */ csrw CSR_SCRATCH, tp 1: #ifdef CONFIG_RISCV_ISA_V_PREEMPTIVE move a0, sp call riscv_v_context_nesting_end #endif REG_L a0, PT_STATUS(sp) /* * The current load reservation is effectively part of the processor's * state, in the sense that load reservations cannot be shared between * different hart contexts. We can't actually save and restore a load * reservation, so instead here we clear any existing reservation -- * it's always legal for implementations to clear load reservations at * any point (as long as the forward progress guarantee is kept, but * we'll ignore that here). * * Dangling load reservations can be the result of taking a trap in the * middle of an LR/SC sequence, but can also be the result of a taken * forward branch around an SC -- which is how we implement CAS. As a * result we need to clear reservations between the last CAS and the * jump back to the new context. While it is unlikely the store * completes, implementations are allowed to expand reservations to be * arbitrarily large. */ REG_L a2, PT_EPC(sp) REG_SC x0, a2, PT_EPC(sp) csrw CSR_STATUS, a0 csrw CSR_EPC, a2 REG_L x1, PT_RA(sp) REG_L x3, PT_GP(sp) REG_L x4, PT_TP(sp) REG_L x5, PT_T0(sp) restore_from_x6_to_x31 REG_L x2, PT_SP(sp) #ifdef CONFIG_RISCV_M_MODE mret #else sret #endif SYM_INNER_LABEL(ret_from_exception_end, SYM_L_GLOBAL) SYM_CODE_END(ret_from_exception) ASM_NOKPROBE(ret_from_exception) #ifdef CONFIG_VMAP_STACK SYM_CODE_START_LOCAL(handle_kernel_stack_overflow) /* we reach here from kernel context, sscratch must be 0 */ csrrw x31, CSR_SCRATCH, x31 asm_per_cpu sp, overflow_stack, x31 li x31, OVERFLOW_STACK_SIZE add sp, sp, x31 /* zero out x31 again and restore x31 */ xor x31, x31, x31 csrrw x31, CSR_SCRATCH, x31 addi sp, sp, -(PT_SIZE_ON_STACK) //save context to overflow stack REG_S x1, PT_RA(sp) REG_S x3, PT_GP(sp) REG_S x5, PT_T0(sp) save_from_x6_to_x31 REG_L s0, TASK_TI_KERNEL_SP(tp) csrr s1, CSR_STATUS csrr s2, CSR_EPC csrr s3, CSR_TVAL csrr s4, CSR_CAUSE csrr s5, CSR_SCRATCH REG_S s0, PT_SP(sp) REG_S s1, PT_STATUS(sp) REG_S s2, PT_EPC(sp) REG_S s3, PT_BADADDR(sp) REG_S s4, PT_CAUSE(sp) REG_S s5, PT_TP(sp) move a0, sp tail handle_bad_stack SYM_CODE_END(handle_kernel_stack_overflow) ASM_NOKPROBE(handle_kernel_stack_overflow) #endif SYM_CODE_START(ret_from_fork) call schedule_tail beqz s0, 1f /* not from kernel thread */ /* Call fn(arg) */ move a0, s1 jalr s0 1: move a0, sp /* pt_regs */ call syscall_exit_to_user_mode j ret_from_exception SYM_CODE_END(ret_from_fork) #ifdef CONFIG_IRQ_STACKS /* * void call_on_irq_stack(struct pt_regs *regs, * void (*func)(struct pt_regs *)); * * Calls func(regs) using the per-CPU IRQ stack. */ SYM_FUNC_START(call_on_irq_stack) /* Create a frame record to save ra and s0 (fp) */ addi sp, sp, -STACKFRAME_SIZE_ON_STACK REG_S ra, STACKFRAME_RA(sp) REG_S s0, STACKFRAME_FP(sp) addi s0, sp, STACKFRAME_SIZE_ON_STACK /* Switch to the per-CPU shadow call stack */ scs_save_current scs_load_irq_stack t0 /* Switch to the per-CPU IRQ stack and call the handler */ load_per_cpu t0, irq_stack_ptr, t1 li t1, IRQ_STACK_SIZE add sp, t0, t1 jalr a1 /* Switch back to the thread shadow call stack */ scs_load_current /* Switch back to the thread stack and restore ra and s0 */ addi sp, s0, -STACKFRAME_SIZE_ON_STACK REG_L ra, STACKFRAME_RA(sp) REG_L s0, STACKFRAME_FP(sp) addi sp, sp, STACKFRAME_SIZE_ON_STACK ret SYM_FUNC_END(call_on_irq_stack) #endif /* CONFIG_IRQ_STACKS */ /* * Integer register context switch * The callee-saved registers must be saved and restored. * * a0: previous task_struct (must be preserved across the switch) * a1: next task_struct * * The value of a0 and a1 must be preserved by this function, as that's how * arguments are passed to schedule_tail. */ SYM_FUNC_START(__switch_to) /* Save context into prev->thread */ li a4, TASK_THREAD_RA add a3, a0, a4 add a4, a1, a4 REG_S ra, TASK_THREAD_RA_RA(a3) REG_S sp, TASK_THREAD_SP_RA(a3) REG_S s0, TASK_THREAD_S0_RA(a3) REG_S s1, TASK_THREAD_S1_RA(a3) REG_S s2, TASK_THREAD_S2_RA(a3) REG_S s3, TASK_THREAD_S3_RA(a3) REG_S s4, TASK_THREAD_S4_RA(a3) REG_S s5, TASK_THREAD_S5_RA(a3) REG_S s6, TASK_THREAD_S6_RA(a3) REG_S s7, TASK_THREAD_S7_RA(a3) REG_S s8, TASK_THREAD_S8_RA(a3) REG_S s9, TASK_THREAD_S9_RA(a3) REG_S s10, TASK_THREAD_S10_RA(a3) REG_S s11, TASK_THREAD_S11_RA(a3) /* Save the kernel shadow call stack pointer */ scs_save_current /* Restore context from next->thread */ REG_L ra, TASK_THREAD_RA_RA(a4) REG_L sp, TASK_THREAD_SP_RA(a4) REG_L s0, TASK_THREAD_S0_RA(a4) REG_L s1, TASK_THREAD_S1_RA(a4) REG_L s2, TASK_THREAD_S2_RA(a4) REG_L s3, TASK_THREAD_S3_RA(a4) REG_L s4, TASK_THREAD_S4_RA(a4) REG_L s5, TASK_THREAD_S5_RA(a4) REG_L s6, TASK_THREAD_S6_RA(a4) REG_L s7, TASK_THREAD_S7_RA(a4) REG_L s8, TASK_THREAD_S8_RA(a4) REG_L s9, TASK_THREAD_S9_RA(a4) REG_L s10, TASK_THREAD_S10_RA(a4) REG_L s11, TASK_THREAD_S11_RA(a4) /* The offset of thread_info in task_struct is zero. */ move tp, a1 /* Switch to the next shadow call stack */ scs_load_current ret SYM_FUNC_END(__switch_to) #ifndef CONFIG_MMU #define do_page_fault do_trap_unknown #endif .section ".rodata" .align LGREG /* Exception vector table */ SYM_DATA_START_LOCAL(excp_vect_table) RISCV_PTR do_trap_insn_misaligned ALT_INSN_FAULT(RISCV_PTR do_trap_insn_fault) RISCV_PTR do_trap_insn_illegal RISCV_PTR do_trap_break RISCV_PTR do_trap_load_misaligned RISCV_PTR do_trap_load_fault RISCV_PTR do_trap_store_misaligned RISCV_PTR do_trap_store_fault RISCV_PTR do_trap_ecall_u /* system call */ RISCV_PTR do_trap_ecall_s RISCV_PTR do_trap_unknown RISCV_PTR do_trap_ecall_m /* instruciton page fault */ ALT_PAGE_FAULT(RISCV_PTR do_page_fault) RISCV_PTR do_page_fault /* load page fault */ RISCV_PTR do_trap_unknown RISCV_PTR do_page_fault /* store page fault */ SYM_DATA_END_LABEL(excp_vect_table, SYM_L_LOCAL, excp_vect_table_end) #ifndef CONFIG_MMU SYM_DATA_START(__user_rt_sigreturn) li a7, __NR_rt_sigreturn ecall SYM_DATA_END(__user_rt_sigreturn) #endif