/* SPDX-License-Identifier: GPL-2.0-only */ /* * Based on arch/arm/include/asm/io.h * * Copyright (C) 1996-2000 Russell King * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_IO_H #define __ASM_IO_H #include #include #include #include #include #include #include #include /* * Generic IO read/write. These perform native-endian accesses. */ #define __raw_writeb __raw_writeb static __always_inline void __raw_writeb(u8 val, volatile void __iomem *addr) { volatile u8 __iomem *ptr = addr; asm volatile("strb %w0, %1" : : "rZ" (val), "Qo" (*ptr)); } #define __raw_writew __raw_writew static __always_inline void __raw_writew(u16 val, volatile void __iomem *addr) { volatile u16 __iomem *ptr = addr; asm volatile("strh %w0, %1" : : "rZ" (val), "Qo" (*ptr)); } #define __raw_writel __raw_writel static __always_inline void __raw_writel(u32 val, volatile void __iomem *addr) { volatile u32 __iomem *ptr = addr; asm volatile("str %w0, %1" : : "rZ" (val), "Qo" (*ptr)); } #define __raw_writeq __raw_writeq static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr) { volatile u64 __iomem *ptr = addr; asm volatile("str %x0, %1" : : "rZ" (val), "Qo" (*ptr)); } #define __raw_readb __raw_readb static __always_inline u8 __raw_readb(const volatile void __iomem *addr) { u8 val; asm volatile(ALTERNATIVE("ldrb %w0, [%1]", "ldarb %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } #define __raw_readw __raw_readw static __always_inline u16 __raw_readw(const volatile void __iomem *addr) { u16 val; asm volatile(ALTERNATIVE("ldrh %w0, [%1]", "ldarh %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } #define __raw_readl __raw_readl static __always_inline u32 __raw_readl(const volatile void __iomem *addr) { u32 val; asm volatile(ALTERNATIVE("ldr %w0, [%1]", "ldar %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } #define __raw_readq __raw_readq static __always_inline u64 __raw_readq(const volatile void __iomem *addr) { u64 val; asm volatile(ALTERNATIVE("ldr %0, [%1]", "ldar %0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } /* IO barriers */ #define __io_ar(v) \ ({ \ unsigned long tmp; \ \ dma_rmb(); \ \ /* \ * Create a dummy control dependency from the IO read to any \ * later instructions. This ensures that a subsequent call to \ * udelay() will be ordered due to the ISB in get_cycles(). \ */ \ asm volatile("eor %0, %1, %1\n" \ "cbnz %0, ." \ : "=r" (tmp) : "r" ((unsigned long)(v)) \ : "memory"); \ }) #define __io_bw() dma_wmb() #define __io_br(v) #define __io_aw(v) /* arm64-specific, don't use in portable drivers */ #define __iormb(v) __io_ar(v) #define __iowmb() __io_bw() #define __iomb() dma_mb() /* * I/O port access primitives. */ #define arch_has_dev_port() (1) #define IO_SPACE_LIMIT (PCI_IO_SIZE - 1) #define PCI_IOBASE ((void __iomem *)PCI_IO_START) /* * String version of I/O memory access operations. */ extern void __memcpy_fromio(void *, const volatile void __iomem *, size_t); extern void __memcpy_toio(volatile void __iomem *, const void *, size_t); extern void __memset_io(volatile void __iomem *, int, size_t); #define memset_io(c,v,l) __memset_io((c),(v),(l)) #define memcpy_fromio(a,c,l) __memcpy_fromio((a),(c),(l)) #define memcpy_toio(c,a,l) __memcpy_toio((c),(a),(l)) /* * The ARM64 iowrite implementation is intended to support drivers that want to * use write combining. For instance PCI drivers using write combining with a 64 * byte __iowrite64_copy() expect to get a 64 byte MemWr TLP on the PCIe bus. * * Newer ARM core have sensitive write combining buffers, it is important that * the stores be contiguous blocks of store instructions. Normal memcpy * approaches have a very low chance to generate write combining. * * Since this is the only API on ARM64 that should be used with write combining * it also integrates the DGH hint which is supposed to lower the latency to * emit the large TLP from the CPU. */ static __always_inline void __const_memcpy_toio_aligned32(volatile u32 __iomem *to, const u32 *from, size_t count) { switch (count) { case 8: asm volatile("str %w0, [%8, #4 * 0]\n" "str %w1, [%8, #4 * 1]\n" "str %w2, [%8, #4 * 2]\n" "str %w3, [%8, #4 * 3]\n" "str %w4, [%8, #4 * 4]\n" "str %w5, [%8, #4 * 5]\n" "str %w6, [%8, #4 * 6]\n" "str %w7, [%8, #4 * 7]\n" : : "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]), "rZ"(from[3]), "rZ"(from[4]), "rZ"(from[5]), "rZ"(from[6]), "rZ"(from[7]), "r"(to)); break; case 4: asm volatile("str %w0, [%4, #4 * 0]\n" "str %w1, [%4, #4 * 1]\n" "str %w2, [%4, #4 * 2]\n" "str %w3, [%4, #4 * 3]\n" : : "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]), "rZ"(from[3]), "r"(to)); break; case 2: asm volatile("str %w0, [%2, #4 * 0]\n" "str %w1, [%2, #4 * 1]\n" : : "rZ"(from[0]), "rZ"(from[1]), "r"(to)); break; case 1: __raw_writel(*from, to); break; default: BUILD_BUG(); } } void __iowrite32_copy_full(void __iomem *to, const void *from, size_t count); static __always_inline void __iowrite32_copy(void __iomem *to, const void *from, size_t count) { if (__builtin_constant_p(count) && (count == 8 || count == 4 || count == 2 || count == 1)) { __const_memcpy_toio_aligned32(to, from, count); dgh(); } else { __iowrite32_copy_full(to, from, count); } } #define __iowrite32_copy __iowrite32_copy static __always_inline void __const_memcpy_toio_aligned64(volatile u64 __iomem *to, const u64 *from, size_t count) { switch (count) { case 8: asm volatile("str %x0, [%8, #8 * 0]\n" "str %x1, [%8, #8 * 1]\n" "str %x2, [%8, #8 * 2]\n" "str %x3, [%8, #8 * 3]\n" "str %x4, [%8, #8 * 4]\n" "str %x5, [%8, #8 * 5]\n" "str %x6, [%8, #8 * 6]\n" "str %x7, [%8, #8 * 7]\n" : : "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]), "rZ"(from[3]), "rZ"(from[4]), "rZ"(from[5]), "rZ"(from[6]), "rZ"(from[7]), "r"(to)); break; case 4: asm volatile("str %x0, [%4, #8 * 0]\n" "str %x1, [%4, #8 * 1]\n" "str %x2, [%4, #8 * 2]\n" "str %x3, [%4, #8 * 3]\n" : : "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]), "rZ"(from[3]), "r"(to)); break; case 2: asm volatile("str %x0, [%2, #8 * 0]\n" "str %x1, [%2, #8 * 1]\n" : : "rZ"(from[0]), "rZ"(from[1]), "r"(to)); break; case 1: __raw_writeq(*from, to); break; default: BUILD_BUG(); } } void __iowrite64_copy_full(void __iomem *to, const void *from, size_t count); static __always_inline void __iowrite64_copy(void __iomem *to, const void *from, size_t count) { if (__builtin_constant_p(count) && (count == 8 || count == 4 || count == 2 || count == 1)) { __const_memcpy_toio_aligned64(to, from, count); dgh(); } else { __iowrite64_copy_full(to, from, count); } } #define __iowrite64_copy __iowrite64_copy /* * I/O memory mapping functions. */ typedef int (*ioremap_prot_hook_t)(phys_addr_t phys_addr, size_t size, pgprot_t *prot); int arm64_ioremap_prot_hook_register(const ioremap_prot_hook_t hook); #define ioremap_prot ioremap_prot #define _PAGE_IOREMAP PROT_DEVICE_nGnRE #define ioremap_wc(addr, size) \ ioremap_prot((addr), (size), PROT_NORMAL_NC) #define ioremap_np(addr, size) \ ioremap_prot((addr), (size), PROT_DEVICE_nGnRnE) /* * io{read,write}{16,32,64}be() macros */ #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(__v); __v; }) #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(__v); __v; }) #define ioread64be(p) ({ __u64 __v = be64_to_cpu((__force __be64)__raw_readq(p)); __iormb(__v); __v; }) #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) #define iowrite64be(v,p) ({ __iowmb(); __raw_writeq((__force __u64)cpu_to_be64(v), p); }) #include #define ioremap_cache ioremap_cache static inline void __iomem *ioremap_cache(phys_addr_t addr, size_t size) { if (pfn_is_map_memory(__phys_to_pfn(addr))) return (void __iomem *)__phys_to_virt(addr); return ioremap_prot(addr, size, PROT_NORMAL); } /* * More restrictive address range checking than the default implementation * (PHYS_OFFSET and PHYS_MASK taken into account). */ #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, unsigned long flags); #define arch_memremap_can_ram_remap arch_memremap_can_ram_remap #endif /* __ASM_IO_H */