/* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/arch/arm/kernel/head.S * * Copyright (C) 1994-2002 Russell King * Copyright (c) 2003 ARM Limited * All Rights Reserved * * Kernel startup code for all 32-bit CPUs */ #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_SEMIHOSTING) #include CONFIG_DEBUG_LL_INCLUDE #endif /* * swapper_pg_dir is the virtual address of the initial page table. * We place the page tables 16K below KERNEL_RAM_VADDR. Therefore, we must * make sure that KERNEL_RAM_VADDR is correctly set. Currently, we expect * the least significant 16 bits to be 0x8000, but we could probably * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000. */ #define KERNEL_RAM_VADDR (KERNEL_OFFSET + TEXT_OFFSET) #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000 #error KERNEL_RAM_VADDR must start at 0xXXXX8000 #endif #ifdef CONFIG_ARM_LPAE /* LPAE requires an additional page for the PGD */ #define PG_DIR_SIZE 0x5000 #define PMD_ENTRY_ORDER 3 /* PMD entry size is 2^PMD_ENTRY_ORDER */ #else #define PG_DIR_SIZE 0x4000 #define PMD_ENTRY_ORDER 2 #endif .globl swapper_pg_dir .equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE /* * This needs to be assigned at runtime when the linker symbols are * resolved. These are unsigned 64bit really, but in this assembly code * We store them as 32bit. */ .pushsection .data .align 2 .globl kernel_sec_start .globl kernel_sec_end kernel_sec_start: .long 0 .long 0 kernel_sec_end: .long 0 .long 0 .popsection .macro pgtbl, rd, phys add \rd, \phys, #TEXT_OFFSET sub \rd, \rd, #PG_DIR_SIZE .endm /* * Kernel startup entry point. * --------------------------- * * This is normally called from the decompressor code. The requirements * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0, * r1 = machine nr, r2 = atags or dtb pointer. * * This code is mostly position independent, so if you link the kernel at * 0xc0008000, you call this at __pa(0xc0008000). * * See linux/arch/arm/tools/mach-types for the complete list of machine * numbers for r1. * * We're trying to keep crap to a minimum; DO NOT add any machine specific * crap here - that's what the boot loader (or in extreme, well justified * circumstances, zImage) is for. */ .arm __HEAD ENTRY(stext) ARM_BE8(setend be ) @ ensure we are in BE8 mode THUMB( badr r9, 1f ) @ Kernel is always entered in ARM. THUMB( bx r9 ) @ If this is a Thumb-2 kernel, THUMB( .thumb ) @ switch to Thumb now. THUMB(1: ) #ifdef CONFIG_ARM_VIRT_EXT bl __hyp_stub_install #endif @ ensure svc mode and all interrupts masked safe_svcmode_maskall r9 mrc p15, 0, r9, c0, c0 @ get processor id bl __lookup_processor_type @ r5=procinfo r9=cpuid movs r10, r5 @ invalid processor (r5=0)? THUMB( it eq ) @ force fixup-able long branch encoding beq __error_p @ yes, error 'p' #ifdef CONFIG_ARM_LPAE mrc p15, 0, r3, c0, c1, 4 @ read ID_MMFR0 and r3, r3, #0xf @ extract VMSA support cmp r3, #5 @ long-descriptor translation table format? THUMB( it lo ) @ force fixup-able long branch encoding blo __error_lpae @ only classic page table format #endif #ifndef CONFIG_XIP_KERNEL adr_l r8, _text @ __pa(_text) sub r8, r8, #TEXT_OFFSET @ PHYS_OFFSET #else ldr r8, =PLAT_PHYS_OFFSET @ always constant in this case #endif /* * r1 = machine no, r2 = atags or dtb, * r8 = phys_offset, r9 = cpuid, r10 = procinfo */ bl __vet_atags #ifdef CONFIG_SMP_ON_UP bl __fixup_smp #endif #ifdef CONFIG_ARM_PATCH_PHYS_VIRT bl __fixup_pv_table #endif bl __create_page_tables /* * The following calls CPU specific code in a position independent * manner. See arch/arm/mm/proc-*.S for details. r10 = base of * xxx_proc_info structure selected by __lookup_processor_type * above. * * The processor init function will be called with: * r1 - machine type * r2 - boot data (atags/dt) pointer * r4 - translation table base (low word) * r5 - translation table base (high word, if LPAE) * r8 - translation table base 1 (pfn if LPAE) * r9 - cpuid * r13 - virtual address for __enable_mmu -> __turn_mmu_on * * On return, the CPU will be ready for the MMU to be turned on, * r0 will hold the CPU control register value, r1, r2, r4, and * r9 will be preserved. r5 will also be preserved if LPAE. */ ldr r13, =__mmap_switched @ address to jump to after @ mmu has been enabled badr lr, 1f @ return (PIC) address #ifdef CONFIG_ARM_LPAE mov r5, #0 @ high TTBR0 mov r8, r4, lsr #12 @ TTBR1 is swapper_pg_dir pfn #else mov r8, r4 @ set TTBR1 to swapper_pg_dir #endif ldr r12, [r10, #PROCINFO_INITFUNC] add r12, r12, r10 ret r12 1: b __enable_mmu ENDPROC(stext) .ltorg /* * Setup the initial page tables. We only setup the barest * amount which are required to get the kernel running, which * generally means mapping in the kernel code. * * r8 = phys_offset, r9 = cpuid, r10 = procinfo * * Returns: * r0, r3, r5-r7 corrupted * r4 = physical page table address */ __create_page_tables: pgtbl r4, r8 @ page table address /* * Clear the swapper page table */ mov r0, r4 mov r3, #0 add r6, r0, #PG_DIR_SIZE 1: str r3, [r0], #4 str r3, [r0], #4 str r3, [r0], #4 str r3, [r0], #4 teq r0, r6 bne 1b #ifdef CONFIG_ARM_LPAE /* * Build the PGD table (first level) to point to the PMD table. A PGD * entry is 64-bit wide. */ mov r0, r4 add r3, r4, #0x1000 @ first PMD table address orr r3, r3, #3 @ PGD block type mov r6, #4 @ PTRS_PER_PGD mov r7, #1 << (55 - 32) @ L_PGD_SWAPPER 1: #ifdef CONFIG_CPU_ENDIAN_BE8 str r7, [r0], #4 @ set top PGD entry bits str r3, [r0], #4 @ set bottom PGD entry bits #else str r3, [r0], #4 @ set bottom PGD entry bits str r7, [r0], #4 @ set top PGD entry bits #endif add r3, r3, #0x1000 @ next PMD table subs r6, r6, #1 bne 1b add r4, r4, #0x1000 @ point to the PMD tables #ifdef CONFIG_CPU_ENDIAN_BE8 add r4, r4, #4 @ we only write the bottom word #endif #endif ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags /* * Create identity mapping to cater for __enable_mmu. * This identity mapping will be removed by paging_init(). */ adr_l r5, __turn_mmu_on @ _pa(__turn_mmu_on) adr_l r6, __turn_mmu_on_end @ _pa(__turn_mmu_on_end) mov r5, r5, lsr #SECTION_SHIFT mov r6, r6, lsr #SECTION_SHIFT 1: orr r3, r7, r5, lsl #SECTION_SHIFT @ flags + kernel base str r3, [r4, r5, lsl #PMD_ENTRY_ORDER] @ identity mapping cmp r5, r6 addlo r5, r5, #1 @ next section blo 1b /* * The main matter: map in the kernel using section mappings, and * set two variables to indicate the physical start and end of the * kernel. */ add r0, r4, #KERNEL_OFFSET >> (SECTION_SHIFT - PMD_ENTRY_ORDER) ldr r6, =(_end - 1) /* For XIP, kernel_sec_start/kernel_sec_end are currently in RO memory */ #ifndef CONFIG_XIP_KERNEL adr_l r5, kernel_sec_start @ _pa(kernel_sec_start) #if defined CONFIG_CPU_ENDIAN_BE8 || defined CONFIG_CPU_ENDIAN_BE32 str r8, [r5, #4] @ Save physical start of kernel (BE) #else str r8, [r5] @ Save physical start of kernel (LE) #endif #endif orr r3, r8, r7 @ Add the MMU flags add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ENTRY_ORDER) 1: str r3, [r0], #1 << PMD_ENTRY_ORDER add r3, r3, #1 << SECTION_SHIFT cmp r0, r6 bls 1b #ifndef CONFIG_XIP_KERNEL eor r3, r3, r7 @ Remove the MMU flags adr_l r5, kernel_sec_end @ _pa(kernel_sec_end) #if defined CONFIG_CPU_ENDIAN_BE8 || defined CONFIG_CPU_ENDIAN_BE32 str r3, [r5, #4] @ Save physical end of kernel (BE) #else str r3, [r5] @ Save physical end of kernel (LE) #endif #else /* * Map the kernel image separately as it is not located in RAM. */ #define XIP_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR) mov r3, pc mov r3, r3, lsr #SECTION_SHIFT orr r3, r7, r3, lsl #SECTION_SHIFT add r0, r4, #(XIP_START & 0xff000000) >> (SECTION_SHIFT - PMD_ENTRY_ORDER) str r3, [r0, #((XIP_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ENTRY_ORDER]! ldr r6, =(_edata_loc - 1) add r0, r0, #1 << PMD_ENTRY_ORDER add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ENTRY_ORDER) 1: cmp r0, r6 add r3, r3, #1 << SECTION_SHIFT strls r3, [r0], #1 << PMD_ENTRY_ORDER bls 1b #endif /* * Then map boot params address in r2 if specified. * We map 2 sections in case the ATAGs/DTB crosses a section boundary. */ mov r0, r2, lsr #SECTION_SHIFT cmp r2, #0 ldrne r3, =FDT_FIXED_BASE >> (SECTION_SHIFT - PMD_ENTRY_ORDER) addne r3, r3, r4 orrne r6, r7, r0, lsl #SECTION_SHIFT strne r6, [r3], #1 << PMD_ENTRY_ORDER addne r6, r6, #1 << SECTION_SHIFT strne r6, [r3] #if defined(CONFIG_ARM_LPAE) && defined(CONFIG_CPU_ENDIAN_BE8) sub r4, r4, #4 @ Fixup page table pointer @ for 64-bit descriptors #endif #ifdef CONFIG_DEBUG_LL #if !defined(CONFIG_DEBUG_ICEDCC) && !defined(CONFIG_DEBUG_SEMIHOSTING) /* * Map in IO space for serial debugging. * This allows debug messages to be output * via a serial console before paging_init. */ addruart r7, r3, r0 mov r3, r3, lsr #SECTION_SHIFT mov r3, r3, lsl #PMD_ENTRY_ORDER add r0, r4, r3 mov r3, r7, lsr #SECTION_SHIFT ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags orr r3, r7, r3, lsl #SECTION_SHIFT #ifdef CONFIG_ARM_LPAE mov r7, #1 << (54 - 32) @ XN #ifdef CONFIG_CPU_ENDIAN_BE8 str r7, [r0], #4 str r3, [r0], #4 #else str r3, [r0], #4 str r7, [r0], #4 #endif #else orr r3, r3, #PMD_SECT_XN str r3, [r0], #4 #endif #else /* CONFIG_DEBUG_ICEDCC || CONFIG_DEBUG_SEMIHOSTING */ /* we don't need any serial debugging mappings */ ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags #endif #if defined(CONFIG_ARCH_NETWINDER) /* * If we're using the NetWinder or CATS, we also need to map * in the 16550-type serial port for the debug messages */ add r0, r4, #0xff000000 >> (SECTION_SHIFT - PMD_ENTRY_ORDER) orr r3, r7, #0x7c000000 str r3, [r0] #endif #ifdef CONFIG_ARCH_RPC /* * Map in screen at 0x02000000 & SCREEN2_BASE * Similar reasons here - for debug. This is * only for Acorn RiscPC architectures. */ add r0, r4, #0x02000000 >> (SECTION_SHIFT - PMD_ENTRY_ORDER) orr r3, r7, #0x02000000 str r3, [r0] add r0, r4, #0xd8000000 >> (SECTION_SHIFT - PMD_ENTRY_ORDER) str r3, [r0] #endif #endif #ifdef CONFIG_ARM_LPAE sub r4, r4, #0x1000 @ point to the PGD table #endif ret lr ENDPROC(__create_page_tables) .ltorg #if defined(CONFIG_SMP) .text .arm ENTRY(secondary_startup_arm) THUMB( badr r9, 1f ) @ Kernel is entered in ARM. THUMB( bx r9 ) @ If this is a Thumb-2 kernel, THUMB( .thumb ) @ switch to Thumb now. THUMB(1: ) ENTRY(secondary_startup) /* * Common entry point for secondary CPUs. * * Ensure that we're in SVC mode, and IRQs are disabled. Lookup * the processor type - there is no need to check the machine type * as it has already been validated by the primary processor. */ ARM_BE8(setend be) @ ensure we are in BE8 mode #ifdef CONFIG_ARM_VIRT_EXT bl __hyp_stub_install_secondary #endif safe_svcmode_maskall r9 mrc p15, 0, r9, c0, c0 @ get processor id bl __lookup_processor_type movs r10, r5 @ invalid processor? moveq r0, #'p' @ yes, error 'p' THUMB( it eq ) @ force fixup-able long branch encoding beq __error_p /* * Use the page tables supplied from __cpu_up. */ #ifdef CONFIG_XIP_KERNEL ldr r3, =(secondary_data + PLAT_PHYS_OFFSET - PAGE_OFFSET) #else adr_l r3, secondary_data #endif mov_l r12, __secondary_switched ldrd r4, r5, [r3, #0] @ get secondary_data.pgdir ARM_BE8(eor r4, r4, r5) @ Swap r5 and r4 in BE: ARM_BE8(eor r5, r4, r5) @ it can be done in 3 steps ARM_BE8(eor r4, r4, r5) @ without using a temp reg. ldr r8, [r3, #8] @ get secondary_data.swapper_pg_dir badr lr, __enable_mmu @ return address mov r13, r12 @ __secondary_switched address ldr r12, [r10, #PROCINFO_INITFUNC] add r12, r12, r10 @ initialise processor @ (return control reg) ret r12 ENDPROC(secondary_startup) ENDPROC(secondary_startup_arm) ENTRY(__secondary_switched) #if defined(CONFIG_VMAP_STACK) && !defined(CONFIG_ARM_LPAE) @ Before using the vmap'ed stack, we have to switch to swapper_pg_dir @ as the ID map does not cover the vmalloc region. mrc p15, 0, ip, c2, c0, 1 @ read TTBR1 mcr p15, 0, ip, c2, c0, 0 @ set TTBR0 instr_sync #endif adr_l r7, secondary_data + 12 @ get secondary_data.stack ldr sp, [r7] ldr r0, [r7, #4] @ get secondary_data.task mov fp, #0 b secondary_start_kernel ENDPROC(__secondary_switched) #endif /* defined(CONFIG_SMP) */ /* * Setup common bits before finally enabling the MMU. Essentially * this is just loading the page table pointer and domain access * registers. All these registers need to be preserved by the * processor setup function (or set in the case of r0) * * r0 = cp#15 control register * r1 = machine ID * r2 = atags or dtb pointer * r4 = TTBR pointer (low word) * r5 = TTBR pointer (high word if LPAE) * r9 = processor ID * r13 = *virtual* address to jump to upon completion */ __enable_mmu: #if defined(CONFIG_ALIGNMENT_TRAP) && __LINUX_ARM_ARCH__ < 6 orr r0, r0, #CR_A #else bic r0, r0, #CR_A #endif #ifdef CONFIG_CPU_DCACHE_DISABLE bic r0, r0, #CR_C #endif #ifdef CONFIG_CPU_BPREDICT_DISABLE bic r0, r0, #CR_Z #endif #ifdef CONFIG_CPU_ICACHE_DISABLE bic r0, r0, #CR_I #endif #ifdef CONFIG_ARM_LPAE mcrr p15, 0, r4, r5, c2 @ load TTBR0 #else mov r5, #DACR_INIT mcr p15, 0, r5, c3, c0, 0 @ load domain access register mcr p15, 0, r4, c2, c0, 0 @ load page table pointer #endif b __turn_mmu_on ENDPROC(__enable_mmu) /* * Enable the MMU. This completely changes the structure of the visible * memory space. You will not be able to trace execution through this. * If you have an enquiry about this, *please* check the linux-arm-kernel * mailing list archives BEFORE sending another post to the list. * * r0 = cp#15 control register * r1 = machine ID * r2 = atags or dtb pointer * r9 = processor ID * r13 = *virtual* address to jump to upon completion * * other registers depend on the function called upon completion */ .align 5 .pushsection .idmap.text, "ax" ENTRY(__turn_mmu_on) mov r0, r0 instr_sync mcr p15, 0, r0, c1, c0, 0 @ write control reg mrc p15, 0, r3, c0, c0, 0 @ read id reg instr_sync mov r3, r3 mov r3, r13 ret r3 __turn_mmu_on_end: ENDPROC(__turn_mmu_on) .popsection #ifdef CONFIG_SMP_ON_UP __HEAD __fixup_smp: and r3, r9, #0x000f0000 @ architecture version teq r3, #0x000f0000 @ CPU ID supported? bne __fixup_smp_on_up @ no, assume UP bic r3, r9, #0x00ff0000 bic r3, r3, #0x0000000f @ mask 0xff00fff0 mov r4, #0x41000000 orr r4, r4, #0x0000b000 orr r4, r4, #0x00000020 @ val 0x4100b020 teq r3, r4 @ ARM 11MPCore? reteq lr @ yes, assume SMP mrc p15, 0, r0, c0, c0, 5 @ read MPIDR and r0, r0, #0xc0000000 @ multiprocessing extensions and teq r0, #0x80000000 @ not part of a uniprocessor system? bne __fixup_smp_on_up @ no, assume UP @ Core indicates it is SMP. Check for Aegis SOC where a single @ Cortex-A9 CPU is present but SMP operations fault. mov r4, #0x41000000 orr r4, r4, #0x0000c000 orr r4, r4, #0x00000090 teq r3, r4 @ Check for ARM Cortex-A9 retne lr @ Not ARM Cortex-A9, @ If a future SoC *does* use 0x0 as the PERIPH_BASE, then the @ below address check will need to be #ifdef'd or equivalent @ for the Aegis platform. mrc p15, 4, r0, c15, c0 @ get SCU base address teq r0, #0x0 @ '0' on actual UP A9 hardware beq __fixup_smp_on_up @ So its an A9 UP ldr r0, [r0, #4] @ read SCU Config ARM_BE8(rev r0, r0) @ byteswap if big endian and r0, r0, #0x3 @ number of CPUs teq r0, #0x0 @ is 1? retne lr __fixup_smp_on_up: adr_l r4, __smpalt_begin adr_l r5, __smpalt_end b __do_fixup_smp_on_up ENDPROC(__fixup_smp) .pushsection .data .align 2 .globl smp_on_up smp_on_up: ALT_SMP(.long 1) ALT_UP(.long 0) .popsection #endif .text __do_fixup_smp_on_up: cmp r4, r5 reths lr ldmia r4, {r0, r6} ARM( str r6, [r0, r4] ) THUMB( add r0, r0, r4 ) add r4, r4, #8 #ifdef __ARMEB__ THUMB( mov r6, r6, ror #16 ) @ Convert word order for big-endian. #endif THUMB( strh r6, [r0], #2 ) @ For Thumb-2, store as two halfwords THUMB( mov r6, r6, lsr #16 ) @ to be robust against misaligned r0. THUMB( strh r6, [r0] ) b __do_fixup_smp_on_up ENDPROC(__do_fixup_smp_on_up) ENTRY(fixup_smp) stmfd sp!, {r4 - r6, lr} mov r4, r0 add r5, r0, r1 bl __do_fixup_smp_on_up ldmfd sp!, {r4 - r6, pc} ENDPROC(fixup_smp) #include "head-common.S"