/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) */ #ifndef _ASM_ARC_IO_H #define _ASM_ARC_IO_H #include #include #include #include #ifdef CONFIG_ISA_ARCV2 #include #define __iormb() rmb() #define __iowmb() wmb() #else #define __iormb() do { } while (0) #define __iowmb() do { } while (0) #endif extern void __iomem *ioremap(phys_addr_t paddr, unsigned long size); #define ioremap ioremap #define ioremap_prot ioremap_prot #define iounmap iounmap static inline void __iomem *ioport_map(unsigned long port, unsigned int nr) { return (void __iomem *)port; } static inline void ioport_unmap(void __iomem *addr) { } /* * io{read,write}{16,32}be() macros */ #define ioread16be(p) ({ u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) #define ioread32be(p) ({ u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force u16)cpu_to_be16(v), p); }) #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force u32)cpu_to_be32(v), p); }) #define __raw_readb __raw_readb static inline u8 __raw_readb(const volatile void __iomem *addr) { u8 b; __asm__ __volatile__( " ldb%U1 %0, %1 \n" : "=r" (b) : "m" (*(volatile u8 __force *)addr) : "memory"); return b; } #define __raw_readw __raw_readw static inline u16 __raw_readw(const volatile void __iomem *addr) { u16 s; __asm__ __volatile__( " ldw%U1 %0, %1 \n" : "=r" (s) : "m" (*(volatile u16 __force *)addr) : "memory"); return s; } #define __raw_readl __raw_readl static inline u32 __raw_readl(const volatile void __iomem *addr) { u32 w; __asm__ __volatile__( " ld%U1 %0, %1 \n" : "=r" (w) : "m" (*(volatile u32 __force *)addr) : "memory"); return w; } /* * {read,write}s{b,w,l}() repeatedly access the same IO address in * native endianness in 8-, 16-, 32-bit chunks {into,from} memory, * @count times */ #define __raw_readsx(t,f) \ static inline void __raw_reads##f(const volatile void __iomem *addr, \ void *ptr, unsigned int count) \ { \ bool is_aligned = ((unsigned long)ptr % ((t) / 8)) == 0; \ u##t *buf = ptr; \ \ if (!count) \ return; \ \ /* Some ARC CPU's don't support unaligned accesses */ \ if (is_aligned) { \ do { \ u##t x = __raw_read##f(addr); \ *buf++ = x; \ } while (--count); \ } else { \ do { \ u##t x = __raw_read##f(addr); \ put_unaligned(x, buf++); \ } while (--count); \ } \ } #define __raw_readsb __raw_readsb __raw_readsx(8, b) #define __raw_readsw __raw_readsw __raw_readsx(16, w) #define __raw_readsl __raw_readsl __raw_readsx(32, l) #define __raw_writeb __raw_writeb static inline void __raw_writeb(u8 b, volatile void __iomem *addr) { __asm__ __volatile__( " stb%U1 %0, %1 \n" : : "r" (b), "m" (*(volatile u8 __force *)addr) : "memory"); } #define __raw_writew __raw_writew static inline void __raw_writew(u16 s, volatile void __iomem *addr) { __asm__ __volatile__( " stw%U1 %0, %1 \n" : : "r" (s), "m" (*(volatile u16 __force *)addr) : "memory"); } #define __raw_writel __raw_writel static inline void __raw_writel(u32 w, volatile void __iomem *addr) { __asm__ __volatile__( " st%U1 %0, %1 \n" : : "r" (w), "m" (*(volatile u32 __force *)addr) : "memory"); } #define __raw_writesx(t,f) \ static inline void __raw_writes##f(volatile void __iomem *addr, \ const void *ptr, unsigned int count) \ { \ bool is_aligned = ((unsigned long)ptr % ((t) / 8)) == 0; \ const u##t *buf = ptr; \ \ if (!count) \ return; \ \ /* Some ARC CPU's don't support unaligned accesses */ \ if (is_aligned) { \ do { \ __raw_write##f(*buf++, addr); \ } while (--count); \ } else { \ do { \ __raw_write##f(get_unaligned(buf++), addr); \ } while (--count); \ } \ } #define __raw_writesb __raw_writesb __raw_writesx(8, b) #define __raw_writesw __raw_writesw __raw_writesx(16, w) #define __raw_writesl __raw_writesl __raw_writesx(32, l) /* * MMIO can also get buffered/optimized in micro-arch, so barriers needed * Based on ARM model for the typical use case * * * * or: * * * * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com */ #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) #define readsb(p,d,l) ({ __raw_readsb(p,d,l); __iormb(); }) #define readsw(p,d,l) ({ __raw_readsw(p,d,l); __iormb(); }) #define readsl(p,d,l) ({ __raw_readsl(p,d,l); __iormb(); }) #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) #define writesb(p,d,l) ({ __iowmb(); __raw_writesb(p,d,l); }) #define writesw(p,d,l) ({ __iowmb(); __raw_writesw(p,d,l); }) #define writesl(p,d,l) ({ __iowmb(); __raw_writesl(p,d,l); }) /* * Relaxed API for drivers which can handle barrier ordering themselves * * Also these are defined to perform little endian accesses. * To provide the typical device register semantics of fixed endian, * swap the byte order for Big Endian * * http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de */ #define readb_relaxed(c) __raw_readb(c) #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ __raw_readw(c)); __r; }) #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ __raw_readl(c)); __r; }) #define writeb_relaxed(v,c) __raw_writeb(v,c) #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) #include #endif /* _ASM_ARC_IO_H */