// SPDX-License-Identifier: GPL-2.0-only /* * Stack tracing support * * Copyright (C) 2012 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum kunwind_source { KUNWIND_SOURCE_UNKNOWN, KUNWIND_SOURCE_FRAME, KUNWIND_SOURCE_CALLER, KUNWIND_SOURCE_TASK, KUNWIND_SOURCE_REGS_PC, KUNWIND_SOURCE_REGS_LR, }; union unwind_flags { unsigned long all; struct { unsigned long fgraph : 1, kretprobe : 1; }; }; /* * Kernel unwind state * * @common: Common unwind state. * @task: The task being unwound. * @graph_idx: Used by ftrace_graph_ret_addr() for optimized stack unwinding. * @kr_cur: When KRETPROBES is selected, holds the kretprobe instance * associated with the most recently encountered replacement lr * value. */ struct kunwind_state { struct unwind_state common; struct task_struct *task; int graph_idx; #ifdef CONFIG_KRETPROBES struct llist_node *kr_cur; #endif enum kunwind_source source; union unwind_flags flags; struct pt_regs *regs; }; static __always_inline void kunwind_init(struct kunwind_state *state, struct task_struct *task) { unwind_init_common(&state->common); state->task = task; state->source = KUNWIND_SOURCE_UNKNOWN; state->flags.all = 0; state->regs = NULL; } /* * Start an unwind from a pt_regs. * * The unwind will begin at the PC within the regs. * * The regs must be on a stack currently owned by the calling task. */ static __always_inline void kunwind_init_from_regs(struct kunwind_state *state, struct pt_regs *regs) { kunwind_init(state, current); state->regs = regs; state->common.fp = regs->regs[29]; state->common.pc = regs->pc; state->source = KUNWIND_SOURCE_REGS_PC; } /* * Start an unwind from a caller. * * The unwind will begin at the caller of whichever function this is inlined * into. * * The function which invokes this must be noinline. */ static __always_inline void kunwind_init_from_caller(struct kunwind_state *state) { kunwind_init(state, current); state->common.fp = (unsigned long)__builtin_frame_address(1); state->common.pc = (unsigned long)__builtin_return_address(0); state->source = KUNWIND_SOURCE_CALLER; } /* * Start an unwind from a blocked task. * * The unwind will begin at the blocked tasks saved PC (i.e. the caller of * cpu_switch_to()). * * The caller should ensure the task is blocked in cpu_switch_to() for the * duration of the unwind, or the unwind will be bogus. It is never valid to * call this for the current task. */ static __always_inline void kunwind_init_from_task(struct kunwind_state *state, struct task_struct *task) { kunwind_init(state, task); state->common.fp = thread_saved_fp(task); state->common.pc = thread_saved_pc(task); state->source = KUNWIND_SOURCE_TASK; } static __always_inline int kunwind_recover_return_address(struct kunwind_state *state) { #ifdef CONFIG_FUNCTION_GRAPH_TRACER if (state->task->ret_stack && (state->common.pc == (unsigned long)return_to_handler)) { unsigned long orig_pc; orig_pc = ftrace_graph_ret_addr(state->task, &state->graph_idx, state->common.pc, (void *)state->common.fp); if (WARN_ON_ONCE(state->common.pc == orig_pc)) return -EINVAL; state->common.pc = orig_pc; state->flags.fgraph = 1; } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ #ifdef CONFIG_KRETPROBES if (is_kretprobe_trampoline(state->common.pc)) { unsigned long orig_pc; orig_pc = kretprobe_find_ret_addr(state->task, (void *)state->common.fp, &state->kr_cur); state->common.pc = orig_pc; state->flags.kretprobe = 1; } #endif /* CONFIG_KRETPROBES */ return 0; } static __always_inline int kunwind_next_regs_pc(struct kunwind_state *state) { struct stack_info *info; unsigned long fp = state->common.fp; struct pt_regs *regs; regs = container_of((u64 *)fp, struct pt_regs, stackframe.record.fp); info = unwind_find_stack(&state->common, (unsigned long)regs, sizeof(*regs)); if (!info) return -EINVAL; unwind_consume_stack(&state->common, info, (unsigned long)regs, sizeof(*regs)); state->regs = regs; state->common.pc = regs->pc; state->common.fp = regs->regs[29]; state->source = KUNWIND_SOURCE_REGS_PC; return 0; } static __always_inline int kunwind_next_regs_lr(struct kunwind_state *state) { /* * The stack for the regs was consumed by kunwind_next_regs_pc(), so we * cannot consume that again here, but we know the regs are safe to * access. */ state->common.pc = state->regs->regs[30]; state->common.fp = state->regs->regs[29]; state->regs = NULL; state->source = KUNWIND_SOURCE_REGS_LR; return 0; } static __always_inline int kunwind_next_frame_record_meta(struct kunwind_state *state) { struct task_struct *tsk = state->task; unsigned long fp = state->common.fp; struct frame_record_meta *meta; struct stack_info *info; info = unwind_find_stack(&state->common, fp, sizeof(*meta)); if (!info) return -EINVAL; meta = (struct frame_record_meta *)fp; switch (READ_ONCE(meta->type)) { case FRAME_META_TYPE_FINAL: if (meta == &task_pt_regs(tsk)->stackframe) return -ENOENT; WARN_ON_ONCE(1); return -EINVAL; case FRAME_META_TYPE_PT_REGS: return kunwind_next_regs_pc(state); default: WARN_ON_ONCE(1); return -EINVAL; } } static __always_inline int kunwind_next_frame_record(struct kunwind_state *state) { unsigned long fp = state->common.fp; struct frame_record *record; struct stack_info *info; unsigned long new_fp, new_pc; if (fp & 0x7) return -EINVAL; info = unwind_find_stack(&state->common, fp, sizeof(*record)); if (!info) return -EINVAL; record = (struct frame_record *)fp; new_fp = READ_ONCE(record->fp); new_pc = READ_ONCE(record->lr); if (!new_fp && !new_pc) return kunwind_next_frame_record_meta(state); unwind_consume_stack(&state->common, info, fp, sizeof(*record)); state->common.fp = new_fp; state->common.pc = new_pc; state->source = KUNWIND_SOURCE_FRAME; return 0; } /* * Unwind from one frame record (A) to the next frame record (B). * * We terminate early if the location of B indicates a malformed chain of frame * records (e.g. a cycle), determined based on the location and fp value of A * and the location (but not the fp value) of B. */ static __always_inline int kunwind_next(struct kunwind_state *state) { int err; state->flags.all = 0; switch (state->source) { case KUNWIND_SOURCE_FRAME: case KUNWIND_SOURCE_CALLER: case KUNWIND_SOURCE_TASK: case KUNWIND_SOURCE_REGS_LR: err = kunwind_next_frame_record(state); break; case KUNWIND_SOURCE_REGS_PC: err = kunwind_next_regs_lr(state); break; default: err = -EINVAL; } if (err) return err; state->common.pc = ptrauth_strip_kernel_insn_pac(state->common.pc); return kunwind_recover_return_address(state); } typedef bool (*kunwind_consume_fn)(const struct kunwind_state *state, void *cookie); static __always_inline void do_kunwind(struct kunwind_state *state, kunwind_consume_fn consume_state, void *cookie) { if (kunwind_recover_return_address(state)) return; while (1) { int ret; if (!consume_state(state, cookie)) break; ret = kunwind_next(state); if (ret < 0) break; } } /* * Per-cpu stacks are only accessible when unwinding the current task in a * non-preemptible context. */ #define STACKINFO_CPU(name) \ ({ \ ((task == current) && !preemptible()) \ ? stackinfo_get_##name() \ : stackinfo_get_unknown(); \ }) /* * SDEI stacks are only accessible when unwinding the current task in an NMI * context. */ #define STACKINFO_SDEI(name) \ ({ \ ((task == current) && in_nmi()) \ ? stackinfo_get_sdei_##name() \ : stackinfo_get_unknown(); \ }) #define STACKINFO_EFI \ ({ \ ((task == current) && current_in_efi()) \ ? stackinfo_get_efi() \ : stackinfo_get_unknown(); \ }) static __always_inline void kunwind_stack_walk(kunwind_consume_fn consume_state, void *cookie, struct task_struct *task, struct pt_regs *regs) { struct stack_info stacks[] = { stackinfo_get_task(task), STACKINFO_CPU(irq), #if defined(CONFIG_VMAP_STACK) STACKINFO_CPU(overflow), #endif #if defined(CONFIG_VMAP_STACK) && defined(CONFIG_ARM_SDE_INTERFACE) STACKINFO_SDEI(normal), STACKINFO_SDEI(critical), #endif #ifdef CONFIG_EFI STACKINFO_EFI, #endif }; struct kunwind_state state = { .common = { .stacks = stacks, .nr_stacks = ARRAY_SIZE(stacks), }, }; if (regs) { if (task != current) return; kunwind_init_from_regs(&state, regs); } else if (task == current) { kunwind_init_from_caller(&state); } else { kunwind_init_from_task(&state, task); } do_kunwind(&state, consume_state, cookie); } struct kunwind_consume_entry_data { stack_trace_consume_fn consume_entry; void *cookie; }; static __always_inline bool arch_kunwind_consume_entry(const struct kunwind_state *state, void *cookie) { struct kunwind_consume_entry_data *data = cookie; return data->consume_entry(data->cookie, state->common.pc); } noinline noinstr void arch_stack_walk(stack_trace_consume_fn consume_entry, void *cookie, struct task_struct *task, struct pt_regs *regs) { struct kunwind_consume_entry_data data = { .consume_entry = consume_entry, .cookie = cookie, }; kunwind_stack_walk(arch_kunwind_consume_entry, &data, task, regs); } struct bpf_unwind_consume_entry_data { bool (*consume_entry)(void *cookie, u64 ip, u64 sp, u64 fp); void *cookie; }; static bool arch_bpf_unwind_consume_entry(const struct kunwind_state *state, void *cookie) { struct bpf_unwind_consume_entry_data *data = cookie; return data->consume_entry(data->cookie, state->common.pc, 0, state->common.fp); } noinline noinstr void arch_bpf_stack_walk(bool (*consume_entry)(void *cookie, u64 ip, u64 sp, u64 fp), void *cookie) { struct bpf_unwind_consume_entry_data data = { .consume_entry = consume_entry, .cookie = cookie, }; kunwind_stack_walk(arch_bpf_unwind_consume_entry, &data, current, NULL); } static const char *state_source_string(const struct kunwind_state *state) { switch (state->source) { case KUNWIND_SOURCE_FRAME: return NULL; case KUNWIND_SOURCE_CALLER: return "C"; case KUNWIND_SOURCE_TASK: return "T"; case KUNWIND_SOURCE_REGS_PC: return "P"; case KUNWIND_SOURCE_REGS_LR: return "L"; default: return "U"; } } static bool dump_backtrace_entry(const struct kunwind_state *state, void *arg) { const char *source = state_source_string(state); union unwind_flags flags = state->flags; bool has_info = source || flags.all; char *loglvl = arg; printk("%s %pSb%s%s%s%s%s\n", loglvl, (void *)state->common.pc, has_info ? " (" : "", source ? source : "", flags.fgraph ? "F" : "", flags.kretprobe ? "K" : "", has_info ? ")" : ""); return true; } void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk, const char *loglvl) { pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk); if (regs && user_mode(regs)) return; if (!tsk) tsk = current; if (!try_get_task_stack(tsk)) return; printk("%sCall trace:\n", loglvl); kunwind_stack_walk(dump_backtrace_entry, (void *)loglvl, tsk, regs); put_task_stack(tsk); } void show_stack(struct task_struct *tsk, unsigned long *sp, const char *loglvl) { dump_backtrace(NULL, tsk, loglvl); barrier(); } /* * The struct defined for userspace stack frame in AARCH64 mode. */ struct frame_tail { struct frame_tail __user *fp; unsigned long lr; } __attribute__((packed)); /* * Get the return address for a single stackframe and return a pointer to the * next frame tail. */ static struct frame_tail __user * unwind_user_frame(struct frame_tail __user *tail, void *cookie, stack_trace_consume_fn consume_entry) { struct frame_tail buftail; unsigned long err; unsigned long lr; /* Also check accessibility of one struct frame_tail beyond */ if (!access_ok(tail, sizeof(buftail))) return NULL; pagefault_disable(); err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail)); pagefault_enable(); if (err) return NULL; lr = ptrauth_strip_user_insn_pac(buftail.lr); if (!consume_entry(cookie, lr)) return NULL; /* * Frame pointers should strictly progress back up the stack * (towards higher addresses). */ if (tail >= buftail.fp) return NULL; return buftail.fp; } #ifdef CONFIG_COMPAT /* * The registers we're interested in are at the end of the variable * length saved register structure. The fp points at the end of this * structure so the address of this struct is: * (struct compat_frame_tail *)(xxx->fp)-1 * * This code has been adapted from the ARM OProfile support. */ struct compat_frame_tail { compat_uptr_t fp; /* a (struct compat_frame_tail *) in compat mode */ u32 sp; u32 lr; } __attribute__((packed)); static struct compat_frame_tail __user * unwind_compat_user_frame(struct compat_frame_tail __user *tail, void *cookie, stack_trace_consume_fn consume_entry) { struct compat_frame_tail buftail; unsigned long err; /* Also check accessibility of one struct frame_tail beyond */ if (!access_ok(tail, sizeof(buftail))) return NULL; pagefault_disable(); err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail)); pagefault_enable(); if (err) return NULL; if (!consume_entry(cookie, buftail.lr)) return NULL; /* * Frame pointers should strictly progress back up the stack * (towards higher addresses). */ if (tail + 1 >= (struct compat_frame_tail __user *) compat_ptr(buftail.fp)) return NULL; return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1; } #endif /* CONFIG_COMPAT */ void arch_stack_walk_user(stack_trace_consume_fn consume_entry, void *cookie, const struct pt_regs *regs) { if (!consume_entry(cookie, regs->pc)) return; if (!compat_user_mode(regs)) { /* AARCH64 mode */ struct frame_tail __user *tail; tail = (struct frame_tail __user *)regs->regs[29]; while (tail && !((unsigned long)tail & 0x7)) tail = unwind_user_frame(tail, cookie, consume_entry); } else { #ifdef CONFIG_COMPAT /* AARCH32 compat mode */ struct compat_frame_tail __user *tail; tail = (struct compat_frame_tail __user *)regs->compat_fp - 1; while (tail && !((unsigned long)tail & 0x3)) tail = unwind_compat_user_frame(tail, cookie, consume_entry); #endif } }