/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2020-2022 Loongson Technology Corporation Limited * * Derived from MIPS: * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H #include #include #include #include #if CONFIG_PGTABLE_LEVELS == 2 #include #elif CONFIG_PGTABLE_LEVELS == 3 #include #else #include #endif #if CONFIG_PGTABLE_LEVELS == 2 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) #elif CONFIG_PGTABLE_LEVELS == 3 #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT - 3)) #elif CONFIG_PGTABLE_LEVELS == 4 #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PUD_SHIFT (PMD_SHIFT + (PAGE_SHIFT - 3)) #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) #define PGDIR_SHIFT (PUD_SHIFT + (PAGE_SHIFT - 3)) #endif #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define VA_BITS (PGDIR_SHIFT + (PAGE_SHIFT - 3)) #define PTRS_PER_PGD (PAGE_SIZE >> 3) #if CONFIG_PGTABLE_LEVELS > 3 #define PTRS_PER_PUD (PAGE_SIZE >> 3) #endif #if CONFIG_PGTABLE_LEVELS > 2 #define PTRS_PER_PMD (PAGE_SIZE >> 3) #endif #define PTRS_PER_PTE (PAGE_SIZE >> 3) #define USER_PTRS_PER_PGD ((TASK_SIZE64 / PGDIR_SIZE)?(TASK_SIZE64 / PGDIR_SIZE):1) #ifndef __ASSEMBLY__ #include #include #include #include struct mm_struct; struct vm_area_struct; /* * ZERO_PAGE is a global shared page that is always zero; used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) /* * TLB refill handlers may also map the vmalloc area into xkvrange. * Avoid the first couple of pages so NULL pointer dereferences will * still reliably trap. */ #define MODULES_VADDR (vm_map_base + PCI_IOSIZE + (2 * PAGE_SIZE)) #define MODULES_END (MODULES_VADDR + SZ_256M) #ifdef CONFIG_KFENCE #define KFENCE_AREA_SIZE (((CONFIG_KFENCE_NUM_OBJECTS + 1) * 2 + 2) * PAGE_SIZE) #else #define KFENCE_AREA_SIZE 0 #endif #define VMALLOC_START MODULES_END #ifndef CONFIG_KASAN #define VMALLOC_END \ (vm_map_base + \ min(PTRS_PER_PGD * PTRS_PER_PUD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, (1UL << cpu_vabits)) - PMD_SIZE - VMEMMAP_SIZE - KFENCE_AREA_SIZE) #else #define VMALLOC_END \ (vm_map_base + \ min(PTRS_PER_PGD * PTRS_PER_PUD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, (1UL << cpu_vabits) / 2) - PMD_SIZE - VMEMMAP_SIZE - KFENCE_AREA_SIZE) #endif #define vmemmap ((struct page *)((VMALLOC_END + PMD_SIZE) & PMD_MASK)) #define VMEMMAP_END ((unsigned long)vmemmap + VMEMMAP_SIZE - 1) #define KFENCE_AREA_START (VMEMMAP_END + 1) #define KFENCE_AREA_END (KFENCE_AREA_START + KFENCE_AREA_SIZE - 1) #define ptep_get(ptep) READ_ONCE(*(ptep)) #define pmdp_get(pmdp) READ_ONCE(*(pmdp)) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #ifndef __PAGETABLE_PMD_FOLDED #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) extern pte_t invalid_pte_table[PTRS_PER_PTE]; #ifndef __PAGETABLE_PUD_FOLDED typedef struct { unsigned long pud; } pud_t; #define pud_val(x) ((x).pud) #define __pud(x) ((pud_t) { (x) }) extern pud_t invalid_pud_table[PTRS_PER_PUD]; /* * Empty pgd/p4d entries point to the invalid_pud_table. */ static inline int p4d_none(p4d_t p4d) { return p4d_val(p4d) == (unsigned long)invalid_pud_table; } static inline int p4d_bad(p4d_t p4d) { return p4d_val(p4d) & ~PAGE_MASK; } static inline int p4d_present(p4d_t p4d) { return p4d_val(p4d) != (unsigned long)invalid_pud_table; } static inline pud_t *p4d_pgtable(p4d_t p4d) { return (pud_t *)p4d_val(p4d); } static inline void set_p4d(p4d_t *p4d, p4d_t p4dval) { WRITE_ONCE(*p4d, p4dval); } static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, __p4d((unsigned long)invalid_pud_table)); } #define p4d_phys(p4d) PHYSADDR(p4d_val(p4d)) #define p4d_page(p4d) (pfn_to_page(p4d_phys(p4d) >> PAGE_SHIFT)) #endif #ifndef __PAGETABLE_PMD_FOLDED typedef struct { unsigned long pmd; } pmd_t; #define pmd_val(x) ((x).pmd) #define __pmd(x) ((pmd_t) { (x) }) extern pmd_t invalid_pmd_table[PTRS_PER_PMD]; /* * Empty pud entries point to the invalid_pmd_table. */ static inline int pud_none(pud_t pud) { return pud_val(pud) == (unsigned long)invalid_pmd_table; } static inline int pud_bad(pud_t pud) { return pud_val(pud) & ~PAGE_MASK; } static inline int pud_present(pud_t pud) { return pud_val(pud) != (unsigned long)invalid_pmd_table; } static inline pmd_t *pud_pgtable(pud_t pud) { return (pmd_t *)pud_val(pud); } static inline void set_pud(pud_t *pud, pud_t pudval) { WRITE_ONCE(*pud, pudval); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, __pud((unsigned long)invalid_pmd_table)); } #define pud_phys(pud) PHYSADDR(pud_val(pud)) #define pud_page(pud) (pfn_to_page(pud_phys(pud) >> PAGE_SHIFT)) #endif /* * Empty pmd entries point to the invalid_pte_table. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long)invalid_pte_table; } static inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK); } static inline int pmd_present(pmd_t pmd) { if (unlikely(pmd_val(pmd) & _PAGE_HUGE)) return !!(pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PRESENT_INVALID)); return pmd_val(pmd) != (unsigned long)invalid_pte_table; } static inline void set_pmd(pmd_t *pmd, pmd_t pmdval) { WRITE_ONCE(*pmd, pmdval); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, __pmd((unsigned long)invalid_pte_table)); } #define pmd_phys(pmd) PHYSADDR(pmd_val(pmd)) #ifndef CONFIG_TRANSPARENT_HUGEPAGE #define pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT)) #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #define pmd_page_vaddr(pmd) pmd_val(pmd) extern pmd_t mk_pmd(struct page *page, pgprot_t prot); extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pte_pfn(x) ((unsigned long)(((x).pte & _PFN_MASK) >> PFN_PTE_SHIFT)) #define pfn_pte(pfn, prot) __pte(((pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) #define pfn_pmd(pfn, prot) __pmd(((pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) /* * Initialize a new pgd / pud / pmd table with invalid pointers. */ extern void pgd_init(void *addr); extern void pud_init(void *addr); extern void pmd_init(void *addr); /* * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that * are !pte_none() && !pte_present(). * * Format of swap PTEs: * * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 * <--------------------------- offset --------------------------- * * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * --------------> E <--- type ---> <---------- zeroes ----------> * * E is the exclusive marker that is not stored in swap entries. * The zero'ed bits include _PAGE_PRESENT and _PAGE_PROTNONE. */ static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = ((type & 0x7f) << 16) | (offset << 24); return pte; } #define __swp_type(x) (((x).val >> 16) & 0x7f) #define __swp_offset(x) ((x).val >> 24) #define __swp_entry(type, offset) ((swp_entry_t) { pte_val(mk_swap_pte((type), (offset))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) #define __swp_entry_to_pmd(x) ((pmd_t) { (x).val | _PAGE_HUGE }) static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; return pte; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; return pte; } extern void paging_init(void); #define pte_none(pte) (!(pte_val(pte) & ~_PAGE_GLOBAL)) #define pte_present(pte) (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROTNONE)) #define pte_no_exec(pte) (pte_val(pte) & _PAGE_NO_EXEC) static inline void set_pte(pte_t *ptep, pte_t pteval) { WRITE_ONCE(*ptep, pteval); if (pte_val(pteval) & _PAGE_GLOBAL) { pte_t *buddy = ptep_buddy(ptep); /* * Make sure the buddy is global too (if it's !none, * it better already be global) */ if (pte_none(ptep_get(buddy))) { #ifdef CONFIG_SMP /* * For SMP, multiple CPUs can race, so we need * to do this atomically. */ __asm__ __volatile__( __AMOR "$zero, %[global], %[buddy] \n" : [buddy] "+ZB" (buddy->pte) : [global] "r" (_PAGE_GLOBAL) : "memory"); DBAR(0b11000); /* o_wrw = 0b11000 */ #else /* !CONFIG_SMP */ WRITE_ONCE(*buddy, __pte(pte_val(ptep_get(buddy)) | _PAGE_GLOBAL)); #endif /* CONFIG_SMP */ } } } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { /* Preserve global status for the pair */ if (pte_val(ptep_get(ptep_buddy(ptep))) & _PAGE_GLOBAL) set_pte(ptep, __pte(_PAGE_GLOBAL)); else set_pte(ptep, __pte(0)); } #define PGD_T_LOG2 (__builtin_ffs(sizeof(pgd_t)) - 1) #define PMD_T_LOG2 (__builtin_ffs(sizeof(pmd_t)) - 1) #define PTE_T_LOG2 (__builtin_ffs(sizeof(pte_t)) - 1) extern pgd_t swapper_pg_dir[]; extern pgd_t invalid_pg_dir[]; /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & (_PAGE_DIRTY | _PAGE_MODIFIED); } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_MODIFIED); return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkwrite_novma(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_DIRTY); return pte; } static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE; } static inline pte_t pte_mkhuge(pte_t pte) { pte_val(pte) |= _PAGE_HUGE; return pte; } #if defined(CONFIG_ARCH_HAS_PTE_SPECIAL) static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ static inline int pte_devmap(pte_t pte) { return !!(pte_val(pte) & _PAGE_DEVMAP); } static inline pte_t pte_mkdevmap(pte_t pte) { pte_val(pte) |= _PAGE_DEVMAP; return pte; } #define pte_accessible pte_accessible static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_val(a) & _PAGE_PRESENT) return true; if ((pte_val(a) & _PAGE_PROTNONE) && atomic_read(&mm->tlb_flush_pending)) return true; return false; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | (pgprot_val(newprot) & ~_PAGE_CHG_MASK)); } extern void __update_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr) { for (;;) { __update_tlb(vma, address, ptep); if (--nr == 0) break; address += PAGE_SIZE; ptep++; } } #define update_mmu_cache(vma, addr, ptep) \ update_mmu_cache_range(NULL, vma, addr, ptep, 1) #define update_mmu_tlb_range(vma, addr, ptep, nr) \ update_mmu_cache_range(NULL, vma, addr, ptep, nr) static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { __update_tlb(vma, address, (pte_t *)pmdp); } static inline unsigned long pmd_pfn(pmd_t pmd) { return (pmd_val(pmd) & _PFN_MASK) >> PFN_PTE_SHIFT; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* We don't have hardware dirty/accessed bits, generic_pmdp_establish is fine.*/ #define pmdp_establish generic_pmdp_establish static inline int pmd_trans_huge(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_HUGE) && pmd_present(pmd); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { pmd_val(pmd) = (pmd_val(pmd) & ~(_PAGE_GLOBAL)) | ((pmd_val(pmd) & _PAGE_GLOBAL) << (_PAGE_HGLOBAL_SHIFT - _PAGE_GLOBAL_SHIFT)); pmd_val(pmd) |= _PAGE_HUGE; return pmd; } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_WRITE); } static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) { pmd_val(pmd) |= _PAGE_WRITE; if (pmd_val(pmd) & _PAGE_MODIFIED) pmd_val(pmd) |= _PAGE_DIRTY; return pmd; } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_WRITE | _PAGE_DIRTY); return pmd; } #define pmd_dirty pmd_dirty static inline int pmd_dirty(pmd_t pmd) { return !!(pmd_val(pmd) & (_PAGE_DIRTY | _PAGE_MODIFIED)); } static inline pmd_t pmd_mkclean(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_DIRTY | _PAGE_MODIFIED); return pmd; } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pmd_val(pmd) |= _PAGE_MODIFIED; if (pmd_val(pmd) & _PAGE_WRITE) pmd_val(pmd) |= _PAGE_DIRTY; return pmd; } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_ACCESSED); } static inline pmd_t pmd_mkold(pmd_t pmd) { pmd_val(pmd) &= ~_PAGE_ACCESSED; return pmd; } static inline pmd_t pmd_mkyoung(pmd_t pmd) { pmd_val(pmd) |= _PAGE_ACCESSED; return pmd; } static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { pmd_val(pmd) |= _PAGE_DEVMAP; return pmd; } static inline struct page *pmd_page(pmd_t pmd) { if (pmd_trans_huge(pmd)) return pfn_to_page(pmd_pfn(pmd)); return pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmd_val(pmd) = (pmd_val(pmd) & _HPAGE_CHG_MASK) | (pgprot_val(newprot) & ~_HPAGE_CHG_MASK); return pmd; } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { pmd_val(pmd) |= _PAGE_PRESENT_INVALID; pmd_val(pmd) &= ~(_PAGE_PRESENT | _PAGE_VALID | _PAGE_DIRTY | _PAGE_PROTNONE); return pmd; } /* * The generic version pmdp_huge_get_and_clear uses a version of pmd_clear() with a * different prototype. */ #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old = pmdp_get(pmdp); pmd_clear(pmdp); return old; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_NUMA_BALANCING static inline long pte_protnone(pte_t pte) { return (pte_val(pte) & _PAGE_PROTNONE); } static inline long pmd_protnone(pmd_t pmd) { return (pmd_val(pmd) & _PAGE_PROTNONE); } #endif /* CONFIG_NUMA_BALANCING */ #define pmd_leaf(pmd) ((pmd_val(pmd) & _PAGE_HUGE) != 0) #define pud_leaf(pud) ((pud_val(pud) & _PAGE_HUGE) != 0) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define pud_devmap(pud) (0) #define pgd_devmap(pgd) (0) #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * We provide our own get_unmapped area to cope with the virtual aliasing * constraints placed on us by the cache architecture. */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #endif /* !__ASSEMBLY__ */ #endif /* _ASM_PGTABLE_H */