// SPDX-License-Identifier: GPL-2.0-or-later /* * address space "slices" (meta-segments) support * * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. * * Based on hugetlb implementation * * Copyright (C) 2003 David Gibson, IBM Corporation. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(slice_convert_lock); #ifdef DEBUG int _slice_debug = 1; static void slice_print_mask(const char *label, const struct slice_mask *mask) { if (!_slice_debug) return; pr_devel("%s low_slice: %*pbl\n", label, (int)SLICE_NUM_LOW, &mask->low_slices); pr_devel("%s high_slice: %*pbl\n", label, (int)SLICE_NUM_HIGH, mask->high_slices); } #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0) #else static void slice_print_mask(const char *label, const struct slice_mask *mask) {} #define slice_dbg(fmt...) #endif static inline notrace bool slice_addr_is_low(unsigned long addr) { u64 tmp = (u64)addr; return tmp < SLICE_LOW_TOP; } static void slice_range_to_mask(unsigned long start, unsigned long len, struct slice_mask *ret) { unsigned long end = start + len - 1; ret->low_slices = 0; if (SLICE_NUM_HIGH) bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); if (slice_addr_is_low(start)) { unsigned long mend = min(end, (unsigned long)(SLICE_LOW_TOP - 1)); ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) - (1u << GET_LOW_SLICE_INDEX(start)); } if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { unsigned long start_index = GET_HIGH_SLICE_INDEX(start); unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; bitmap_set(ret->high_slices, start_index, count); } } static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, unsigned long len) { struct vm_area_struct *vma; if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr) return 0; vma = find_vma(mm, addr); return (!vma || (addr + len) <= vm_start_gap(vma)); } static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) { return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, 1ul << SLICE_LOW_SHIFT); } static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) { unsigned long start = slice << SLICE_HIGH_SHIFT; unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); /* Hack, so that each addresses is controlled by exactly one * of the high or low area bitmaps, the first high area starts * at 4GB, not 0 */ if (start == 0) start = (unsigned long)SLICE_LOW_TOP; return !slice_area_is_free(mm, start, end - start); } static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret, unsigned long high_limit) { unsigned long i; ret->low_slices = 0; if (SLICE_NUM_HIGH) bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); for (i = 0; i < SLICE_NUM_LOW; i++) if (!slice_low_has_vma(mm, i)) ret->low_slices |= 1u << i; if (slice_addr_is_low(high_limit - 1)) return; for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++) if (!slice_high_has_vma(mm, i)) __set_bit(i, ret->high_slices); } static bool slice_check_range_fits(struct mm_struct *mm, const struct slice_mask *available, unsigned long start, unsigned long len) { unsigned long end = start + len - 1; u64 low_slices = 0; if (slice_addr_is_low(start)) { unsigned long mend = min(end, (unsigned long)(SLICE_LOW_TOP - 1)); low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) - (1u << GET_LOW_SLICE_INDEX(start)); } if ((low_slices & available->low_slices) != low_slices) return false; if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { unsigned long start_index = GET_HIGH_SLICE_INDEX(start); unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; unsigned long i; for (i = start_index; i < start_index + count; i++) { if (!test_bit(i, available->high_slices)) return false; } } return true; } static void slice_flush_segments(void *parm) { #ifdef CONFIG_PPC64 struct mm_struct *mm = parm; unsigned long flags; if (mm != current->active_mm) return; copy_mm_to_paca(current->active_mm); local_irq_save(flags); slb_flush_and_restore_bolted(); local_irq_restore(flags); #endif } static void slice_convert(struct mm_struct *mm, const struct slice_mask *mask, int psize) { int index, mask_index; /* Write the new slice psize bits */ unsigned char *hpsizes, *lpsizes; struct slice_mask *psize_mask, *old_mask; unsigned long i, flags; int old_psize; slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); slice_print_mask(" mask", mask); psize_mask = slice_mask_for_size(&mm->context, psize); /* We need to use a spinlock here to protect against * concurrent 64k -> 4k demotion ... */ spin_lock_irqsave(&slice_convert_lock, flags); lpsizes = mm_ctx_low_slices(&mm->context); for (i = 0; i < SLICE_NUM_LOW; i++) { if (!(mask->low_slices & (1u << i))) continue; mask_index = i & 0x1; index = i >> 1; /* Update the slice_mask */ old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf; old_mask = slice_mask_for_size(&mm->context, old_psize); old_mask->low_slices &= ~(1u << i); psize_mask->low_slices |= 1u << i; /* Update the sizes array */ lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) | (((unsigned long)psize) << (mask_index * 4)); } hpsizes = mm_ctx_high_slices(&mm->context); for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) { if (!test_bit(i, mask->high_slices)) continue; mask_index = i & 0x1; index = i >> 1; /* Update the slice_mask */ old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf; old_mask = slice_mask_for_size(&mm->context, old_psize); __clear_bit(i, old_mask->high_slices); __set_bit(i, psize_mask->high_slices); /* Update the sizes array */ hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) | (((unsigned long)psize) << (mask_index * 4)); } slice_dbg(" lsps=%lx, hsps=%lx\n", (unsigned long)mm_ctx_low_slices(&mm->context), (unsigned long)mm_ctx_high_slices(&mm->context)); spin_unlock_irqrestore(&slice_convert_lock, flags); copro_flush_all_slbs(mm); } /* * Compute which slice addr is part of; * set *boundary_addr to the start or end boundary of that slice * (depending on 'end' parameter); * return boolean indicating if the slice is marked as available in the * 'available' slice_mark. */ static bool slice_scan_available(unsigned long addr, const struct slice_mask *available, int end, unsigned long *boundary_addr) { unsigned long slice; if (slice_addr_is_low(addr)) { slice = GET_LOW_SLICE_INDEX(addr); *boundary_addr = (slice + end) << SLICE_LOW_SHIFT; return !!(available->low_slices & (1u << slice)); } else { slice = GET_HIGH_SLICE_INDEX(addr); *boundary_addr = (slice + end) ? ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP; return !!test_bit(slice, available->high_slices); } } static unsigned long slice_find_area_bottomup(struct mm_struct *mm, unsigned long addr, unsigned long len, const struct slice_mask *available, int psize, unsigned long high_limit) { int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); unsigned long found, next_end; struct vm_unmapped_area_info info = { .length = len, .align_mask = PAGE_MASK & ((1ul << pshift) - 1), }; /* * Check till the allow max value for this mmap request */ while (addr < high_limit) { info.low_limit = addr; if (!slice_scan_available(addr, available, 1, &addr)) continue; next_slice: /* * At this point [info.low_limit; addr) covers * available slices only and ends at a slice boundary. * Check if we need to reduce the range, or if we can * extend it to cover the next available slice. */ if (addr >= high_limit) addr = high_limit; else if (slice_scan_available(addr, available, 1, &next_end)) { addr = next_end; goto next_slice; } info.high_limit = addr; found = vm_unmapped_area(&info); if (!(found & ~PAGE_MASK)) return found; } return -ENOMEM; } static unsigned long slice_find_area_topdown(struct mm_struct *mm, unsigned long addr, unsigned long len, const struct slice_mask *available, int psize, unsigned long high_limit) { int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); unsigned long found, prev; struct vm_unmapped_area_info info = { .flags = VM_UNMAPPED_AREA_TOPDOWN, .length = len, .align_mask = PAGE_MASK & ((1ul << pshift) - 1), }; unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr); /* * If we are trying to allocate above DEFAULT_MAP_WINDOW * Add the different to the mmap_base. * Only for that request for which high_limit is above * DEFAULT_MAP_WINDOW we should apply this. */ if (high_limit > DEFAULT_MAP_WINDOW) addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW; while (addr > min_addr) { info.high_limit = addr; if (!slice_scan_available(addr - 1, available, 0, &addr)) continue; prev_slice: /* * At this point [addr; info.high_limit) covers * available slices only and starts at a slice boundary. * Check if we need to reduce the range, or if we can * extend it to cover the previous available slice. */ if (addr < min_addr) addr = min_addr; else if (slice_scan_available(addr - 1, available, 0, &prev)) { addr = prev; goto prev_slice; } info.low_limit = addr; found = vm_unmapped_area(&info); if (!(found & ~PAGE_MASK)) return found; } /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit); } static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, const struct slice_mask *mask, int psize, int topdown, unsigned long high_limit) { if (topdown) return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit); else return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit); } static inline void slice_copy_mask(struct slice_mask *dst, const struct slice_mask *src) { dst->low_slices = src->low_slices; if (!SLICE_NUM_HIGH) return; bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH); } static inline void slice_or_mask(struct slice_mask *dst, const struct slice_mask *src1, const struct slice_mask *src2) { dst->low_slices = src1->low_slices | src2->low_slices; if (!SLICE_NUM_HIGH) return; bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); } static inline void slice_andnot_mask(struct slice_mask *dst, const struct slice_mask *src1, const struct slice_mask *src2) { dst->low_slices = src1->low_slices & ~src2->low_slices; if (!SLICE_NUM_HIGH) return; bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); } #ifdef CONFIG_PPC_64K_PAGES #define MMU_PAGE_BASE MMU_PAGE_64K #else #define MMU_PAGE_BASE MMU_PAGE_4K #endif unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, unsigned long flags, unsigned int psize, int topdown) { struct slice_mask good_mask; struct slice_mask potential_mask; const struct slice_mask *maskp; const struct slice_mask *compat_maskp = NULL; int fixed = (flags & MAP_FIXED); int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); unsigned long page_size = 1UL << pshift; struct mm_struct *mm = current->mm; unsigned long newaddr; unsigned long high_limit; high_limit = DEFAULT_MAP_WINDOW; if (addr >= high_limit || (fixed && (addr + len > high_limit))) high_limit = TASK_SIZE; if (len > high_limit) return -ENOMEM; if (len & (page_size - 1)) return -EINVAL; if (fixed) { if (addr & (page_size - 1)) return -EINVAL; if (addr > high_limit - len) return -ENOMEM; } if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) { /* * Increasing the slb_addr_limit does not require * slice mask cache to be recalculated because it should * be already initialised beyond the old address limit. */ mm_ctx_set_slb_addr_limit(&mm->context, high_limit); on_each_cpu(slice_flush_segments, mm, 1); } /* Sanity checks */ BUG_ON(mm->task_size == 0); BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0); VM_BUG_ON(radix_enabled()); slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n", addr, len, flags, topdown); /* If hint, make sure it matches our alignment restrictions */ if (!fixed && addr) { addr = ALIGN(addr, page_size); slice_dbg(" aligned addr=%lx\n", addr); /* Ignore hint if it's too large or overlaps a VMA */ if (addr > high_limit - len || addr < mmap_min_addr || !slice_area_is_free(mm, addr, len)) addr = 0; } /* First make up a "good" mask of slices that have the right size * already */ maskp = slice_mask_for_size(&mm->context, psize); /* * Here "good" means slices that are already the right page size, * "compat" means slices that have a compatible page size (i.e. * 4k in a 64k pagesize kernel), and "free" means slices without * any VMAs. * * If MAP_FIXED: * check if fits in good | compat => OK * check if fits in good | compat | free => convert free * else bad * If have hint: * check if hint fits in good => OK * check if hint fits in good | free => convert free * Otherwise: * search in good, found => OK * search in good | free, found => convert free * search in good | compat | free, found => convert free. */ /* * If we support combo pages, we can allow 64k pages in 4k slices * The mask copies could be avoided in most cases here if we had * a pointer to good mask for the next code to use. */ if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); if (fixed) slice_or_mask(&good_mask, maskp, compat_maskp); else slice_copy_mask(&good_mask, maskp); } else { slice_copy_mask(&good_mask, maskp); } slice_print_mask(" good_mask", &good_mask); if (compat_maskp) slice_print_mask(" compat_mask", compat_maskp); /* First check hint if it's valid or if we have MAP_FIXED */ if (addr != 0 || fixed) { /* Check if we fit in the good mask. If we do, we just return, * nothing else to do */ if (slice_check_range_fits(mm, &good_mask, addr, len)) { slice_dbg(" fits good !\n"); newaddr = addr; goto return_addr; } } else { /* Now let's see if we can find something in the existing * slices for that size */ newaddr = slice_find_area(mm, len, &good_mask, psize, topdown, high_limit); if (newaddr != -ENOMEM) { /* Found within the good mask, we don't have to setup, * we thus return directly */ slice_dbg(" found area at 0x%lx\n", newaddr); goto return_addr; } } /* * We don't fit in the good mask, check what other slices are * empty and thus can be converted */ slice_mask_for_free(mm, &potential_mask, high_limit); slice_or_mask(&potential_mask, &potential_mask, &good_mask); slice_print_mask(" potential", &potential_mask); if (addr != 0 || fixed) { if (slice_check_range_fits(mm, &potential_mask, addr, len)) { slice_dbg(" fits potential !\n"); newaddr = addr; goto convert; } } /* If we have MAP_FIXED and failed the above steps, then error out */ if (fixed) return -EBUSY; slice_dbg(" search...\n"); /* If we had a hint that didn't work out, see if we can fit * anywhere in the good area. */ if (addr) { newaddr = slice_find_area(mm, len, &good_mask, psize, topdown, high_limit); if (newaddr != -ENOMEM) { slice_dbg(" found area at 0x%lx\n", newaddr); goto return_addr; } } /* Now let's see if we can find something in the existing slices * for that size plus free slices */ newaddr = slice_find_area(mm, len, &potential_mask, psize, topdown, high_limit); if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM && psize == MMU_PAGE_64K) { /* retry the search with 4k-page slices included */ slice_or_mask(&potential_mask, &potential_mask, compat_maskp); newaddr = slice_find_area(mm, len, &potential_mask, psize, topdown, high_limit); } if (newaddr == -ENOMEM) return -ENOMEM; slice_range_to_mask(newaddr, len, &potential_mask); slice_dbg(" found potential area at 0x%lx\n", newaddr); slice_print_mask(" mask", &potential_mask); convert: /* * Try to allocate the context before we do slice convert * so that we handle the context allocation failure gracefully. */ if (need_extra_context(mm, newaddr)) { if (alloc_extended_context(mm, newaddr) < 0) return -ENOMEM; } slice_andnot_mask(&potential_mask, &potential_mask, &good_mask); if (compat_maskp && !fixed) slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp); if (potential_mask.low_slices || (SLICE_NUM_HIGH && !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) { slice_convert(mm, &potential_mask, psize); if (psize > MMU_PAGE_BASE) on_each_cpu(slice_flush_segments, mm, 1); } return newaddr; return_addr: if (need_extra_context(mm, newaddr)) { if (alloc_extended_context(mm, newaddr) < 0) return -ENOMEM; } return newaddr; } EXPORT_SYMBOL_GPL(slice_get_unmapped_area); unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { if (radix_enabled()) return generic_get_unmapped_area(filp, addr, len, pgoff, flags); return slice_get_unmapped_area(addr, len, flags, mm_ctx_user_psize(¤t->mm->context), 0); } unsigned long arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, const unsigned long len, const unsigned long pgoff, const unsigned long flags) { if (radix_enabled()) return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags); return slice_get_unmapped_area(addr0, len, flags, mm_ctx_user_psize(¤t->mm->context), 1); } unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr) { unsigned char *psizes; int index, mask_index; VM_BUG_ON(radix_enabled()); if (slice_addr_is_low(addr)) { psizes = mm_ctx_low_slices(&mm->context); index = GET_LOW_SLICE_INDEX(addr); } else { psizes = mm_ctx_high_slices(&mm->context); index = GET_HIGH_SLICE_INDEX(addr); } mask_index = index & 0x1; return (psizes[index >> 1] >> (mask_index * 4)) & 0xf; } EXPORT_SYMBOL_GPL(get_slice_psize); void slice_init_new_context_exec(struct mm_struct *mm) { unsigned char *hpsizes, *lpsizes; struct slice_mask *mask; unsigned int psize = mmu_virtual_psize; slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm); /* * In the case of exec, use the default limit. In the * case of fork it is just inherited from the mm being * duplicated. */ mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT); mm_ctx_set_user_psize(&mm->context, psize); /* * Set all slice psizes to the default. */ lpsizes = mm_ctx_low_slices(&mm->context); memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1); hpsizes = mm_ctx_high_slices(&mm->context); memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1); /* * Slice mask cache starts zeroed, fill the default size cache. */ mask = slice_mask_for_size(&mm->context, psize); mask->low_slices = ~0UL; if (SLICE_NUM_HIGH) bitmap_fill(mask->high_slices, SLICE_NUM_HIGH); } void slice_setup_new_exec(void) { struct mm_struct *mm = current->mm; slice_dbg("slice_setup_new_exec(mm=%p)\n", mm); if (!is_32bit_task()) return; mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW); } void slice_set_range_psize(struct mm_struct *mm, unsigned long start, unsigned long len, unsigned int psize) { struct slice_mask mask; VM_BUG_ON(radix_enabled()); slice_range_to_mask(start, len, &mask); slice_convert(mm, &mask, psize); } #ifdef CONFIG_HUGETLB_PAGE /* * is_hugepage_only_range() is used by generic code to verify whether * a normal mmap mapping (non hugetlbfs) is valid on a given area. * * until the generic code provides a more generic hook and/or starts * calling arch get_unmapped_area for MAP_FIXED (which our implementation * here knows how to deal with), we hijack it to keep standard mappings * away from us. * * because of that generic code limitation, MAP_FIXED mapping cannot * "convert" back a slice with no VMAs to the standard page size, only * get_unmapped_area() can. It would be possible to fix it here but I * prefer working on fixing the generic code instead. * * WARNING: This will not work if hugetlbfs isn't enabled since the * generic code will redefine that function as 0 in that. This is ok * for now as we only use slices with hugetlbfs enabled. This should * be fixed as the generic code gets fixed. */ int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, unsigned long len) { const struct slice_mask *maskp; unsigned int psize = mm_ctx_user_psize(&mm->context); VM_BUG_ON(radix_enabled()); maskp = slice_mask_for_size(&mm->context, psize); /* We need to account for 4k slices too */ if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { const struct slice_mask *compat_maskp; struct slice_mask available; compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); slice_or_mask(&available, maskp, compat_maskp); return !slice_check_range_fits(mm, &available, addr, len); } return !slice_check_range_fits(mm, maskp, addr, len); } unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { /* With radix we don't use slice, so derive it from vma*/ if (radix_enabled()) return vma_kernel_pagesize(vma); return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start)); } static int file_to_psize(struct file *file) { struct hstate *hstate = hstate_file(file); return shift_to_mmu_psize(huge_page_shift(hstate)); } unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { if (radix_enabled()) return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); return slice_get_unmapped_area(addr, len, flags, file_to_psize(file), 1); } #endif