/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_PGTABLE_H #define _ASM_POWERPC_PGTABLE_H #ifndef __ASSEMBLY__ #include #include #include /* For TASK_SIZE */ #include #include #include struct mm_struct; #endif /* !__ASSEMBLY__ */ #ifdef CONFIG_PPC_BOOK3S #include #else #include #endif /* !CONFIG_PPC_BOOK3S */ /* Note due to the way vm flags are laid out, the bits are XWR */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_X #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY_X #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_X #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED_X #define __S111 PAGE_SHARED_X #ifndef __ASSEMBLY__ #include /* Keep these as a macros to avoid include dependency mess */ #define pte_page(x) pfn_to_page(pte_pfn(x)) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* * Select all bits except the pfn */ static inline pgprot_t pte_pgprot(pte_t pte) { unsigned long pte_flags; pte_flags = pte_val(pte) & ~PTE_RPN_MASK; return __pgprot(pte_flags); } /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern pgd_t swapper_pg_dir[]; void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn); int dma_pfn_limit_to_zone(u64 pfn_limit); extern void paging_init(void); /* * kern_addr_valid is intended to indicate whether an address is a valid * kernel address. Most 32-bit archs define it as always true (like this) * but most 64-bit archs actually perform a test. What should we do here? */ #define kern_addr_valid(addr) (1) #include /* * This gets called at the end of handling a page fault, when * the kernel has put a new PTE into the page table for the process. * We use it to ensure coherency between the i-cache and d-cache * for the page which has just been mapped in. * On machines which use an MMU hash table, we use this to put a * corresponding HPTE into the hash table ahead of time, instead of * waiting for the inevitable extra hash-table miss exception. */ extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr); #ifndef CONFIG_TRANSPARENT_HUGEPAGE #define pmd_large(pmd) 0 #endif /* can we use this in kvm */ unsigned long vmalloc_to_phys(void *vmalloc_addr); void pgtable_cache_add(unsigned shift, void (*ctor)(void *)); void pgtable_cache_init(void); #if defined(CONFIG_STRICT_KERNEL_RWX) || defined(CONFIG_PPC32) void mark_initmem_nx(void); #else static inline void mark_initmem_nx(void) { } #endif /* * When used, PTE_FRAG_NR is defined in subarch pgtable.h * so we are sure it is included when arriving here. */ #ifdef PTE_FRAG_NR static inline void *pte_frag_get(mm_context_t *ctx) { return ctx->pte_frag; } static inline void pte_frag_set(mm_context_t *ctx, void *p) { ctx->pte_frag = p; } #else #define PTE_FRAG_NR 1 #define PTE_FRAG_SIZE_SHIFT PAGE_SHIFT #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) static inline void *pte_frag_get(mm_context_t *ctx) { return NULL; } static inline void pte_frag_set(mm_context_t *ctx, void *p) { } #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PGTABLE_H */