// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016, Rashmica Gupta, IBM Corp. * * This traverses the kernel virtual memory and dumps the pages that are in * the hash pagetable, along with their flags to * /sys/kernel/debug/kernel_hash_pagetable. * * If radix is enabled then there is no hash page table and so no debugfs file * is generated. */ #include #include #include #include #include #include #include #include #include #include #include #include struct pg_state { struct seq_file *seq; const struct addr_marker *marker; unsigned long start_address; unsigned int level; u64 current_flags; }; struct addr_marker { unsigned long start_address; const char *name; }; static struct addr_marker address_markers[] = { { 0, "Start of kernel VM" }, { 0, "vmalloc() Area" }, { 0, "vmalloc() End" }, { 0, "isa I/O start" }, { 0, "isa I/O end" }, { 0, "phb I/O start" }, { 0, "phb I/O end" }, { 0, "I/O remap start" }, { 0, "I/O remap end" }, { 0, "vmemmap start" }, { -1, NULL }, }; struct flag_info { u64 mask; u64 val; const char *set; const char *clear; bool is_val; int shift; }; static const struct flag_info v_flag_array[] = { { .mask = SLB_VSID_B, .val = SLB_VSID_B_256M, .set = "ssize: 256M", .clear = "ssize: 1T ", }, { .mask = HPTE_V_SECONDARY, .val = HPTE_V_SECONDARY, .set = "secondary", .clear = "primary ", }, { .mask = HPTE_V_VALID, .val = HPTE_V_VALID, .set = "valid ", .clear = "invalid", }, { .mask = HPTE_V_BOLTED, .val = HPTE_V_BOLTED, .set = "bolted", .clear = "", } }; static const struct flag_info r_flag_array[] = { { .mask = HPTE_R_PP0 | HPTE_R_PP, .val = PP_RWXX, .set = "prot:RW--", }, { .mask = HPTE_R_PP0 | HPTE_R_PP, .val = PP_RWRX, .set = "prot:RWR-", }, { .mask = HPTE_R_PP0 | HPTE_R_PP, .val = PP_RWRW, .set = "prot:RWRW", }, { .mask = HPTE_R_PP0 | HPTE_R_PP, .val = PP_RXRX, .set = "prot:R-R-", }, { .mask = HPTE_R_PP0 | HPTE_R_PP, .val = PP_RXXX, .set = "prot:R---", }, { .mask = HPTE_R_KEY_HI | HPTE_R_KEY_LO, .val = HPTE_R_KEY_HI | HPTE_R_KEY_LO, .set = "key", .clear = "", .is_val = true, }, { .mask = HPTE_R_R, .val = HPTE_R_R, .set = "ref", .clear = " ", }, { .mask = HPTE_R_C, .val = HPTE_R_C, .set = "changed", .clear = " ", }, { .mask = HPTE_R_N, .val = HPTE_R_N, .set = "no execute", }, { .mask = HPTE_R_WIMG, .val = HPTE_R_W, .set = "writethru", }, { .mask = HPTE_R_WIMG, .val = HPTE_R_I, .set = "no cache", }, { .mask = HPTE_R_WIMG, .val = HPTE_R_G, .set = "guarded", } }; static int calculate_pagesize(struct pg_state *st, int ps, char s[]) { static const char units[] = "BKMGTPE"; const char *unit = units; while (ps > 9 && unit[1]) { ps -= 10; unit++; } seq_printf(st->seq, " %s_ps: %i%c\t", s, 1<mask == 0) continue; /* Some 'flags' are actually values */ if (flag->is_val) { val = pte & flag->val; if (flag->shift) val = val >> flag->shift; seq_printf(st->seq, " %s:%llx", flag->set, val); } else { if ((pte & flag->mask) == flag->val) s = flag->set; else s = flag->clear; if (s) seq_printf(st->seq, " %s", s); } } } static void dump_hpte_info(struct pg_state *st, unsigned long ea, u64 v, u64 r, unsigned long rpn, int bps, int aps, unsigned long lp) { int aps_index; while (ea >= st->marker[1].start_address) { st->marker++; seq_printf(st->seq, "---[ %s ]---\n", st->marker->name); } seq_printf(st->seq, "0x%lx:\t", ea); seq_printf(st->seq, "AVPN:%llx\t", HPTE_V_AVPN_VAL(v)); dump_flag_info(st, v_flag_array, v, ARRAY_SIZE(v_flag_array)); seq_printf(st->seq, " rpn: %lx\t", rpn); dump_flag_info(st, r_flag_array, r, ARRAY_SIZE(r_flag_array)); calculate_pagesize(st, bps, "base"); aps_index = calculate_pagesize(st, aps, "actual"); if (aps_index != 2) seq_printf(st->seq, "LP enc: %lx", lp); seq_putc(st->seq, '\n'); } static int native_find(unsigned long ea, int psize, bool primary, u64 *v, u64 *r) { struct hash_pte *hptep; unsigned long hash, vsid, vpn, hpte_group, want_v, hpte_v; int i, ssize = mmu_kernel_ssize; unsigned long shift = mmu_psize_defs[psize].shift; /* calculate hash */ vsid = get_kernel_vsid(ea, ssize); vpn = hpt_vpn(ea, vsid, ssize); hash = hpt_hash(vpn, shift, ssize); want_v = hpte_encode_avpn(vpn, psize, ssize); /* to check in the secondary hash table, we invert the hash */ if (!primary) hash = ~hash; hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; for (i = 0; i < HPTES_PER_GROUP; i++) { hptep = htab_address + hpte_group; hpte_v = be64_to_cpu(hptep->v); if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) { /* HPTE matches */ *v = be64_to_cpu(hptep->v); *r = be64_to_cpu(hptep->r); return 0; } ++hpte_group; } return -1; } static int pseries_find(unsigned long ea, int psize, bool primary, u64 *v, u64 *r) { struct { unsigned long v; unsigned long r; } ptes[4]; unsigned long vsid, vpn, hash, hpte_group, want_v; int i, j, ssize = mmu_kernel_ssize; long lpar_rc = 0; unsigned long shift = mmu_psize_defs[psize].shift; /* calculate hash */ vsid = get_kernel_vsid(ea, ssize); vpn = hpt_vpn(ea, vsid, ssize); hash = hpt_hash(vpn, shift, ssize); want_v = hpte_encode_avpn(vpn, psize, ssize); /* to check in the secondary hash table, we invert the hash */ if (!primary) hash = ~hash; hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; /* see if we can find an entry in the hpte with this hash */ for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); if (lpar_rc) continue; for (j = 0; j < 4; j++) { if (HPTE_V_COMPARE(ptes[j].v, want_v) && (ptes[j].v & HPTE_V_VALID)) { /* HPTE matches */ *v = ptes[j].v; *r = ptes[j].r; return 0; } } } return -1; } static void decode_r(int bps, unsigned long r, unsigned long *rpn, int *aps, unsigned long *lp_bits) { struct mmu_psize_def entry; unsigned long arpn, mask, lp; int penc = -2, idx = 0, shift; /*. * The LP field has 8 bits. Depending on the actual page size, some of * these bits are concatenated with the APRN to get the RPN. The rest * of the bits in the LP field is the LP value and is an encoding for * the base page size and the actual page size. * * - find the mmu entry for our base page size * - go through all page encodings and use the associated mask to * find an encoding that matches our encoding in the LP field. */ arpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT; lp = arpn & 0xff; entry = mmu_psize_defs[bps]; while (idx < MMU_PAGE_COUNT) { penc = entry.penc[idx]; if ((penc != -1) && (mmu_psize_defs[idx].shift)) { shift = mmu_psize_defs[idx].shift - HPTE_R_RPN_SHIFT; mask = (0x1 << (shift)) - 1; if ((lp & mask) == penc) { *aps = mmu_psize_to_shift(idx); *lp_bits = lp & mask; *rpn = arpn >> shift; return; } } idx++; } } static int base_hpte_find(unsigned long ea, int psize, bool primary, u64 *v, u64 *r) { if (IS_ENABLED(CONFIG_PPC_PSERIES) && firmware_has_feature(FW_FEATURE_LPAR)) return pseries_find(ea, psize, primary, v, r); return native_find(ea, psize, primary, v, r); } static unsigned long hpte_find(struct pg_state *st, unsigned long ea, int psize) { unsigned long slot; u64 v = 0, r = 0; unsigned long rpn, lp_bits; int base_psize = 0, actual_psize = 0; if (ea < PAGE_OFFSET) return -1; /* Look in primary table */ slot = base_hpte_find(ea, psize, true, &v, &r); /* Look in secondary table */ if (slot == -1) slot = base_hpte_find(ea, psize, false, &v, &r); /* No entry found */ if (slot == -1) return -1; /* * We found an entry in the hash page table: * - check that this has the same base page * - find the actual page size * - find the RPN */ base_psize = mmu_psize_to_shift(psize); if ((v & HPTE_V_LARGE) == HPTE_V_LARGE) { decode_r(psize, r, &rpn, &actual_psize, &lp_bits); } else { /* 4K actual page size */ actual_psize = 12; rpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT; /* In this case there are no LP bits */ lp_bits = -1; } /* * We didn't find a matching encoding, so the PTE we found isn't for * this address. */ if (actual_psize == -1) return -1; dump_hpte_info(st, ea, v, r, rpn, base_psize, actual_psize, lp_bits); return 0; } static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start) { pte_t *pte = pte_offset_kernel(pmd, 0); unsigned long addr, pteval, psize; int i, status; for (i = 0; i < PTRS_PER_PTE; i++, pte++) { addr = start + i * PAGE_SIZE; pteval = pte_val(*pte); if (addr < VMALLOC_END) psize = mmu_vmalloc_psize; else psize = mmu_io_psize; /* check for secret 4K mappings */ if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && ((pteval & H_PAGE_COMBO) == H_PAGE_COMBO || (pteval & H_PAGE_4K_PFN) == H_PAGE_4K_PFN)) psize = mmu_io_psize; /* check for hashpte */ status = hpte_find(st, addr, psize); if (((pteval & H_PAGE_HASHPTE) != H_PAGE_HASHPTE) && (status != -1)) { /* found a hpte that is not in the linux page tables */ seq_printf(st->seq, "page probably bolted before linux" " pagetables were set: addr:%lx, pteval:%lx\n", addr, pteval); } } } static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start) { pmd_t *pmd = pmd_offset(pud, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PMD; i++, pmd++) { addr = start + i * PMD_SIZE; if (!pmd_none(*pmd)) /* pmd exists */ walk_pte(st, pmd, addr); } } static void walk_pud(struct pg_state *st, p4d_t *p4d, unsigned long start) { pud_t *pud = pud_offset(p4d, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PUD; i++, pud++) { addr = start + i * PUD_SIZE; if (!pud_none(*pud)) /* pud exists */ walk_pmd(st, pud, addr); } } static void walk_p4d(struct pg_state *st, pgd_t *pgd, unsigned long start) { p4d_t *p4d = p4d_offset(pgd, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_P4D; i++, p4d++) { addr = start + i * P4D_SIZE; if (!p4d_none(*p4d)) /* p4d exists */ walk_pud(st, p4d, addr); } } static void walk_pagetables(struct pg_state *st) { pgd_t *pgd = pgd_offset_k(0UL); unsigned int i; unsigned long addr; /* * Traverse the linux pagetable structure and dump pages that are in * the hash pagetable. */ for (i = 0; i < PTRS_PER_PGD; i++, pgd++) { addr = KERN_VIRT_START + i * PGDIR_SIZE; if (!pgd_none(*pgd)) /* pgd exists */ walk_p4d(st, pgd, addr); } } static void walk_linearmapping(struct pg_state *st) { unsigned long addr; /* * Traverse the linear mapping section of virtual memory and dump pages * that are in the hash pagetable. */ unsigned long psize = 1 << mmu_psize_defs[mmu_linear_psize].shift; for (addr = PAGE_OFFSET; addr < PAGE_OFFSET + memblock_end_of_DRAM(); addr += psize) hpte_find(st, addr, mmu_linear_psize); } static void walk_vmemmap(struct pg_state *st) { struct vmemmap_backing *ptr = vmemmap_list; if (!IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) return; /* * Traverse the vmemmaped memory and dump pages that are in the hash * pagetable. */ while (ptr) { hpte_find(st, ptr->virt_addr, mmu_vmemmap_psize); ptr = ptr->list; } seq_puts(st->seq, "---[ vmemmap end ]---\n"); } static void populate_markers(void) { address_markers[0].start_address = PAGE_OFFSET; address_markers[1].start_address = VMALLOC_START; address_markers[2].start_address = VMALLOC_END; address_markers[3].start_address = ISA_IO_BASE; address_markers[4].start_address = ISA_IO_END; address_markers[5].start_address = PHB_IO_BASE; address_markers[6].start_address = PHB_IO_END; address_markers[7].start_address = IOREMAP_BASE; address_markers[8].start_address = IOREMAP_END; address_markers[9].start_address = H_VMEMMAP_START; } static int ptdump_show(struct seq_file *m, void *v) { struct pg_state st = { .seq = m, .start_address = PAGE_OFFSET, .marker = address_markers, }; /* * Traverse the 0xc, 0xd and 0xf areas of the kernel virtual memory and * dump pages that are in the hash pagetable. */ walk_linearmapping(&st); walk_pagetables(&st); walk_vmemmap(&st); return 0; } DEFINE_SHOW_ATTRIBUTE(ptdump); static int ptdump_init(void) { if (!radix_enabled()) { populate_markers(); debugfs_create_file("kernel_hash_pagetable", 0400, NULL, NULL, &ptdump_fops); } return 0; } device_initcall(ptdump_init);