// SPDX-License-Identifier: GPL-2.0 /* * Author: Huacai Chen * Copyright (C) 2020-2022 Loongson Technology Corporation Limited * * Derived from MIPS: * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others. * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004 Thiemo Seufer * Copyright (C) 2013 Imagination Technologies Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_STACKPROTECTOR #include unsigned long __stack_chk_guard __read_mostly; EXPORT_SYMBOL(__stack_chk_guard); #endif /* * Idle related variables and functions */ unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); #ifdef CONFIG_HOTPLUG_CPU void arch_cpu_idle_dead(void) { play_dead(); } #endif asmlinkage void ret_from_fork(void); asmlinkage void ret_from_kernel_thread(void); void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp) { unsigned long crmd; unsigned long prmd; unsigned long euen; /* New thread loses kernel privileges. */ crmd = regs->csr_crmd & ~(PLV_MASK); crmd |= PLV_USER; regs->csr_crmd = crmd; prmd = regs->csr_prmd & ~(PLV_MASK); prmd |= PLV_USER; regs->csr_prmd = prmd; euen = regs->csr_euen & ~(CSR_EUEN_FPEN); regs->csr_euen = euen; lose_fpu(0); clear_thread_flag(TIF_LSX_CTX_LIVE); clear_thread_flag(TIF_LASX_CTX_LIVE); clear_used_math(); regs->csr_era = pc; regs->regs[3] = sp; } void flush_thread(void) { flush_ptrace_hw_breakpoint(current); } void exit_thread(struct task_struct *tsk) { } int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { /* * Save any process state which is live in hardware registers to the * parent context prior to duplication. This prevents the new child * state becoming stale if the parent is preempted before copy_thread() * gets a chance to save the parent's live hardware registers to the * child context. */ preempt_disable(); if (is_fpu_owner()) save_fp(current); preempt_enable(); if (used_math()) memcpy(dst, src, sizeof(struct task_struct)); else memcpy(dst, src, offsetof(struct task_struct, thread.fpu.fpr)); return 0; } /* * Copy architecture-specific thread state */ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { unsigned long childksp; unsigned long tls = args->tls; unsigned long usp = args->stack; unsigned long clone_flags = args->flags; struct pt_regs *childregs, *regs = current_pt_regs(); childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE; /* set up new TSS. */ childregs = (struct pt_regs *) childksp - 1; /* Put the stack after the struct pt_regs. */ childksp = (unsigned long) childregs; p->thread.sched_cfa = 0; p->thread.csr_euen = 0; p->thread.csr_crmd = csr_read32(LOONGARCH_CSR_CRMD); p->thread.csr_prmd = csr_read32(LOONGARCH_CSR_PRMD); p->thread.csr_ecfg = csr_read32(LOONGARCH_CSR_ECFG); if (unlikely(args->fn)) { /* kernel thread */ p->thread.reg03 = childksp; p->thread.reg23 = (unsigned long)args->fn; p->thread.reg24 = (unsigned long)args->fn_arg; p->thread.reg01 = (unsigned long)ret_from_kernel_thread; p->thread.sched_ra = (unsigned long)ret_from_kernel_thread; memset(childregs, 0, sizeof(struct pt_regs)); childregs->csr_euen = p->thread.csr_euen; childregs->csr_crmd = p->thread.csr_crmd; childregs->csr_prmd = p->thread.csr_prmd; childregs->csr_ecfg = p->thread.csr_ecfg; goto out; } /* user thread */ *childregs = *regs; childregs->regs[4] = 0; /* Child gets zero as return value */ if (usp) childregs->regs[3] = usp; p->thread.reg03 = (unsigned long) childregs; p->thread.reg01 = (unsigned long) ret_from_fork; p->thread.sched_ra = (unsigned long) ret_from_fork; /* * New tasks lose permission to use the fpu. This accelerates context * switching for most programs since they don't use the fpu. */ childregs->csr_euen = 0; if (clone_flags & CLONE_SETTLS) childregs->regs[2] = tls; out: ptrace_hw_copy_thread(p); clear_tsk_thread_flag(p, TIF_USEDFPU); clear_tsk_thread_flag(p, TIF_USEDSIMD); clear_tsk_thread_flag(p, TIF_LSX_CTX_LIVE); clear_tsk_thread_flag(p, TIF_LASX_CTX_LIVE); return 0; } unsigned long __get_wchan(struct task_struct *task) { unsigned long pc = 0; struct unwind_state state; if (!try_get_task_stack(task)) return 0; for (unwind_start(&state, task, NULL); !unwind_done(&state); unwind_next_frame(&state)) { pc = unwind_get_return_address(&state); if (!pc) break; if (in_sched_functions(pc)) continue; break; } put_task_stack(task); return pc; } bool in_irq_stack(unsigned long stack, struct stack_info *info) { unsigned long nextsp; unsigned long begin = (unsigned long)this_cpu_read(irq_stack); unsigned long end = begin + IRQ_STACK_START; if (stack < begin || stack >= end) return false; nextsp = *(unsigned long *)end; if (nextsp & (SZREG - 1)) return false; info->begin = begin; info->end = end; info->next_sp = nextsp; info->type = STACK_TYPE_IRQ; return true; } bool in_task_stack(unsigned long stack, struct task_struct *task, struct stack_info *info) { unsigned long begin = (unsigned long)task_stack_page(task); unsigned long end = begin + THREAD_SIZE; if (stack < begin || stack >= end) return false; info->begin = begin; info->end = end; info->next_sp = 0; info->type = STACK_TYPE_TASK; return true; } int get_stack_info(unsigned long stack, struct task_struct *task, struct stack_info *info) { task = task ? : current; if (!stack || stack & (SZREG - 1)) goto unknown; if (in_task_stack(stack, task, info)) return 0; if (task != current) goto unknown; if (in_irq_stack(stack, info)) return 0; unknown: info->type = STACK_TYPE_UNKNOWN; return -EINVAL; } unsigned long stack_top(void) { unsigned long top = TASK_SIZE & PAGE_MASK; /* Space for the VDSO & data page */ top -= PAGE_ALIGN(current->thread.vdso->size); top -= PAGE_SIZE; /* Space to randomize the VDSO base */ if (current->flags & PF_RANDOMIZE) top -= VDSO_RANDOMIZE_SIZE; return top; } /* * Don't forget that the stack pointer must be aligned on a 8 bytes * boundary for 32-bits ABI and 16 bytes for 64-bits ABI. */ unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_u32_below(PAGE_SIZE); return sp & STACK_ALIGN; } static DEFINE_PER_CPU(call_single_data_t, backtrace_csd); static struct cpumask backtrace_csd_busy; static void handle_backtrace(void *info) { nmi_cpu_backtrace(get_irq_regs()); cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy); } static void raise_backtrace(cpumask_t *mask) { call_single_data_t *csd; int cpu; for_each_cpu(cpu, mask) { /* * If we previously sent an IPI to the target CPU & it hasn't * cleared its bit in the busy cpumask then it didn't handle * our previous IPI & it's not safe for us to reuse the * call_single_data_t. */ if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) { pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n", cpu); continue; } csd = &per_cpu(backtrace_csd, cpu); csd->func = handle_backtrace; smp_call_function_single_async(cpu, csd); } } void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) { nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace); } #ifdef CONFIG_64BIT void loongarch_dump_regs64(u64 *uregs, const struct pt_regs *regs) { unsigned int i; for (i = LOONGARCH_EF_R1; i <= LOONGARCH_EF_R31; i++) { uregs[i] = regs->regs[i - LOONGARCH_EF_R0]; } uregs[LOONGARCH_EF_ORIG_A0] = regs->orig_a0; uregs[LOONGARCH_EF_CSR_ERA] = regs->csr_era; uregs[LOONGARCH_EF_CSR_BADV] = regs->csr_badvaddr; uregs[LOONGARCH_EF_CSR_CRMD] = regs->csr_crmd; uregs[LOONGARCH_EF_CSR_PRMD] = regs->csr_prmd; uregs[LOONGARCH_EF_CSR_EUEN] = regs->csr_euen; uregs[LOONGARCH_EF_CSR_ECFG] = regs->csr_ecfg; uregs[LOONGARCH_EF_CSR_ESTAT] = regs->csr_estat; } #endif /* CONFIG_64BIT */