/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_BOOK3S_64_HASH_4K_H #define _ASM_POWERPC_BOOK3S_64_HASH_4K_H #define H_PTE_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 4KB = 2MB #define H_PMD_INDEX_SIZE 7 // size: 8B << 7 = 1KB, maps: 2^7 x 2MB = 256MB #define H_PUD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 256MB = 128GB #define H_PGD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 128GB = 64TB /* * Each context is 512TB. But on 4k we restrict our max TASK size to 64TB * Hence also limit max EA bits to 64TB. */ #define MAX_EA_BITS_PER_CONTEXT 46 /* * Our page table limit us to 64TB. For 64TB physical memory, we only need 64GB * of vmemmap space. To better support sparse memory layout, we use 61TB * linear map range, 1TB of vmalloc, 1TB of I/O and 1TB of vmememmap. */ #define REGION_SHIFT (40) #define H_KERN_MAP_SIZE (ASM_CONST(1) << REGION_SHIFT) /* * Limits the linear mapping range */ #define H_MAX_PHYSMEM_BITS 46 /* * Define the address range of the kernel non-linear virtual area (61TB) */ #define H_KERN_VIRT_START ASM_CONST(0xc0003d0000000000) #ifndef __ASSEMBLY__ #define H_PTE_TABLE_SIZE (sizeof(pte_t) << H_PTE_INDEX_SIZE) #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << H_PMD_INDEX_SIZE) #define H_PUD_TABLE_SIZE (sizeof(pud_t) << H_PUD_INDEX_SIZE) #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << H_PGD_INDEX_SIZE) #define H_PAGE_F_GIX_SHIFT _PAGE_PA_MAX #define H_PAGE_F_SECOND _RPAGE_PKEY_BIT0 /* HPTE is in 2ndary HPTEG */ #define H_PAGE_F_GIX (_RPAGE_RPN43 | _RPAGE_RPN42 | _RPAGE_RPN41) #define H_PAGE_BUSY _RPAGE_RSV1 #define H_PAGE_HASHPTE _RPAGE_PKEY_BIT4 /* PTE flags to conserve for HPTE identification */ #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | \ H_PAGE_F_SECOND | H_PAGE_F_GIX) /* * Not supported by 4k linux page size */ #define H_PAGE_4K_PFN 0x0 #define H_PAGE_THP_HUGE 0x0 #define H_PAGE_COMBO 0x0 /* 8 bytes per each pte entry */ #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3) #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT) #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3) #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT) /* memory key bits, only 8 keys supported */ #define H_PTE_PKEY_BIT4 0 #define H_PTE_PKEY_BIT3 0 #define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT3 #define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT2 #define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT1 /* * On all 4K setups, remap_4k_pfn() equates to remap_pfn_range() */ #define remap_4k_pfn(vma, addr, pfn, prot) \ remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, (prot)) /* * With 4K page size the real_pte machinery is all nops. */ #define __real_pte(e, p, o) ((real_pte_t){(e)}) #define __rpte_to_pte(r) ((r).pte) #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ do { \ index = 0; \ shift = mmu_psize_defs[psize].shift; \ #define pte_iterate_hashed_end() } while(0) /* * We expect this to be called only for user addresses or kernel virtual * addresses other than the linear mapping. */ #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K /* * 4K PTE format is different from 64K PTE format. Saving the hash_slot is just * a matter of returning the PTE bits that need to be modified. On 64K PTE, * things are a little more involved and hence needs many more parameters to * accomplish the same. However we want to abstract this out from the caller by * keeping the prototype consistent across the two formats. */ static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte, unsigned int subpg_index, unsigned long hidx, int offset) { return (hidx << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline char *get_hpte_slot_array(pmd_t *pmdp) { BUG(); return NULL; } static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) { BUG(); return 0; } static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, int index) { BUG(); return 0; } static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, unsigned int index, unsigned int hidx) { BUG(); } static inline int hash__pmd_trans_huge(pmd_t pmd) { return 0; } static inline pmd_t hash__pmd_mkhuge(pmd_t pmd) { BUG(); return pmd; } extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); extern int hash__has_transparent_hugepage(void); #endif static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd) { BUG(); return pmd; } #endif /* !__ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_HASH_4K_H */