// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; EXPORT_SYMBOL_GPL(mmu_psize_defs); #ifdef CONFIG_SPARSEMEM_VMEMMAP int mmu_vmemmap_psize = MMU_PAGE_4K; #endif unsigned long __pmd_frag_nr; EXPORT_SYMBOL(__pmd_frag_nr); unsigned long __pmd_frag_size_shift; EXPORT_SYMBOL(__pmd_frag_size_shift); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is called when relaxing access to a hugepage. It's also called in the page * fault path when we don't hit any of the major fault cases, ie, a minor * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have * handled those two for us, we additionally deal with missing execute * permission here on some processors */ int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { int changed; #ifdef CONFIG_DEBUG_VM WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); #endif changed = !pmd_same(*(pmdp), entry); if (changed) { /* * We can use MMU_PAGE_2M here, because only radix * path look at the psize. */ __ptep_set_access_flags(vma, pmdp_ptep(pmdp), pmd_pte(entry), address, MMU_PAGE_2M); } return changed; } int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { int changed; #ifdef CONFIG_DEBUG_VM WARN_ON(!pud_devmap(*pudp)); assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); #endif changed = !pud_same(*(pudp), entry); if (changed) { /* * We can use MMU_PAGE_1G here, because only radix * path look at the psize. */ __ptep_set_access_flags(vma, pudp_ptep(pudp), pud_pte(entry), address, MMU_PAGE_1G); } return changed; } int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); } int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pud_t *pudp) { return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); } /* * set a new huge pmd. We should not be called for updating * an existing pmd entry. That should go via pmd_hugepage_update. */ void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { #ifdef CONFIG_DEBUG_VM /* * Make sure hardware valid bit is not set. We don't do * tlb flush for this update. */ WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); assert_spin_locked(pmd_lockptr(mm, pmdp)); WARN_ON(!(pmd_leaf(pmd))); #endif trace_hugepage_set_pmd(addr, pmd_val(pmd)); return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); } void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { #ifdef CONFIG_DEBUG_VM /* * Make sure hardware valid bit is not set. We don't do * tlb flush for this update. */ WARN_ON(pte_hw_valid(pud_pte(*pudp))); assert_spin_locked(pud_lockptr(mm, pudp)); WARN_ON(!(pud_leaf(pud))); #endif trace_hugepage_set_pud(addr, pud_val(pud)); return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); } static void do_serialize(void *arg) { /* We've taken the IPI, so try to trim the mask while here */ if (radix_enabled()) { struct mm_struct *mm = arg; exit_lazy_flush_tlb(mm, false); } } /* * Serialize against __find_linux_pte() which does lock-less * lookup in page tables with local interrupts disabled. For huge pages * it casts pmd_t to pte_t. Since format of pte_t is different from * pmd_t we want to prevent transit from pmd pointing to page table * to pmd pointing to huge page (and back) while interrupts are disabled. * We clear pmd to possibly replace it with page table pointer in * different code paths. So make sure we wait for the parallel * __find_linux_pte() to finish. */ void serialize_against_pte_lookup(struct mm_struct *mm) { smp_mb(); smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); } /* * We use this to invalidate a pmdp entry before switching from a * hugepte to regular pmd entry. */ pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { unsigned long old_pmd; VM_WARN_ON_ONCE(!pmd_present(*pmdp)); old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); return __pmd(old_pmd); } pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, int full) { pmd_t pmd; VM_BUG_ON(addr & ~HPAGE_PMD_MASK); VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); /* * if it not a fullmm flush, then we can possibly end up converting * this PMD pte entry to a regular level 0 PTE by a parallel page fault. * Make sure we flush the tlb in this case. */ if (!full) flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); return pmd; } pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp, int full) { pud_t pud; VM_BUG_ON(addr & ~HPAGE_PMD_MASK); VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || !pud_present(*pudp)); pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); /* * if it not a fullmm flush, then we can possibly end up converting * this PMD pte entry to a regular level 0 PTE by a parallel page fault. * Make sure we flush the tlb in this case. */ if (!full) flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); return pud; } static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) { return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); } static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) { return __pud(pud_val(pud) | pgprot_val(pgprot)); } /* * At some point we should be able to get rid of * pmd_mkhuge() and mk_huge_pmd() when we update all the * other archs to mark the pmd huge in pfn_pmd() */ pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) { unsigned long pmdv; pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); } pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) { unsigned long pudv; pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); } pmd_t mk_pmd(struct page *page, pgprot_t pgprot) { return pfn_pmd(page_to_pfn(page), pgprot); } pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { unsigned long pmdv; pmdv = pmd_val(pmd); pmdv &= _HPAGE_CHG_MASK; return pmd_set_protbits(__pmd(pmdv), newprot); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* For use by kexec, called with MMU off */ notrace void mmu_cleanup_all(void) { if (radix_enabled()) radix__mmu_cleanup_all(); else if (mmu_hash_ops.hpte_clear_all) mmu_hash_ops.hpte_clear_all(); reset_sprs(); } #ifdef CONFIG_MEMORY_HOTPLUG int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid, pgprot_t prot) { if (radix_enabled()) return radix__create_section_mapping(start, end, nid, prot); return hash__create_section_mapping(start, end, nid, prot); } int __meminit remove_section_mapping(unsigned long start, unsigned long end) { if (radix_enabled()) return radix__remove_section_mapping(start, end); return hash__remove_section_mapping(start, end); } #endif /* CONFIG_MEMORY_HOTPLUG */ void __init mmu_partition_table_init(void) { unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; unsigned long ptcr; /* Initialize the Partition Table with no entries */ partition_tb = memblock_alloc(patb_size, patb_size); if (!partition_tb) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, patb_size, patb_size); ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); set_ptcr_when_no_uv(ptcr); powernv_set_nmmu_ptcr(ptcr); } static void flush_partition(unsigned int lpid, bool radix) { if (radix) { radix__flush_all_lpid(lpid); radix__flush_all_lpid_guest(lpid); } else { asm volatile("ptesync" : : : "memory"); asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); /* do we need fixup here ?*/ asm volatile("eieio; tlbsync; ptesync" : : : "memory"); trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); } } void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, unsigned long dw1, bool flush) { unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); /* * When ultravisor is enabled, the partition table is stored in secure * memory and can only be accessed doing an ultravisor call. However, we * maintain a copy of the partition table in normal memory to allow Nest * MMU translations to occur (for normal VMs). * * Therefore, here we always update partition_tb, regardless of whether * we are running under an ultravisor or not. */ partition_tb[lpid].patb0 = cpu_to_be64(dw0); partition_tb[lpid].patb1 = cpu_to_be64(dw1); /* * If ultravisor is enabled, we do an ultravisor call to register the * partition table entry (PATE), which also do a global flush of TLBs * and partition table caches for the lpid. Otherwise, just do the * flush. The type of flush (hash or radix) depends on what the previous * use of the partition ID was, not the new use. */ if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { uv_register_pate(lpid, dw0, dw1); pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", dw0, dw1); } else if (flush) { /* * Boot does not need to flush, because MMU is off and each * CPU does a tlbiel_all() before switching them on, which * flushes everything. */ flush_partition(lpid, (old & PATB_HR)); } } EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); static pmd_t *get_pmd_from_cache(struct mm_struct *mm) { void *pmd_frag, *ret; if (PMD_FRAG_NR == 1) return NULL; spin_lock(&mm->page_table_lock); ret = mm->context.pmd_frag; if (ret) { pmd_frag = ret + PMD_FRAG_SIZE; /* * If we have taken up all the fragments mark PTE page NULL */ if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) pmd_frag = NULL; mm->context.pmd_frag = pmd_frag; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) { void *ret = NULL; struct ptdesc *ptdesc; gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; ptdesc = pagetable_alloc(gfp, 0); if (!ptdesc) return NULL; if (!pagetable_pmd_ctor(ptdesc)) { pagetable_free(ptdesc); return NULL; } atomic_set(&ptdesc->pt_frag_refcount, 1); ret = ptdesc_address(ptdesc); /* * if we support only one fragment just return the * allocated page. */ if (PMD_FRAG_NR == 1) return ret; spin_lock(&mm->page_table_lock); /* * If we find ptdesc_page set, we return * the allocated page with single fragment * count. */ if (likely(!mm->context.pmd_frag)) { atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); mm->context.pmd_frag = ret + PMD_FRAG_SIZE; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) { pmd_t *pmd; pmd = get_pmd_from_cache(mm); if (pmd) return pmd; return __alloc_for_pmdcache(mm); } void pmd_fragment_free(unsigned long *pmd) { struct ptdesc *ptdesc = virt_to_ptdesc(pmd); if (pagetable_is_reserved(ptdesc)) return free_reserved_ptdesc(ptdesc); BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { pagetable_pmd_dtor(ptdesc); pagetable_free(ptdesc); } } static inline void pgtable_free(void *table, int index) { switch (index) { case PTE_INDEX: pte_fragment_free(table, 0); break; case PMD_INDEX: pmd_fragment_free(table); break; case PUD_INDEX: __pud_free(table); break; /* We don't free pgd table via RCU callback */ default: BUG(); } } void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) { unsigned long pgf = (unsigned long)table; BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); pgf |= index; tlb_remove_table(tlb, (void *)pgf); } void __tlb_remove_table(void *_table) { void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; return pgtable_free(table, index); } #ifdef CONFIG_PROC_FS atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; void arch_report_meminfo(struct seq_file *m) { /* * Hash maps the memory with one size mmu_linear_psize. * So don't bother to print these on hash */ if (!radix_enabled()) return; seq_printf(m, "DirectMap4k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); seq_printf(m, "DirectMap64k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); seq_printf(m, "DirectMap2M: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); seq_printf(m, "DirectMap1G: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); } #endif /* CONFIG_PROC_FS */ pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { unsigned long pte_val; /* * Clear the _PAGE_PRESENT so that no hardware parallel update is * possible. Also keep the pte_present true so that we don't take * wrong fault. */ pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); return __pte(pte_val); } void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { if (radix_enabled()) return radix__ptep_modify_prot_commit(vma, addr, ptep, old_pte, pte); set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * For hash translation mode, we use the deposited table to store hash slot * information and they are stored at PTRS_PER_PMD offset from related pmd * location. Hence a pmd move requires deposit and withdraw. * * For radix translation with split pmd ptl, we store the deposited table in the * pmd page. Hence if we have different pmd page we need to withdraw during pmd * move. * * With hash we use deposited table always irrespective of anon or not. * With radix we use deposited table only for anonymous mapping. */ int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, struct spinlock *old_pmd_ptl, struct vm_area_struct *vma) { if (radix_enabled()) return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); return true; } #endif /* * Does the CPU support tlbie? */ bool tlbie_capable __read_mostly = true; EXPORT_SYMBOL(tlbie_capable); /* * Should tlbie be used for management of CPU TLBs, for kernel and process * address spaces? tlbie may still be used for nMMU accelerators, and for KVM * guest address spaces. */ bool tlbie_enabled __read_mostly = true; static int __init setup_disable_tlbie(char *str) { if (!radix_enabled()) { pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); return 1; } tlbie_capable = false; tlbie_enabled = false; return 1; } __setup("disable_tlbie", setup_disable_tlbie); static int __init pgtable_debugfs_setup(void) { if (!tlbie_capable) return 0; /* * There is no locking vs tlb flushing when changing this value. * The tlb flushers will see one value or another, and use either * tlbie or tlbiel with IPIs. In both cases the TLBs will be * invalidated as expected. */ debugfs_create_bool("tlbie_enabled", 0600, arch_debugfs_dir, &tlbie_enabled); return 0; } arch_initcall(pgtable_debugfs_setup); #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) /* * Override the generic version in mm/memremap.c. * * With hash translation, the direct-map range is mapped with just one * page size selected by htab_init_page_sizes(). Consult * mmu_psize_defs[] to determine the minimum page size alignment. */ unsigned long memremap_compat_align(void) { if (!radix_enabled()) { unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; return max(SUBSECTION_SIZE, 1UL << shift); } return SUBSECTION_SIZE; } EXPORT_SYMBOL_GPL(memremap_compat_align); #endif pgprot_t vm_get_page_prot(unsigned long vm_flags) { unsigned long prot; /* Radix supports execute-only, but protection_map maps X -> RX */ if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) vm_flags |= VM_READ; prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); if (vm_flags & VM_SAO) prot |= _PAGE_SAO; #ifdef CONFIG_PPC_MEM_KEYS prot |= vmflag_to_pte_pkey_bits(vm_flags); #endif return __pgprot(prot); } EXPORT_SYMBOL(vm_get_page_prot);