/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* SVr4 5.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SUN4V_REG_SPEC2CFG_HDL(x) ((x >> 32) & ~(0xfull << 28)) static kmutex_t vnex_id_lock; /* * Vnex name to pil map */ typedef struct vnex_regspec { uint64_t physaddr; uint64_t size; } vnex_regspec_t; struct vnex_pil_map { caddr_t name; uint32_t pil; }; /* vnex interrupt descriptor */ typedef struct vnex_id { dev_info_t *vid_dip; uint32_t vid_ino; uint64_t vid_ihdl; uint_t (*vid_handler)(); caddr_t vid_arg1; caddr_t vid_arg2; ddi_intr_handle_impl_t *vid_ddi_hdlp; uint64_t vid_cfg_hdl; struct vnex_id *vid_next; struct vnex_id *vid_prev; } vnex_id_t; /* vnex interrupt descriptor list */ static vnex_id_t *vnex_id_list; hrtime_t vnex_pending_timeout = 2ull * NANOSEC; /* 2 seconds in nanoseconds */ /* * vnex interrupt descriptor list manipulation functions */ static vnex_id_t *vnex_locate_id(dev_info_t *dip, uint32_t ino); static vnex_id_t *vnex_alloc_id(dev_info_t *dip, uint32_t ino, uint64_t dhdl); static void vnex_add_id(vnex_id_t *vid_p); static void vnex_rem_id(vnex_id_t *vid_p); static void vnex_free_id(vnex_id_t *vid_p); uint_t vnex_intr_wrapper(caddr_t arg); static struct vnex_pil_map vnex_name_to_pil[] = { {"console", PIL_12}, {"fma", PIL_5}, {"echo", PIL_3}, {"loop", PIL_3}, {"sunmc", PIL_3}, {"sunvts", PIL_3}, {"explorer", PIL_3} }; #define VNEX_MAX_DEVS (sizeof (vnex_name_to_pil) / \ sizeof (struct vnex_pil_map)) /* * Config information */ static int vnex_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); static int vnex_ctl(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *); static struct bus_ops vnex_bus_ops = { BUSO_REV, nullbusmap, NULL, /* NO OP */ NULL, /* NO OP */ NULL, /* NO OP */ i_ddi_map_fault, ddi_no_dma_map, ddi_no_dma_allochdl, NULL, NULL, NULL, NULL, NULL, NULL, vnex_ctl, ddi_bus_prop_op, NULL, /* (*bus_get_eventcookie)(); */ NULL, /* (*bus_add_eventcall)(); */ NULL, /* (*bus_remove_eventcall)(); */ NULL, /* (*bus_post_event)(); */ NULL, /* (*bus_intr_ctl)(); */ NULL, /* (*bus_config)(); */ NULL, /* (*bus_unconfig)(); */ NULL, /* (*bus_fm_init)(); */ NULL, /* (*bus_fm_fini)(); */ NULL, /* (*bus_fm_access_enter)(); */ NULL, /* (*bus_fm_access_fini)(); */ NULL, /* (*bus_power)(); */ vnex_intr_ops /* (*bus_intr_op)(); */ }; static int vnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); static int vnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); static struct dev_ops pseudo_ops = { DEVO_REV, /* devo_rev, */ 0, /* refcnt */ ddi_no_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ vnex_attach, /* attach */ vnex_detach, /* detach */ nodev, /* reset */ (struct cb_ops *)0, /* driver operations */ &vnex_bus_ops, /* bus operations */ nulldev /* power */ }; /* * Module linkage information for the kernel. */ static struct modldrv modldrv = { &mod_driverops, /* Type of module. This one is a pseudo driver */ "sun4v virtual-devices nexus driver v%I%", &pseudo_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; int _init(void) { return (mod_install(&modlinkage)); } int _fini(void) { return (mod_remove(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /*ARGSUSED*/ void vnex_intr_dist(void *arg) { vnex_id_t *vid_p; uint32_t cpuid; int intr_state; hrtime_t start; mutex_enter(&vnex_id_lock); for (vid_p = vnex_id_list; vid_p != NULL; vid_p = vid_p->vid_next) { /* * Don't do anything for disabled interrupts. * vnex_enable_intr takes care of redistributing interrupts. */ if ((hvio_intr_getvalid(vid_p->vid_ihdl, &intr_state) == H_EOK) && (intr_state == HV_INTR_NOTVALID)) continue; cpuid = intr_dist_cpuid(); (void) hvio_intr_setvalid(vid_p->vid_ihdl, HV_INTR_NOTVALID); /* * Make a best effort to wait for pending interrupts to finish. * There is not much we can do if we timeout. */ start = gethrtime(); while (!panicstr && (hvio_intr_getstate(vid_p->vid_ihdl, &intr_state) == H_EOK) && (intr_state == HV_INTR_DELIVERED_STATE)) { if (gethrtime() - start > vnex_pending_timeout) { cmn_err(CE_WARN, "vnex_intr_dist: %s%d " "ino 0x%x pending: timedout\n", ddi_driver_name(vid_p->vid_dip), ddi_get_instance(vid_p->vid_dip), vid_p->vid_ino); break; } } (void) hvio_intr_settarget(vid_p->vid_ihdl, cpuid); (void) hvio_intr_setvalid(vid_p->vid_ihdl, HV_INTR_VALID); } mutex_exit(&vnex_id_lock); } static int vnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: /* * Intitialize interrupt descriptor list * and mutex. */ vnex_id_list = NULL; mutex_init(&vnex_id_lock, NULL, MUTEX_DRIVER, NULL); /* * Add interrupt redistribution callback. */ intr_dist_add(vnex_intr_dist, dip); return (DDI_SUCCESS); case DDI_RESUME: return (DDI_SUCCESS); default: return (DDI_FAILURE); } } /*ARGSUSED*/ static int vnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { switch (cmd) { case DDI_DETACH: return (DDI_FAILURE); case DDI_SUSPEND: return (DDI_SUCCESS); default: return (DDI_FAILURE); } } static int vnex_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, void *arg, void *result) { char name[12]; /* enough for a decimal integer */ int reglen; uint32_t *vnex_regspec; switch (ctlop) { case DDI_CTLOPS_REPORTDEV: if (rdip == NULL) return (DDI_FAILURE); cmn_err(CE_CONT, "?virtual-device: %s%d\n", ddi_driver_name(rdip), ddi_get_instance(rdip)); return (DDI_SUCCESS); case DDI_CTLOPS_INITCHILD: { dev_info_t *child = (dev_info_t *)arg; if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "reg", (caddr_t)&vnex_regspec, ®len) != DDI_SUCCESS) return (DDI_FAILURE); (void) sprintf(name, "%x", *vnex_regspec); ddi_set_name_addr(child, name); ddi_set_parent_data(child, NULL); kmem_free((caddr_t)vnex_regspec, reglen); return (DDI_SUCCESS); } case DDI_CTLOPS_UNINITCHILD: { dev_info_t *child = (dev_info_t *)arg; ddi_set_name_addr(child, NULL); ddi_remove_minor_node(arg, NULL); return (DDI_SUCCESS); } /* * These ops correspond to functions that "shouldn't" be called * by a pseudo driver. So we whinge when we're called. */ case DDI_CTLOPS_DMAPMAPC: case DDI_CTLOPS_REPORTINT: case DDI_CTLOPS_REGSIZE: { *((off_t *)result) = 0; return (DDI_SUCCESS); } case DDI_CTLOPS_NREGS: { dev_info_t *child = (dev_info_t *)arg; if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "reg", (caddr_t)&vnex_regspec, ®len) != DDI_SUCCESS) return (DDI_FAILURE); *((uint_t *)result) = reglen / sizeof (uint32_t); kmem_free((caddr_t)vnex_regspec, reglen); return (DDI_SUCCESS); } case DDI_CTLOPS_NINTRS: case DDI_CTLOPS_SIDDEV: case DDI_CTLOPS_SLAVEONLY: case DDI_CTLOPS_AFFINITY: case DDI_CTLOPS_IOMIN: case DDI_CTLOPS_POKE: case DDI_CTLOPS_PEEK: case DDI_CTLOPS_INTR_HILEVEL: case DDI_CTLOPS_XLATE_INTRS: cmn_err(CE_CONT, "%s%d: invalid op (%d) from %s%d\n", ddi_get_name(dip), ddi_get_instance(dip), ctlop, ddi_get_name(rdip), ddi_get_instance(rdip)); return (DDI_FAILURE); /* * Everything else (e.g. PTOB/BTOP/BTOPR requests) we pass up */ default: return (ddi_ctlops(dip, rdip, ctlop, arg, result)); } } static int vnex_get_pil(dev_info_t *rdip) { int i; caddr_t name; name = ddi_node_name(rdip); for (i = 0; i < VNEX_MAX_DEVS; i++) { if (strcmp(vnex_name_to_pil[i].name, name) == 0) { return (vnex_name_to_pil[i].pil); } } /* * if not found pil is 0 */ return (0); } static int vnex_enable_intr(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp) { vnex_id_t *vid_p; uint32_t cpuid; vid_p = vnex_locate_id(rdip, hdlp->ih_vector); ASSERT(vid_p != NULL); cpuid = intr_dist_cpuid(); if ((hvio_intr_settarget(vid_p->vid_ihdl, cpuid)) != H_EOK) { return (DDI_FAILURE); } if (hvio_intr_setstate(vid_p->vid_ihdl, HV_INTR_IDLE_STATE) != H_EOK) { return (DDI_FAILURE); } if ((hvio_intr_setvalid(vid_p->vid_ihdl, HV_INTR_VALID)) != H_EOK) { return (DDI_FAILURE); } return (DDI_SUCCESS); } static int vnex_disable_intr(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp) { vnex_id_t *vid_p; vid_p = vnex_locate_id(rdip, hdlp->ih_vector); ASSERT(vid_p != NULL); if (hvio_intr_setvalid(vid_p->vid_ihdl, HV_INTR_NOTVALID) != H_EOK) { return (DDI_FAILURE); } return (DDI_SUCCESS); } static int vnex_add_intr(dev_info_t *dip, dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp) { int reglen, ret = DDI_SUCCESS; vnex_id_t *vid_p; uint64_t cfg; uint32_t ino; uint64_t ihdl; vnex_regspec_t *reg_p; if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", (caddr_t)®_p, ®len) != DDI_SUCCESS) { return (DDI_FAILURE); } /* * get the sun4v config handle for this device */ cfg = SUN4V_REG_SPEC2CFG_HDL(reg_p->physaddr); kmem_free(reg_p, reglen); ino = hdlp->ih_vector; /* * call hv to get vihdl */ if (hvio_intr_devino_to_sysino(cfg, ino, &ihdl) != H_EOK) return (DDI_FAILURE); hdlp->ih_vector = ihdl; /* * Allocate a interrupt descriptor (id) with the * the interrupt handler and append it to * the id list. */ vid_p = vnex_alloc_id(rdip, ino, cfg); vid_p->vid_ihdl = ihdl; vid_p->vid_handler = hdlp->ih_cb_func; vid_p->vid_arg1 = hdlp->ih_cb_arg1; vid_p->vid_arg2 = hdlp->ih_cb_arg2; vid_p->vid_ddi_hdlp = hdlp; DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, (ddi_intr_handler_t *)vnex_intr_wrapper, (caddr_t)vid_p, NULL); if (hdlp->ih_pri == 0) { hdlp->ih_pri = vnex_get_pil(rdip); } ret = i_ddi_add_ivintr(hdlp); if (ret != DDI_SUCCESS) { return (ret); } DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, vid_p->vid_handler, vid_p->vid_arg1, vid_p->vid_arg2); return (ret); } static int vnex_remove_intr(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp) { vnex_id_t *vid_p; uint32_t ino; int ret = DDI_SUCCESS; ino = hdlp->ih_vector; vid_p = vnex_locate_id(rdip, ino); hdlp->ih_vector = vid_p->vid_ihdl; i_ddi_rem_ivintr(hdlp); vnex_free_id(vid_p); return (ret); } static int vnex_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result) { ddi_ispec_t *ispecp = (ddi_ispec_t *)hdlp->ih_private; int ret = DDI_SUCCESS; switch (intr_op) { case DDI_INTROP_GETCAP: *(int *)result = 0; break; case DDI_INTROP_ALLOC: *(int *)result = hdlp->ih_scratch1; break; case DDI_INTROP_GETPRI: *(int *)result = ispecp->is_pil ? ispecp->is_pil : vnex_get_pil(rdip); break; case DDI_INTROP_FREE: break; case DDI_INTROP_SETPRI: ispecp->is_pil = (*(int *)result); break; case DDI_INTROP_ADDISR: hdlp->ih_vector = *ispecp->is_intr; ret = vnex_add_intr(dip, rdip, hdlp); break; case DDI_INTROP_REMISR: hdlp->ih_vector = *ispecp->is_intr; ret = vnex_remove_intr(rdip, hdlp); break; case DDI_INTROP_ENABLE: hdlp->ih_vector = *ispecp->is_intr; ret = vnex_enable_intr(rdip, hdlp); break; case DDI_INTROP_DISABLE: hdlp->ih_vector = *ispecp->is_intr; ret = vnex_disable_intr(rdip, hdlp); break; case DDI_INTROP_NINTRS: case DDI_INTROP_NAVAIL: *(int *)result = i_ddi_get_nintrs(rdip); break; case DDI_INTROP_SUPPORTED_TYPES: *(int *)result = i_ddi_get_nintrs(rdip) ? DDI_INTR_TYPE_FIXED : 0; break; default: ret = DDI_ENOTSUP; break; } return (ret); } vnex_id_t * vnex_alloc_id(dev_info_t *dip, uint32_t ino, uint64_t dhdl) { vnex_id_t *vid_p = kmem_alloc(sizeof (vnex_id_t), KM_SLEEP); vid_p->vid_dip = dip; vid_p->vid_ino = ino; vid_p->vid_cfg_hdl = dhdl; mutex_enter(&vnex_id_lock); vnex_add_id(vid_p); mutex_exit(&vnex_id_lock); return (vid_p); } vnex_id_t * vnex_locate_id(dev_info_t *dip, uint32_t ino) { vnex_id_t *vid_p; mutex_enter(&vnex_id_lock); vid_p = vnex_id_list; while (vid_p != NULL) { if (vid_p->vid_dip == dip && vid_p->vid_ino == ino) { mutex_exit(&vnex_id_lock); return (vid_p); } vid_p = vid_p->vid_next; } mutex_exit(&vnex_id_lock); return (NULL); } static void vnex_free_id(vnex_id_t *vid_p) { mutex_enter(&vnex_id_lock); vnex_rem_id(vid_p); mutex_exit(&vnex_id_lock); kmem_free(vid_p, sizeof (*vid_p)); } static void vnex_rem_id(vnex_id_t *vid_p) { if (vid_p->vid_prev == NULL) { vnex_id_list = vid_p->vid_next; vid_p->vid_prev = NULL; } else if (vid_p->vid_next == NULL) { vid_p->vid_prev->vid_next = NULL; } else { vid_p->vid_prev->vid_next = vid_p->vid_next; vid_p->vid_next->vid_prev = vid_p->vid_prev; } } static void vnex_add_id(vnex_id_t *vid_p) { if (vnex_id_list == NULL) { vnex_id_list = vid_p; vid_p->vid_next = NULL; vid_p->vid_prev = NULL; return; } /* * We always just add to the front of the list */ vnex_id_list->vid_prev = vid_p; vid_p->vid_next = vnex_id_list; vid_p->vid_prev = NULL; vnex_id_list = vid_p; } uint_t vnex_intr_wrapper(caddr_t arg) { vnex_id_t *vid_p = (vnex_id_t *)arg; int res; uint_t (*handler)(); caddr_t handler_arg1; caddr_t handler_arg2; handler = vid_p->vid_handler; handler_arg1 = vid_p->vid_arg1; handler_arg2 = vid_p->vid_arg2; res = (*handler)(handler_arg1, handler_arg2); (void) hvio_intr_setstate(vid_p->vid_ihdl, HV_INTR_IDLE_STATE); return (res); }