/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 PPC64 Team, IBM Corp * * This struct defines the way the registers are stored on the * kernel stack during a system call or other kernel entry. * * this should only contain volatile regs * since we can keep non-volatile in the thread_struct * should set this up when only volatiles are saved * by intr code. * * Since this is going on the stack, *CARE MUST BE TAKEN* to insure * that the overall structure is a multiple of 16 bytes in length. * * Note that the offsets of the fields in this struct correspond with * the PT_* values below. This simplifies arch/powerpc/kernel/ptrace.c. */ #ifndef _ASM_POWERPC_PTRACE_H #define _ASM_POWERPC_PTRACE_H #include #include #ifndef __ASSEMBLY__ struct pt_regs { union { struct user_pt_regs user_regs; struct { unsigned long gpr[32]; unsigned long nip; unsigned long msr; unsigned long orig_gpr3; unsigned long ctr; unsigned long link; unsigned long xer; unsigned long ccr; #ifdef CONFIG_PPC64 unsigned long softe; #else unsigned long mq; #endif unsigned long trap; unsigned long dar; unsigned long dsisr; unsigned long result; }; }; union { struct { #ifdef CONFIG_PPC64 unsigned long ppr; #endif union { #ifdef CONFIG_PPC_KUAP unsigned long kuap; #endif #ifdef CONFIG_PPC_PKEY unsigned long amr; #endif }; }; unsigned long __pad[2]; /* Maintain 16 byte interrupt stack alignment */ }; }; #endif #ifdef __powerpc64__ /* * Size of redzone that userspace is allowed to use below the stack * pointer. This is 288 in the 64-bit big-endian ELF ABI, and 512 in * the new ELFv2 little-endian ABI, so we allow the larger amount. * * For kernel code we allow a 288-byte redzone, in order to conserve * kernel stack space; gcc currently only uses 288 bytes, and will * hopefully allow explicit control of the redzone size in future. */ #define USER_REDZONE_SIZE 512 #define KERNEL_REDZONE_SIZE 288 #define STACK_FRAME_OVERHEAD 112 /* size of minimum stack frame */ #define STACK_FRAME_LR_SAVE 2 /* Location of LR in stack frame */ #define STACK_FRAME_REGS_MARKER ASM_CONST(0x7265677368657265) #define STACK_INT_FRAME_SIZE (sizeof(struct pt_regs) + \ STACK_FRAME_OVERHEAD + KERNEL_REDZONE_SIZE) #define STACK_FRAME_MARKER 12 #ifdef PPC64_ELF_ABI_v2 #define STACK_FRAME_MIN_SIZE 32 #else #define STACK_FRAME_MIN_SIZE STACK_FRAME_OVERHEAD #endif /* Size of dummy stack frame allocated when calling signal handler. */ #define __SIGNAL_FRAMESIZE 128 #define __SIGNAL_FRAMESIZE32 64 #else /* __powerpc64__ */ #define USER_REDZONE_SIZE 0 #define KERNEL_REDZONE_SIZE 0 #define STACK_FRAME_OVERHEAD 16 /* size of minimum stack frame */ #define STACK_FRAME_LR_SAVE 1 /* Location of LR in stack frame */ #define STACK_FRAME_REGS_MARKER ASM_CONST(0x72656773) #define STACK_INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) #define STACK_FRAME_MARKER 2 #define STACK_FRAME_MIN_SIZE STACK_FRAME_OVERHEAD /* Size of stack frame allocated when calling signal handler. */ #define __SIGNAL_FRAMESIZE 64 #endif /* __powerpc64__ */ #ifndef __ASSEMBLY__ static inline unsigned long instruction_pointer(struct pt_regs *regs) { return regs->nip; } static inline void instruction_pointer_set(struct pt_regs *regs, unsigned long val) { regs->nip = val; } static inline unsigned long user_stack_pointer(struct pt_regs *regs) { return regs->gpr[1]; } static inline unsigned long frame_pointer(struct pt_regs *regs) { return 0; } #ifdef CONFIG_SMP extern unsigned long profile_pc(struct pt_regs *regs); #else #define profile_pc(regs) instruction_pointer(regs) #endif long do_syscall_trace_enter(struct pt_regs *regs); void do_syscall_trace_leave(struct pt_regs *regs); #define kernel_stack_pointer(regs) ((regs)->gpr[1]) static inline int is_syscall_success(struct pt_regs *regs) { return !(regs->ccr & 0x10000000); } static inline long regs_return_value(struct pt_regs *regs) { if (is_syscall_success(regs)) return regs->gpr[3]; else return -regs->gpr[3]; } static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc) { regs->gpr[3] = rc; } #ifdef __powerpc64__ #define user_mode(regs) ((((regs)->msr) >> MSR_PR_LG) & 0x1) #else #define user_mode(regs) (((regs)->msr & MSR_PR) != 0) #endif #define force_successful_syscall_return() \ do { \ set_thread_flag(TIF_NOERROR); \ } while(0) #define current_pt_regs() \ ((struct pt_regs *)((unsigned long)task_stack_page(current) + THREAD_SIZE) - 1) #ifdef __powerpc64__ #ifdef CONFIG_PPC_BOOK3S #define TRAP_FLAGS_MASK 0x10 #define TRAP(regs) ((regs)->trap & ~TRAP_FLAGS_MASK) #define FULL_REGS(regs) true #define SET_FULL_REGS(regs) do { } while (0) #else #define TRAP_FLAGS_MASK 0x11 #define TRAP(regs) ((regs)->trap & ~TRAP_FLAGS_MASK) #define FULL_REGS(regs) (((regs)->trap & 1) == 0) #define SET_FULL_REGS(regs) ((regs)->trap |= 1) #endif #define CHECK_FULL_REGS(regs) BUG_ON(!FULL_REGS(regs)) #define NV_REG_POISON 0xdeadbeefdeadbeefUL #else /* * We use the least-significant bit of the trap field to indicate * whether we have saved the full set of registers, or only a * partial set. A 1 there means the partial set. * On 4xx we use the next bit to indicate whether the exception * is a critical exception (1 means it is). */ #define TRAP_FLAGS_MASK 0x1F #define TRAP(regs) ((regs)->trap & ~TRAP_FLAGS_MASK) #define FULL_REGS(regs) (((regs)->trap & 1) == 0) #define SET_FULL_REGS(regs) ((regs)->trap |= 1) #define IS_CRITICAL_EXC(regs) (((regs)->trap & 2) != 0) #define IS_MCHECK_EXC(regs) (((regs)->trap & 4) != 0) #define IS_DEBUG_EXC(regs) (((regs)->trap & 8) != 0) #define NV_REG_POISON 0xdeadbeef #define CHECK_FULL_REGS(regs) \ do { \ if ((regs)->trap & 1) \ printk(KERN_CRIT "%s: partial register set\n", __func__); \ } while (0) #endif /* __powerpc64__ */ static inline void set_trap(struct pt_regs *regs, unsigned long val) { regs->trap = (regs->trap & TRAP_FLAGS_MASK) | (val & ~TRAP_FLAGS_MASK); } static inline bool trap_is_scv(struct pt_regs *regs) { return (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && TRAP(regs) == 0x3000); } static inline bool trap_is_syscall(struct pt_regs *regs) { return (trap_is_scv(regs) || TRAP(regs) == 0xc00); } static inline bool trap_norestart(struct pt_regs *regs) { return regs->trap & 0x10; } static inline void set_trap_norestart(struct pt_regs *regs) { regs->trap |= 0x10; } #define arch_has_single_step() (1) #define arch_has_block_step() (true) #define ARCH_HAS_USER_SINGLE_STEP_REPORT /* * kprobe-based event tracer support */ #include #include extern int regs_query_register_offset(const char *name); extern const char *regs_query_register_name(unsigned int offset); #define MAX_REG_OFFSET (offsetof(struct pt_regs, dsisr)) /** * regs_get_register() - get register value from its offset * @regs: pt_regs from which register value is gotten * @offset: offset number of the register. * * regs_get_register returns the value of a register whose offset from @regs. * The @offset is the offset of the register in struct pt_regs. * If @offset is bigger than MAX_REG_OFFSET, this returns 0. */ static inline unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (unlikely(offset > MAX_REG_OFFSET)) return 0; return *(unsigned long *)((unsigned long)regs + offset); } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static inline bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack, * this returns 0. */ static inline unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return *addr; else return 0; } #endif /* __ASSEMBLY__ */ #ifndef __powerpc64__ /* We need PT_SOFTE defined at all time to avoid #ifdefs */ #define PT_SOFTE PT_MQ #else /* __powerpc64__ */ #define PT_FPSCR32 (PT_FPR0 + 2*32 + 1) /* each FP reg occupies 2 32-bit userspace slots */ #define PT_VR0_32 164 /* each Vector reg occupies 4 slots in 32-bit */ #define PT_VSCR_32 (PT_VR0 + 32*4 + 3) #define PT_VRSAVE_32 (PT_VR0 + 33*4) #define PT_VSR0_32 300 /* each VSR reg occupies 4 slots in 32-bit */ #endif /* __powerpc64__ */ #endif /* _ASM_POWERPC_PTRACE_H */