/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Implementation of the mac functionality for vnet using the * generic(default) transport layer of sun4v Logical Domain Channels(LDC). */ /* * Function prototypes. */ /* vgen proxy entry points */ int vgen_init(void *vnetp, uint64_t regprop, dev_info_t *vnetdip, const uint8_t *macaddr, void **vgenhdl); void vgen_uninit(void *arg); int vgen_dds_tx(void *arg, void *dmsg); void vgen_mod_init(void); int vgen_mod_cleanup(void); void vgen_mod_fini(void); static int vgen_start(void *arg); static void vgen_stop(void *arg); static mblk_t *vgen_tx(void *arg, mblk_t *mp); static int vgen_multicst(void *arg, boolean_t add, const uint8_t *mca); static int vgen_promisc(void *arg, boolean_t on); static int vgen_unicst(void *arg, const uint8_t *mca); static int vgen_stat(void *arg, uint_t stat, uint64_t *val); static void vgen_ioctl(void *arg, queue_t *wq, mblk_t *mp); /* vgen internal functions */ static int vgen_read_mdprops(vgen_t *vgenp); static void vgen_update_md_prop(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex); static void vgen_read_pri_eth_types(vgen_t *vgenp, md_t *mdp, mde_cookie_t node); static void vgen_mtu_read(vgen_t *vgenp, md_t *mdp, mde_cookie_t node, uint32_t *mtu); static void vgen_detach_ports(vgen_t *vgenp); static void vgen_port_detach(vgen_port_t *portp); static void vgen_port_list_insert(vgen_port_t *portp); static void vgen_port_list_remove(vgen_port_t *portp); static vgen_port_t *vgen_port_lookup(vgen_portlist_t *plistp, int port_num); static int vgen_mdeg_reg(vgen_t *vgenp); static void vgen_mdeg_unreg(vgen_t *vgenp); static int vgen_mdeg_cb(void *cb_argp, mdeg_result_t *resp); static int vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp); static int vgen_add_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex); static int vgen_port_read_props(vgen_port_t *portp, vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex); static int vgen_remove_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex); static int vgen_port_attach(vgen_port_t *portp); static void vgen_port_detach_mdeg(vgen_port_t *portp); static void vgen_port_detach_mdeg(vgen_port_t *portp); static int vgen_update_port(vgen_t *vgenp, md_t *curr_mdp, mde_cookie_t curr_mdex, md_t *prev_mdp, mde_cookie_t prev_mdex); static uint64_t vgen_port_stat(vgen_port_t *portp, uint_t stat); static int vgen_ldc_attach(vgen_port_t *portp, uint64_t ldc_id); static void vgen_ldc_detach(vgen_ldc_t *ldcp); static int vgen_alloc_tx_ring(vgen_ldc_t *ldcp); static void vgen_free_tx_ring(vgen_ldc_t *ldcp); static void vgen_init_ports(vgen_t *vgenp); static void vgen_port_init(vgen_port_t *portp); static void vgen_uninit_ports(vgen_t *vgenp); static void vgen_port_uninit(vgen_port_t *portp); static void vgen_init_ldcs(vgen_port_t *portp); static void vgen_uninit_ldcs(vgen_port_t *portp); static int vgen_ldc_init(vgen_ldc_t *ldcp); static void vgen_ldc_uninit(vgen_ldc_t *ldcp); static int vgen_init_tbufs(vgen_ldc_t *ldcp); static void vgen_uninit_tbufs(vgen_ldc_t *ldcp); static void vgen_clobber_tbufs(vgen_ldc_t *ldcp); static void vgen_clobber_rxds(vgen_ldc_t *ldcp); static uint64_t vgen_ldc_stat(vgen_ldc_t *ldcp, uint_t stat); static uint_t vgen_ldc_cb(uint64_t event, caddr_t arg); static int vgen_portsend(vgen_port_t *portp, mblk_t *mp); static int vgen_ldcsend(void *arg, mblk_t *mp); static void vgen_ldcsend_pkt(void *arg, mblk_t *mp); static int vgen_ldcsend_dring(void *arg, mblk_t *mp); static void vgen_reclaim(vgen_ldc_t *ldcp); static void vgen_reclaim_dring(vgen_ldc_t *ldcp); static int vgen_num_txpending(vgen_ldc_t *ldcp); static int vgen_tx_dring_full(vgen_ldc_t *ldcp); static int vgen_ldc_txtimeout(vgen_ldc_t *ldcp); static void vgen_ldc_watchdog(void *arg); /* vgen handshake functions */ static vgen_ldc_t *vh_nextphase(vgen_ldc_t *ldcp); static int vgen_sendmsg(vgen_ldc_t *ldcp, caddr_t msg, size_t msglen, boolean_t caller_holds_lock); static int vgen_send_version_negotiate(vgen_ldc_t *ldcp); static int vgen_send_attr_info(vgen_ldc_t *ldcp); static int vgen_send_dring_reg(vgen_ldc_t *ldcp); static int vgen_send_rdx_info(vgen_ldc_t *ldcp); static int vgen_send_dring_data(vgen_ldc_t *ldcp, uint32_t start, int32_t end); static int vgen_send_mcast_info(vgen_ldc_t *ldcp); static int vgen_handshake_phase2(vgen_ldc_t *ldcp); static void vgen_handshake_reset(vgen_ldc_t *ldcp); static void vgen_reset_hphase(vgen_ldc_t *ldcp); static void vgen_handshake(vgen_ldc_t *ldcp); static int vgen_handshake_done(vgen_ldc_t *ldcp); static void vgen_handshake_retry(vgen_ldc_t *ldcp); static int vgen_handle_version_negotiate(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_attr_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_dring_reg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_rdx_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_mcast_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_ctrlmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static void vgen_handle_pkt_data_nop(void *arg1, void *arg2, uint32_t msglen); static void vgen_handle_pkt_data(void *arg1, void *arg2, uint32_t msglen); static int vgen_handle_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_dring_data_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_process_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_dring_data_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_handle_dring_data_nack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_send_dring_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t start, int32_t end, uint8_t pstate); static int vgen_handle_datamsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t msglen); static void vgen_handle_errmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static void vgen_handle_evt_up(vgen_ldc_t *ldcp); static void vgen_handle_evt_reset(vgen_ldc_t *ldcp); static int vgen_check_sid(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static int vgen_check_datamsg_seq(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); static caddr_t vgen_print_ethaddr(uint8_t *a, char *ebuf); static void vgen_hwatchdog(void *arg); static void vgen_print_attr_info(vgen_ldc_t *ldcp, int endpoint); static void vgen_print_hparams(vgen_hparams_t *hp); static void vgen_print_ldcinfo(vgen_ldc_t *ldcp); static void vgen_stop_rcv_thread(vgen_ldc_t *ldcp); static void vgen_drain_rcv_thread(vgen_ldc_t *ldcp); static void vgen_ldc_rcv_worker(void *arg); static void vgen_handle_evt_read(vgen_ldc_t *ldcp); static void vgen_rx(vgen_ldc_t *ldcp, mblk_t *bp); static void vgen_set_vnet_proto_ops(vgen_ldc_t *ldcp); static void vgen_reset_vnet_proto_ops(vgen_ldc_t *ldcp); /* VLAN routines */ static void vgen_vlan_read_ids(void *arg, int type, md_t *mdp, mde_cookie_t node, uint16_t *pvidp, uint16_t **vidspp, uint16_t *nvidsp, uint16_t *default_idp); static void vgen_vlan_create_hash(vgen_port_t *portp); static void vgen_vlan_destroy_hash(vgen_port_t *portp); static void vgen_vlan_add_ids(vgen_port_t *portp); static void vgen_vlan_remove_ids(vgen_port_t *portp); static boolean_t vgen_vlan_lookup(mod_hash_t *vlan_hashp, uint16_t vid); static boolean_t vgen_frame_lookup_vid(vnet_t *vnetp, struct ether_header *ehp, uint16_t *vidp); static mblk_t *vgen_vlan_frame_fixtag(vgen_port_t *portp, mblk_t *mp, boolean_t is_tagged, uint16_t vid); static void vgen_vlan_unaware_port_reset(vgen_port_t *portp); static void vgen_reset_vlan_unaware_ports(vgen_t *vgenp); static int vgen_dds_rx(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp); /* externs */ extern void vnet_dds_rx(void *arg, void *dmsg); extern int vnet_mtu_update(vnet_t *vnetp, uint32_t mtu); /* * The handshake process consists of 5 phases defined below, with VH_PHASE0 * being the pre-handshake phase and VH_DONE is the phase to indicate * successful completion of all phases. * Each phase may have one to several handshake states which are required * to complete successfully to move to the next phase. * Refer to the functions vgen_handshake() and vgen_handshake_done() for * more details. */ /* handshake phases */ enum { VH_PHASE0, VH_PHASE1, VH_PHASE2, VH_PHASE3, VH_DONE = 0x80 }; /* handshake states */ enum { VER_INFO_SENT = 0x1, VER_ACK_RCVD = 0x2, VER_INFO_RCVD = 0x4, VER_ACK_SENT = 0x8, VER_NEGOTIATED = (VER_ACK_RCVD | VER_ACK_SENT), ATTR_INFO_SENT = 0x10, ATTR_ACK_RCVD = 0x20, ATTR_INFO_RCVD = 0x40, ATTR_ACK_SENT = 0x80, ATTR_INFO_EXCHANGED = (ATTR_ACK_RCVD | ATTR_ACK_SENT), DRING_INFO_SENT = 0x100, DRING_ACK_RCVD = 0x200, DRING_INFO_RCVD = 0x400, DRING_ACK_SENT = 0x800, DRING_INFO_EXCHANGED = (DRING_ACK_RCVD | DRING_ACK_SENT), RDX_INFO_SENT = 0x1000, RDX_ACK_RCVD = 0x2000, RDX_INFO_RCVD = 0x4000, RDX_ACK_SENT = 0x8000, RDX_EXCHANGED = (RDX_ACK_RCVD | RDX_ACK_SENT) }; #define VGEN_PRI_ETH_DEFINED(vgenp) ((vgenp)->pri_num_types != 0) #define LDC_LOCK(ldcp) \ mutex_enter(&((ldcp)->cblock));\ mutex_enter(&((ldcp)->rxlock));\ mutex_enter(&((ldcp)->wrlock));\ mutex_enter(&((ldcp)->txlock));\ mutex_enter(&((ldcp)->tclock)); #define LDC_UNLOCK(ldcp) \ mutex_exit(&((ldcp)->tclock));\ mutex_exit(&((ldcp)->txlock));\ mutex_exit(&((ldcp)->wrlock));\ mutex_exit(&((ldcp)->rxlock));\ mutex_exit(&((ldcp)->cblock)); #define VGEN_VER_EQ(ldcp, major, minor) \ ((ldcp)->local_hparams.ver_major == (major) && \ (ldcp)->local_hparams.ver_minor == (minor)) #define VGEN_VER_LT(ldcp, major, minor) \ (((ldcp)->local_hparams.ver_major < (major)) || \ ((ldcp)->local_hparams.ver_major == (major) && \ (ldcp)->local_hparams.ver_minor < (minor))) #define VGEN_VER_GTEQ(ldcp, major, minor) \ (((ldcp)->local_hparams.ver_major > (major)) || \ ((ldcp)->local_hparams.ver_major == (major) && \ (ldcp)->local_hparams.ver_minor >= (minor))) static struct ether_addr etherbroadcastaddr = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * MIB II broadcast/multicast packets */ #define IS_BROADCAST(ehp) \ (ether_cmp(&ehp->ether_dhost, ðerbroadcastaddr) == 0) #define IS_MULTICAST(ehp) \ ((ehp->ether_dhost.ether_addr_octet[0] & 01) == 1) /* * Property names */ static char macaddr_propname[] = "mac-address"; static char rmacaddr_propname[] = "remote-mac-address"; static char channel_propname[] = "channel-endpoint"; static char reg_propname[] = "reg"; static char port_propname[] = "port"; static char swport_propname[] = "switch-port"; static char id_propname[] = "id"; static char vdev_propname[] = "virtual-device"; static char vnet_propname[] = "network"; static char pri_types_propname[] = "priority-ether-types"; static char vgen_pvid_propname[] = "port-vlan-id"; static char vgen_vid_propname[] = "vlan-id"; static char vgen_dvid_propname[] = "default-vlan-id"; static char port_pvid_propname[] = "remote-port-vlan-id"; static char port_vid_propname[] = "remote-vlan-id"; static char vgen_mtu_propname[] = "mtu"; /* versions supported - in decreasing order */ static vgen_ver_t vgen_versions[VGEN_NUM_VER] = { {1, 4} }; /* Tunables */ uint32_t vgen_hwd_interval = 5; /* handshake watchdog freq in sec */ uint32_t vgen_max_hretries = VNET_NUM_HANDSHAKES; /* # of handshake retries */ uint32_t vgen_ldcwr_retries = 10; /* max # of ldc_write() retries */ uint32_t vgen_ldcup_retries = 5; /* max # of ldc_up() retries */ uint32_t vgen_ldccl_retries = 5; /* max # of ldc_close() retries */ uint32_t vgen_recv_delay = 1; /* delay when rx descr not ready */ uint32_t vgen_recv_retries = 10; /* retry when rx descr not ready */ uint32_t vgen_tx_retries = 0x4; /* retry when tx descr not available */ uint32_t vgen_tx_delay = 0x30; /* delay when tx descr not available */ int vgen_rcv_thread_enabled = 1; /* Enable Recieve thread */ static vio_mblk_pool_t *vgen_rx_poolp = NULL; static krwlock_t vgen_rw; /* * max # of packets accumulated prior to sending them up. It is best * to keep this at 60% of the number of recieve buffers. */ uint32_t vgen_chain_len = (VGEN_NRBUFS * 0.6); /* * Internal tunables for receive buffer pools, that is, the size and number of * mblks for each pool. At least 3 sizes must be specified if these are used. * The sizes must be specified in increasing order. Non-zero value of the first * size will be used as a hint to use these values instead of the algorithm * that determines the sizes based on MTU. */ uint32_t vgen_rbufsz1 = 0; uint32_t vgen_rbufsz2 = 0; uint32_t vgen_rbufsz3 = 0; uint32_t vgen_rbufsz4 = 0; uint32_t vgen_nrbufs1 = VGEN_NRBUFS; uint32_t vgen_nrbufs2 = VGEN_NRBUFS; uint32_t vgen_nrbufs3 = VGEN_NRBUFS; uint32_t vgen_nrbufs4 = VGEN_NRBUFS; /* * In the absence of "priority-ether-types" property in MD, the following * internal tunable can be set to specify a single priority ethertype. */ uint64_t vgen_pri_eth_type = 0; /* * Number of transmit priority buffers that are preallocated per device. * This number is chosen to be a small value to throttle transmission * of priority packets. Note: Must be a power of 2 for vio_create_mblks(). */ uint32_t vgen_pri_tx_nmblks = 64; uint32_t vgen_vlan_nchains = 4; /* # of chains in vlan id hash table */ #ifdef DEBUG /* flags to simulate error conditions for debugging */ int vgen_trigger_txtimeout = 0; int vgen_trigger_rxlost = 0; #endif /* * Matching criteria passed to the MDEG to register interest * in changes to 'virtual-device' nodes (i.e. vnet nodes) identified * by their 'name' and 'cfg-handle' properties. */ static md_prop_match_t vdev_prop_match[] = { { MDET_PROP_STR, "name" }, { MDET_PROP_VAL, "cfg-handle" }, { MDET_LIST_END, NULL } }; static mdeg_node_match_t vdev_match = { "virtual-device", vdev_prop_match }; /* MD update matching structure */ static md_prop_match_t vport_prop_match[] = { { MDET_PROP_VAL, "id" }, { MDET_LIST_END, NULL } }; static mdeg_node_match_t vport_match = { "virtual-device-port", vport_prop_match }; /* template for matching a particular vnet instance */ static mdeg_prop_spec_t vgen_prop_template[] = { { MDET_PROP_STR, "name", "network" }, { MDET_PROP_VAL, "cfg-handle", NULL }, { MDET_LIST_END, NULL, NULL } }; #define VGEN_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val) static int vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp); static mac_callbacks_t vgen_m_callbacks = { 0, vgen_stat, vgen_start, vgen_stop, vgen_promisc, vgen_multicst, vgen_unicst, vgen_tx, NULL, NULL, NULL }; /* externs */ extern pri_t maxclsyspri; extern proc_t p0; extern uint32_t vnet_ntxds; extern uint32_t vnet_ldcwd_interval; extern uint32_t vnet_ldcwd_txtimeout; extern uint32_t vnet_ldc_mtu; extern uint32_t vnet_nrbufs; extern uint32_t vnet_ethermtu; extern uint16_t vnet_default_vlan_id; extern boolean_t vnet_jumbo_rxpools; #ifdef DEBUG extern int vnet_dbglevel; static void debug_printf(const char *fname, vgen_t *vgenp, vgen_ldc_t *ldcp, const char *fmt, ...); /* -1 for all LDCs info, or ldc_id for a specific LDC info */ int vgendbg_ldcid = -1; /* simulate handshake error conditions for debug */ uint32_t vgen_hdbg; #define HDBG_VERSION 0x1 #define HDBG_TIMEOUT 0x2 #define HDBG_BAD_SID 0x4 #define HDBG_OUT_STATE 0x8 #endif /* * vgen_init() is called by an instance of vnet driver to initialize the * corresponding generic proxy transport layer. The arguments passed by vnet * are - an opaque pointer to the vnet instance, pointers to dev_info_t and * the mac address of the vnet device, and a pointer to vgen_t is passed * back as a handle to vnet. */ int vgen_init(void *vnetp, uint64_t regprop, dev_info_t *vnetdip, const uint8_t *macaddr, void **vgenhdl) { vgen_t *vgenp; int instance; int rv; if ((vnetp == NULL) || (vnetdip == NULL)) return (DDI_FAILURE); instance = ddi_get_instance(vnetdip); DBG1(NULL, NULL, "vnet(%d): enter\n", instance); vgenp = kmem_zalloc(sizeof (vgen_t), KM_SLEEP); vgenp->vnetp = vnetp; vgenp->instance = instance; vgenp->regprop = regprop; vgenp->vnetdip = vnetdip; bcopy(macaddr, &(vgenp->macaddr), ETHERADDRL); /* allocate multicast table */ vgenp->mctab = kmem_zalloc(VGEN_INIT_MCTAB_SIZE * sizeof (struct ether_addr), KM_SLEEP); vgenp->mccount = 0; vgenp->mcsize = VGEN_INIT_MCTAB_SIZE; mutex_init(&vgenp->lock, NULL, MUTEX_DRIVER, NULL); rw_init(&vgenp->vgenports.rwlock, NULL, RW_DRIVER, NULL); rv = vgen_read_mdprops(vgenp); if (rv != 0) { goto vgen_init_fail; } /* register with MD event generator */ rv = vgen_mdeg_reg(vgenp); if (rv != DDI_SUCCESS) { goto vgen_init_fail; } *vgenhdl = (void *)vgenp; DBG1(NULL, NULL, "vnet(%d): exit\n", instance); return (DDI_SUCCESS); vgen_init_fail: rw_destroy(&vgenp->vgenports.rwlock); mutex_destroy(&vgenp->lock); kmem_free(vgenp->mctab, VGEN_INIT_MCTAB_SIZE * sizeof (struct ether_addr)); if (VGEN_PRI_ETH_DEFINED(vgenp)) { kmem_free(vgenp->pri_types, sizeof (uint16_t) * vgenp->pri_num_types); (void) vio_destroy_mblks(vgenp->pri_tx_vmp); } KMEM_FREE(vgenp); return (DDI_FAILURE); } /* * Called by vnet to undo the initializations done by vgen_init(). * The handle provided by generic transport during vgen_init() is the argument. */ void vgen_uninit(void *arg) { vgen_t *vgenp = (vgen_t *)arg; vio_mblk_pool_t *rp; vio_mblk_pool_t *nrp; if (vgenp == NULL) { return; } DBG1(vgenp, NULL, "enter\n"); /* unregister with MD event generator */ vgen_mdeg_unreg(vgenp); mutex_enter(&vgenp->lock); /* detach all ports from the device */ vgen_detach_ports(vgenp); /* * free any pending rx mblk pools, * that couldn't be freed previously during channel detach. */ rp = vgenp->rmp; while (rp != NULL) { nrp = vgenp->rmp = rp->nextp; if (vio_destroy_mblks(rp)) { WRITE_ENTER(&vgen_rw); rp->nextp = vgen_rx_poolp; vgen_rx_poolp = rp; RW_EXIT(&vgen_rw); } rp = nrp; } /* free multicast table */ kmem_free(vgenp->mctab, vgenp->mcsize * sizeof (struct ether_addr)); /* free pri_types table */ if (VGEN_PRI_ETH_DEFINED(vgenp)) { kmem_free(vgenp->pri_types, sizeof (uint16_t) * vgenp->pri_num_types); (void) vio_destroy_mblks(vgenp->pri_tx_vmp); } mutex_exit(&vgenp->lock); rw_destroy(&vgenp->vgenports.rwlock); mutex_destroy(&vgenp->lock); DBG1(vgenp, NULL, "exit\n"); KMEM_FREE(vgenp); } /* * module specific initialization common to all instances of vnet/vgen. */ void vgen_mod_init(void) { rw_init(&vgen_rw, NULL, RW_DRIVER, NULL); } /* * module specific cleanup common to all instances of vnet/vgen. */ int vgen_mod_cleanup(void) { vio_mblk_pool_t *poolp, *npoolp; /* * If any rx mblk pools are still in use, return * error and stop the module from unloading. */ WRITE_ENTER(&vgen_rw); poolp = vgen_rx_poolp; while (poolp != NULL) { npoolp = vgen_rx_poolp = poolp->nextp; if (vio_destroy_mblks(poolp) != 0) { vgen_rx_poolp = poolp; RW_EXIT(&vgen_rw); return (EBUSY); } poolp = npoolp; } RW_EXIT(&vgen_rw); return (0); } /* * module specific uninitialization common to all instances of vnet/vgen. */ void vgen_mod_fini(void) { rw_destroy(&vgen_rw); } /* enable transmit/receive for the device */ int vgen_start(void *arg) { vgen_port_t *portp = (vgen_port_t *)arg; vgen_t *vgenp = portp->vgenp; DBG1(vgenp, NULL, "enter\n"); mutex_enter(&portp->lock); vgen_port_init(portp); portp->flags |= VGEN_STARTED; mutex_exit(&portp->lock); DBG1(vgenp, NULL, "exit\n"); return (DDI_SUCCESS); } /* stop transmit/receive */ void vgen_stop(void *arg) { vgen_port_t *portp = (vgen_port_t *)arg; vgen_t *vgenp = portp->vgenp; DBG1(vgenp, NULL, "enter\n"); mutex_enter(&portp->lock); vgen_port_uninit(portp); portp->flags &= ~(VGEN_STARTED); mutex_exit(&portp->lock); DBG1(vgenp, NULL, "exit\n"); } /* vgen transmit function */ static mblk_t * vgen_tx(void *arg, mblk_t *mp) { int i; vgen_port_t *portp; int status = VGEN_FAILURE; portp = (vgen_port_t *)arg; /* * Retry so that we avoid reporting a failure * to the upper layer. Returning a failure may cause the * upper layer to go into single threaded mode there by * causing performance degradation, especially for a large * number of connections. */ for (i = 0; i < vgen_tx_retries; ) { status = vgen_portsend(portp, mp); if (status == VGEN_SUCCESS) { break; } if (++i < vgen_tx_retries) delay(drv_usectohz(vgen_tx_delay)); } if (status != VGEN_SUCCESS) { /* failure */ return (mp); } /* success */ return (NULL); } /* * This function provides any necessary tagging/untagging of the frames * that are being transmitted over the port. It first verifies the vlan * membership of the destination(port) and drops the packet if the * destination doesn't belong to the given vlan. * * Arguments: * portp: port over which the frames should be transmitted * mp: frame to be transmitted * is_tagged: * B_TRUE: indicates frame header contains the vlan tag already. * B_FALSE: indicates frame is untagged. * vid: vlan in which the frame should be transmitted. * * Returns: * Sucess: frame(mblk_t *) after doing the necessary tag/untag. * Failure: NULL */ static mblk_t * vgen_vlan_frame_fixtag(vgen_port_t *portp, mblk_t *mp, boolean_t is_tagged, uint16_t vid) { vgen_t *vgenp; boolean_t dst_tagged; int rv; vgenp = portp->vgenp; /* * If the packet is going to a vnet: * Check if the destination vnet is in the same vlan. * Check the frame header if tag or untag is needed. * * We do not check the above conditions if the packet is going to vsw: * vsw must be present implicitly in all the vlans that a vnet device * is configured into; even if vsw itself is not assigned to those * vlans as an interface. For instance, the packet might be destined * to another vnet(indirectly through vsw) or to an external host * which is in the same vlan as this vnet and vsw itself may not be * present in that vlan. Similarly packets going to vsw must be * always tagged(unless in the default-vlan) if not already tagged, * as we do not know the final destination. This is needed because * vsw must always invoke its switching function only after tagging * the packet; otherwise after switching function determines the * destination we cannot figure out if the destination belongs to the * the same vlan that the frame originated from and if it needs tag/ * untag. Note that vsw will tag the packet itself when it receives * it over the channel from a client if needed. However, that is * needed only in the case of vlan unaware clients such as obp or * earlier versions of vnet. * */ if (portp != vgenp->vsw_portp) { /* * Packet going to a vnet. Check if the destination vnet is in * the same vlan. Then check the frame header if tag/untag is * needed. */ rv = vgen_vlan_lookup(portp->vlan_hashp, vid); if (rv == B_FALSE) { /* drop the packet */ freemsg(mp); return (NULL); } /* is the destination tagged or untagged in this vlan? */ (vid == portp->pvid) ? (dst_tagged = B_FALSE) : (dst_tagged = B_TRUE); if (is_tagged == dst_tagged) { /* no tagging/untagging needed */ return (mp); } if (is_tagged == B_TRUE) { /* frame is tagged; destination needs untagged */ mp = vnet_vlan_remove_tag(mp); return (mp); } /* (is_tagged == B_FALSE): fallthru to tag tx packet: */ } /* * Packet going to a vnet needs tagging. * OR * If the packet is going to vsw, then it must be tagged in all cases: * unknown unicast, broadcast/multicast or to vsw interface. */ if (is_tagged == B_FALSE) { mp = vnet_vlan_insert_tag(mp, vid); } return (mp); } /* transmit packets over the given port */ static int vgen_portsend(vgen_port_t *portp, mblk_t *mp) { vgen_ldclist_t *ldclp; vgen_ldc_t *ldcp; int status; int rv = VGEN_SUCCESS; vgen_t *vgenp = portp->vgenp; vnet_t *vnetp = vgenp->vnetp; boolean_t is_tagged; boolean_t dec_refcnt = B_FALSE; uint16_t vlan_id; struct ether_header *ehp; if (portp->use_vsw_port) { (void) atomic_inc_32(&vgenp->vsw_port_refcnt); portp = portp->vgenp->vsw_portp; dec_refcnt = B_TRUE; } if (portp == NULL) { return (VGEN_FAILURE); } /* * Determine the vlan id that the frame belongs to. */ ehp = (struct ether_header *)mp->b_rptr; is_tagged = vgen_frame_lookup_vid(vnetp, ehp, &vlan_id); if (vlan_id == vnetp->default_vlan_id) { /* Frames in default vlan must be untagged */ ASSERT(is_tagged == B_FALSE); /* * If the destination is a vnet-port verify it belongs to the * default vlan; otherwise drop the packet. We do not need * this check for vsw-port, as it should implicitly belong to * this vlan; see comments in vgen_vlan_frame_fixtag(). */ if (portp != vgenp->vsw_portp && portp->pvid != vnetp->default_vlan_id) { freemsg(mp); goto portsend_ret; } } else { /* frame not in default-vlan */ mp = vgen_vlan_frame_fixtag(portp, mp, is_tagged, vlan_id); if (mp == NULL) { goto portsend_ret; } } ldclp = &portp->ldclist; READ_ENTER(&ldclp->rwlock); /* * NOTE: for now, we will assume we have a single channel. */ if (ldclp->headp == NULL) { RW_EXIT(&ldclp->rwlock); rv = VGEN_FAILURE; goto portsend_ret; } ldcp = ldclp->headp; status = ldcp->tx(ldcp, mp); RW_EXIT(&ldclp->rwlock); if (status != VGEN_TX_SUCCESS) { rv = VGEN_FAILURE; } portsend_ret: if (dec_refcnt == B_TRUE) { (void) atomic_dec_32(&vgenp->vsw_port_refcnt); } return (rv); } /* * Wrapper function to transmit normal and/or priority frames over the channel. */ static int vgen_ldcsend(void *arg, mblk_t *mp) { vgen_ldc_t *ldcp = (vgen_ldc_t *)arg; int status; struct ether_header *ehp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); uint32_t num_types; uint16_t *types; int i; ASSERT(VGEN_PRI_ETH_DEFINED(vgenp)); num_types = vgenp->pri_num_types; types = vgenp->pri_types; ehp = (struct ether_header *)mp->b_rptr; for (i = 0; i < num_types; i++) { if (ehp->ether_type == types[i]) { /* priority frame, use pri tx function */ vgen_ldcsend_pkt(ldcp, mp); return (VGEN_SUCCESS); } } status = vgen_ldcsend_dring(ldcp, mp); return (status); } /* * This functions handles ldc channel reset while in the context * of transmit routines: vgen_ldcsend_pkt() or vgen_ldcsend_dring(). */ static void vgen_ldcsend_process_reset(vgen_ldc_t *ldcp) { ldc_status_t istatus; vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (mutex_tryenter(&ldcp->cblock)) { if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status() error\n"); } else { ldcp->ldc_status = istatus; } if (ldcp->ldc_status != LDC_UP) { vgen_handle_evt_reset(ldcp); } mutex_exit(&ldcp->cblock); } } /* * This function transmits the frame in the payload of a raw data * (VIO_PKT_DATA) message. Thus, it provides an Out-Of-Band path to * send special frames with high priorities, without going through * the normal data path which uses descriptor ring mechanism. */ static void vgen_ldcsend_pkt(void *arg, mblk_t *mp) { vgen_ldc_t *ldcp = (vgen_ldc_t *)arg; vio_raw_data_msg_t *pkt; mblk_t *bp; mblk_t *nmp = NULL; caddr_t dst; uint32_t mblksz; uint32_t size; uint32_t nbytes; int rv; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vgen_stats_t *statsp = &ldcp->stats; /* drop the packet if ldc is not up or handshake is not done */ if (ldcp->ldc_status != LDC_UP) { (void) atomic_inc_32(&statsp->tx_pri_fail); DWARN(vgenp, ldcp, "status(%d), dropping packet\n", ldcp->ldc_status); goto send_pkt_exit; } if (ldcp->hphase != VH_DONE) { (void) atomic_inc_32(&statsp->tx_pri_fail); DWARN(vgenp, ldcp, "hphase(%x), dropping packet\n", ldcp->hphase); goto send_pkt_exit; } size = msgsize(mp); /* frame size bigger than available payload len of raw data msg ? */ if (size > (size_t)(ldcp->msglen - VIO_PKT_DATA_HDRSIZE)) { (void) atomic_inc_32(&statsp->tx_pri_fail); DWARN(vgenp, ldcp, "invalid size(%d)\n", size); goto send_pkt_exit; } if (size < ETHERMIN) size = ETHERMIN; /* alloc space for a raw data message */ nmp = vio_allocb(vgenp->pri_tx_vmp); if (nmp == NULL) { (void) atomic_inc_32(&statsp->tx_pri_fail); DWARN(vgenp, ldcp, "vio_allocb failed\n"); goto send_pkt_exit; } pkt = (vio_raw_data_msg_t *)nmp->b_rptr; /* copy frame into the payload of raw data message */ dst = (caddr_t)pkt->data; for (bp = mp; bp != NULL; bp = bp->b_cont) { mblksz = MBLKL(bp); bcopy(bp->b_rptr, dst, mblksz); dst += mblksz; } /* setup the raw data msg */ pkt->tag.vio_msgtype = VIO_TYPE_DATA; pkt->tag.vio_subtype = VIO_SUBTYPE_INFO; pkt->tag.vio_subtype_env = VIO_PKT_DATA; pkt->tag.vio_sid = ldcp->local_sid; nbytes = VIO_PKT_DATA_HDRSIZE + size; /* send the msg over ldc */ rv = vgen_sendmsg(ldcp, (caddr_t)pkt, nbytes, B_FALSE); if (rv != VGEN_SUCCESS) { (void) atomic_inc_32(&statsp->tx_pri_fail); DWARN(vgenp, ldcp, "Error sending priority frame\n"); if (rv == ECONNRESET) { vgen_ldcsend_process_reset(ldcp); } goto send_pkt_exit; } /* update stats */ (void) atomic_inc_64(&statsp->tx_pri_packets); (void) atomic_add_64(&statsp->tx_pri_bytes, size); send_pkt_exit: if (nmp != NULL) freemsg(nmp); freemsg(mp); } /* * This function transmits normal (non-priority) data frames over * the channel. It queues the frame into the transmit descriptor ring * and sends a VIO_DRING_DATA message if needed, to wake up the * peer to (re)start processing. */ static int vgen_ldcsend_dring(void *arg, mblk_t *mp) { vgen_ldc_t *ldcp = (vgen_ldc_t *)arg; vgen_private_desc_t *tbufp; vgen_private_desc_t *rtbufp; vnet_public_desc_t *rtxdp; vgen_private_desc_t *ntbufp; vnet_public_desc_t *txdp; vio_dring_entry_hdr_t *hdrp; vgen_stats_t *statsp; struct ether_header *ehp; boolean_t is_bcast = B_FALSE; boolean_t is_mcast = B_FALSE; size_t mblksz; caddr_t dst; mblk_t *bp; size_t size; int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vgen_hparams_t *lp = &ldcp->local_hparams; statsp = &ldcp->stats; size = msgsize(mp); DBG1(vgenp, ldcp, "enter\n"); if (ldcp->ldc_status != LDC_UP) { DWARN(vgenp, ldcp, "status(%d), dropping packet\n", ldcp->ldc_status); /* retry ldc_up() if needed */ if (ldcp->flags & CHANNEL_STARTED) (void) ldc_up(ldcp->ldc_handle); goto send_dring_exit; } /* drop the packet if ldc is not up or handshake is not done */ if (ldcp->hphase != VH_DONE) { DWARN(vgenp, ldcp, "hphase(%x), dropping packet\n", ldcp->hphase); goto send_dring_exit; } if (size > (size_t)lp->mtu) { DWARN(vgenp, ldcp, "invalid size(%d)\n", size); goto send_dring_exit; } if (size < ETHERMIN) size = ETHERMIN; ehp = (struct ether_header *)mp->b_rptr; is_bcast = IS_BROADCAST(ehp); is_mcast = IS_MULTICAST(ehp); mutex_enter(&ldcp->txlock); /* * allocate a descriptor */ tbufp = ldcp->next_tbufp; ntbufp = NEXTTBUF(ldcp, tbufp); if (ntbufp == ldcp->cur_tbufp) { /* out of tbufs/txds */ mutex_enter(&ldcp->tclock); /* Try reclaiming now */ vgen_reclaim_dring(ldcp); ldcp->reclaim_lbolt = ddi_get_lbolt(); if (ntbufp == ldcp->cur_tbufp) { /* Now we are really out of tbuf/txds */ ldcp->need_resched = B_TRUE; mutex_exit(&ldcp->tclock); statsp->tx_no_desc++; mutex_exit(&ldcp->txlock); return (VGEN_TX_NORESOURCES); } mutex_exit(&ldcp->tclock); } /* update next available tbuf in the ring and update tx index */ ldcp->next_tbufp = ntbufp; INCR_TXI(ldcp->next_txi, ldcp); /* Mark the buffer busy before releasing the lock */ tbufp->flags = VGEN_PRIV_DESC_BUSY; mutex_exit(&ldcp->txlock); /* copy data into pre-allocated transmit buffer */ dst = tbufp->datap + VNET_IPALIGN; for (bp = mp; bp != NULL; bp = bp->b_cont) { mblksz = MBLKL(bp); bcopy(bp->b_rptr, dst, mblksz); dst += mblksz; } tbufp->datalen = size; /* initialize the corresponding public descriptor (txd) */ txdp = tbufp->descp; hdrp = &txdp->hdr; txdp->nbytes = size; txdp->ncookies = tbufp->ncookies; bcopy((tbufp->memcookie), (txdp->memcookie), tbufp->ncookies * sizeof (ldc_mem_cookie_t)); mutex_enter(&ldcp->wrlock); /* * If the flags not set to BUSY, it implies that the clobber * was done while we were copying the data. In such case, * discard the packet and return. */ if (tbufp->flags != VGEN_PRIV_DESC_BUSY) { statsp->oerrors++; mutex_exit(&ldcp->wrlock); goto send_dring_exit; } hdrp->dstate = VIO_DESC_READY; /* update stats */ statsp->opackets++; statsp->obytes += size; if (is_bcast) statsp->brdcstxmt++; else if (is_mcast) statsp->multixmt++; /* send dring datamsg to the peer */ if (ldcp->resched_peer) { rtbufp = &ldcp->tbufp[ldcp->resched_peer_txi]; rtxdp = rtbufp->descp; if (rtxdp->hdr.dstate == VIO_DESC_READY) { rv = vgen_send_dring_data(ldcp, (uint32_t)ldcp->resched_peer_txi, -1); if (rv != 0) { /* error: drop the packet */ DWARN(vgenp, ldcp, "vgen_send_dring_data " "failed: rv(%d) len(%d)\n", ldcp->ldc_id, rv, size); statsp->oerrors++; } else { ldcp->resched_peer = B_FALSE; } } } mutex_exit(&ldcp->wrlock); send_dring_exit: if (rv == ECONNRESET) { vgen_ldcsend_process_reset(ldcp); } freemsg(mp); DBG1(vgenp, ldcp, "exit\n"); return (VGEN_TX_SUCCESS); } /* enable/disable a multicast address */ int vgen_multicst(void *arg, boolean_t add, const uint8_t *mca) { vgen_t *vgenp; vnet_mcast_msg_t mcastmsg; vio_msg_tag_t *tagp; vgen_port_t *portp; vgen_portlist_t *plistp; vgen_ldc_t *ldcp; vgen_ldclist_t *ldclp; struct ether_addr *addrp; int rv = DDI_FAILURE; uint32_t i; portp = (vgen_port_t *)arg; vgenp = portp->vgenp; if (portp != vgenp->vsw_portp) { return (DDI_SUCCESS); } addrp = (struct ether_addr *)mca; tagp = &mcastmsg.tag; bzero(&mcastmsg, sizeof (mcastmsg)); mutex_enter(&vgenp->lock); plistp = &(vgenp->vgenports); READ_ENTER(&plistp->rwlock); portp = vgenp->vsw_portp; if (portp == NULL) { RW_EXIT(&plistp->rwlock); mutex_exit(&vgenp->lock); return (rv); } ldclp = &portp->ldclist; READ_ENTER(&ldclp->rwlock); ldcp = ldclp->headp; if (ldcp == NULL) goto vgen_mcast_exit; mutex_enter(&ldcp->cblock); if (ldcp->hphase == VH_DONE) { /* * If handshake is done, send a msg to vsw to add/remove * the multicast address. Otherwise, we just update this * mcast address in our table and the table will be sync'd * with vsw when handshake completes. */ tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VNET_MCAST_INFO; tagp->vio_sid = ldcp->local_sid; bcopy(mca, &(mcastmsg.mca), ETHERADDRL); mcastmsg.set = add; mcastmsg.count = 1; if (vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (mcastmsg), B_FALSE) != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); mutex_exit(&ldcp->cblock); goto vgen_mcast_exit; } } mutex_exit(&ldcp->cblock); if (add) { /* expand multicast table if necessary */ if (vgenp->mccount >= vgenp->mcsize) { struct ether_addr *newtab; uint32_t newsize; newsize = vgenp->mcsize * 2; newtab = kmem_zalloc(newsize * sizeof (struct ether_addr), KM_NOSLEEP); if (newtab == NULL) goto vgen_mcast_exit; bcopy(vgenp->mctab, newtab, vgenp->mcsize * sizeof (struct ether_addr)); kmem_free(vgenp->mctab, vgenp->mcsize * sizeof (struct ether_addr)); vgenp->mctab = newtab; vgenp->mcsize = newsize; } /* add address to the table */ vgenp->mctab[vgenp->mccount++] = *addrp; } else { /* delete address from the table */ for (i = 0; i < vgenp->mccount; i++) { if (ether_cmp(addrp, &(vgenp->mctab[i])) == 0) { /* * If there's more than one address in this * table, delete the unwanted one by moving * the last one in the list over top of it; * otherwise, just remove it. */ if (vgenp->mccount > 1) { vgenp->mctab[i] = vgenp->mctab[vgenp->mccount-1]; } vgenp->mccount--; break; } } } rv = DDI_SUCCESS; vgen_mcast_exit: RW_EXIT(&ldclp->rwlock); RW_EXIT(&plistp->rwlock); mutex_exit(&vgenp->lock); return (rv); } /* set or clear promiscuous mode on the device */ static int vgen_promisc(void *arg, boolean_t on) { _NOTE(ARGUNUSED(arg, on)) return (DDI_SUCCESS); } /* set the unicast mac address of the device */ static int vgen_unicst(void *arg, const uint8_t *mca) { _NOTE(ARGUNUSED(arg, mca)) return (DDI_SUCCESS); } /* get device statistics */ int vgen_stat(void *arg, uint_t stat, uint64_t *val) { vgen_port_t *portp = (vgen_port_t *)arg; *val = vgen_port_stat(portp, stat); return (0); } static void vgen_ioctl(void *arg, queue_t *wq, mblk_t *mp) { _NOTE(ARGUNUSED(arg, wq, mp)) } /* vgen internal functions */ /* detach all ports from the device */ static void vgen_detach_ports(vgen_t *vgenp) { vgen_port_t *portp; vgen_portlist_t *plistp; plistp = &(vgenp->vgenports); WRITE_ENTER(&plistp->rwlock); while ((portp = plistp->headp) != NULL) { vgen_port_detach(portp); } RW_EXIT(&plistp->rwlock); } /* * detach the given port. */ static void vgen_port_detach(vgen_port_t *portp) { vgen_t *vgenp; vgen_ldclist_t *ldclp; int port_num; vgenp = portp->vgenp; port_num = portp->port_num; DBG1(vgenp, NULL, "port(%d):enter\n", port_num); /* * If this port is connected to the vswitch, then * potentially there could be ports that may be using * this port to transmit packets. To address this do * the following: * - First set vgenp->vsw_portp to NULL, so that * its not used after that. * - Then wait for the refcnt to go down to 0. * - Now we can safely detach this port. */ if (vgenp->vsw_portp == portp) { vgenp->vsw_portp = NULL; while (vgenp->vsw_port_refcnt > 0) { delay(drv_usectohz(vgen_tx_delay)); } (void) atomic_swap_32(&vgenp->vsw_port_refcnt, 0); } if (portp->vhp != NULL) { vio_net_resource_unreg(portp->vhp); portp->vhp = NULL; } vgen_vlan_destroy_hash(portp); /* remove it from port list */ vgen_port_list_remove(portp); /* detach channels from this port */ ldclp = &portp->ldclist; WRITE_ENTER(&ldclp->rwlock); while (ldclp->headp) { vgen_ldc_detach(ldclp->headp); } RW_EXIT(&ldclp->rwlock); rw_destroy(&ldclp->rwlock); if (portp->num_ldcs != 0) { kmem_free(portp->ldc_ids, portp->num_ldcs * sizeof (uint64_t)); portp->num_ldcs = 0; } mutex_destroy(&portp->lock); KMEM_FREE(portp); DBG1(vgenp, NULL, "port(%d):exit\n", port_num); } /* add a port to port list */ static void vgen_port_list_insert(vgen_port_t *portp) { vgen_portlist_t *plistp; vgen_t *vgenp; vgenp = portp->vgenp; plistp = &(vgenp->vgenports); if (plistp->headp == NULL) { plistp->headp = portp; } else { plistp->tailp->nextp = portp; } plistp->tailp = portp; portp->nextp = NULL; } /* remove a port from port list */ static void vgen_port_list_remove(vgen_port_t *portp) { vgen_port_t *prevp; vgen_port_t *nextp; vgen_portlist_t *plistp; vgen_t *vgenp; vgenp = portp->vgenp; plistp = &(vgenp->vgenports); if (plistp->headp == NULL) return; if (portp == plistp->headp) { plistp->headp = portp->nextp; if (portp == plistp->tailp) plistp->tailp = plistp->headp; } else { for (prevp = plistp->headp; ((nextp = prevp->nextp) != NULL) && (nextp != portp); prevp = nextp) ; if (nextp == portp) { prevp->nextp = portp->nextp; } if (portp == plistp->tailp) plistp->tailp = prevp; } } /* lookup a port in the list based on port_num */ static vgen_port_t * vgen_port_lookup(vgen_portlist_t *plistp, int port_num) { vgen_port_t *portp = NULL; for (portp = plistp->headp; portp != NULL; portp = portp->nextp) { if (portp->port_num == port_num) { break; } } return (portp); } /* enable ports for transmit/receive */ static void vgen_init_ports(vgen_t *vgenp) { vgen_port_t *portp; vgen_portlist_t *plistp; plistp = &(vgenp->vgenports); READ_ENTER(&plistp->rwlock); for (portp = plistp->headp; portp != NULL; portp = portp->nextp) { vgen_port_init(portp); } RW_EXIT(&plistp->rwlock); } static void vgen_port_init(vgen_port_t *portp) { /* Add the port to the specified vlans */ vgen_vlan_add_ids(portp); /* Bring up the channels of this port */ vgen_init_ldcs(portp); } /* disable transmit/receive on ports */ static void vgen_uninit_ports(vgen_t *vgenp) { vgen_port_t *portp; vgen_portlist_t *plistp; plistp = &(vgenp->vgenports); READ_ENTER(&plistp->rwlock); for (portp = plistp->headp; portp != NULL; portp = portp->nextp) { vgen_port_uninit(portp); } RW_EXIT(&plistp->rwlock); } static void vgen_port_uninit(vgen_port_t *portp) { vgen_uninit_ldcs(portp); /* remove the port from vlans it has been assigned to */ vgen_vlan_remove_ids(portp); } /* * Scan the machine description for this instance of vnet * and read its properties. Called only from vgen_init(). * Returns: 0 on success, 1 on failure. */ static int vgen_read_mdprops(vgen_t *vgenp) { vnet_t *vnetp = vgenp->vnetp; md_t *mdp = NULL; mde_cookie_t rootnode; mde_cookie_t *listp = NULL; uint64_t cfgh; char *name; int rv = 1; int num_nodes = 0; int num_devs = 0; int listsz = 0; int i; if ((mdp = md_get_handle()) == NULL) { return (rv); } num_nodes = md_node_count(mdp); ASSERT(num_nodes > 0); listsz = num_nodes * sizeof (mde_cookie_t); listp = (mde_cookie_t *)kmem_zalloc(listsz, KM_SLEEP); rootnode = md_root_node(mdp); /* search for all "virtual_device" nodes */ num_devs = md_scan_dag(mdp, rootnode, md_find_name(mdp, vdev_propname), md_find_name(mdp, "fwd"), listp); if (num_devs <= 0) { goto vgen_readmd_exit; } /* * Now loop through the list of virtual-devices looking for * devices with name "network" and for each such device compare * its instance with what we have from the 'reg' property to * find the right node in MD and then read all its properties. */ for (i = 0; i < num_devs; i++) { if (md_get_prop_str(mdp, listp[i], "name", &name) != 0) { goto vgen_readmd_exit; } /* is this a "network" device? */ if (strcmp(name, vnet_propname) != 0) continue; if (md_get_prop_val(mdp, listp[i], "cfg-handle", &cfgh) != 0) { goto vgen_readmd_exit; } /* is this the required instance of vnet? */ if (vgenp->regprop != cfgh) continue; /* * Read the mtu. Note that we set the mtu of vnet device within * this routine itself, after validating the range. */ vgen_mtu_read(vgenp, mdp, listp[i], &vnetp->mtu); if (vnetp->mtu < ETHERMTU || vnetp->mtu > VNET_MAX_MTU) { vnetp->mtu = ETHERMTU; } vgenp->max_frame_size = vnetp->mtu + sizeof (struct ether_header) + VLAN_TAGSZ; /* read priority ether types */ vgen_read_pri_eth_types(vgenp, mdp, listp[i]); /* read vlan id properties of this vnet instance */ vgen_vlan_read_ids(vgenp, VGEN_LOCAL, mdp, listp[i], &vnetp->pvid, &vnetp->vids, &vnetp->nvids, &vnetp->default_vlan_id); rv = 0; break; } vgen_readmd_exit: kmem_free(listp, listsz); (void) md_fini_handle(mdp); return (rv); } /* * Read vlan id properties of the given MD node. * Arguments: * arg: device argument(vnet device or a port) * type: type of arg; VGEN_LOCAL(vnet device) or VGEN_PEER(port) * mdp: machine description * node: md node cookie * * Returns: * pvidp: port-vlan-id of the node * vidspp: list of vlan-ids of the node * nvidsp: # of vlan-ids in the list * default_idp: default-vlan-id of the node(if node is vnet device) */ static void vgen_vlan_read_ids(void *arg, int type, md_t *mdp, mde_cookie_t node, uint16_t *pvidp, uint16_t **vidspp, uint16_t *nvidsp, uint16_t *default_idp) { vgen_t *vgenp; vnet_t *vnetp; vgen_port_t *portp; char *pvid_propname; char *vid_propname; uint_t nvids; uint32_t vids_size; int rv; int i; uint64_t *data; uint64_t val; int size; int inst; if (type == VGEN_LOCAL) { vgenp = (vgen_t *)arg; vnetp = vgenp->vnetp; pvid_propname = vgen_pvid_propname; vid_propname = vgen_vid_propname; inst = vnetp->instance; } else if (type == VGEN_PEER) { portp = (vgen_port_t *)arg; vgenp = portp->vgenp; vnetp = vgenp->vnetp; pvid_propname = port_pvid_propname; vid_propname = port_vid_propname; inst = portp->port_num; } else { return; } if (type == VGEN_LOCAL && default_idp != NULL) { rv = md_get_prop_val(mdp, node, vgen_dvid_propname, &val); if (rv != 0) { DWARN(vgenp, NULL, "prop(%s) not found", vgen_dvid_propname); *default_idp = vnet_default_vlan_id; } else { *default_idp = val & 0xFFF; DBG2(vgenp, NULL, "%s(%d): (%d)\n", vgen_dvid_propname, inst, *default_idp); } } rv = md_get_prop_val(mdp, node, pvid_propname, &val); if (rv != 0) { DWARN(vgenp, NULL, "prop(%s) not found", pvid_propname); *pvidp = vnet_default_vlan_id; } else { *pvidp = val & 0xFFF; DBG2(vgenp, NULL, "%s(%d): (%d)\n", pvid_propname, inst, *pvidp); } rv = md_get_prop_data(mdp, node, vid_propname, (uint8_t **)&data, &size); if (rv != 0) { DBG2(vgenp, NULL, "prop(%s) not found", vid_propname); size = 0; } else { size /= sizeof (uint64_t); } nvids = size; if (nvids != 0) { DBG2(vgenp, NULL, "%s(%d): ", vid_propname, inst); vids_size = sizeof (uint16_t) * nvids; *vidspp = kmem_zalloc(vids_size, KM_SLEEP); for (i = 0; i < nvids; i++) { (*vidspp)[i] = data[i] & 0xFFFF; DBG2(vgenp, NULL, " %d ", (*vidspp)[i]); } DBG2(vgenp, NULL, "\n"); } *nvidsp = nvids; } /* * Create a vlan id hash table for the given port. */ static void vgen_vlan_create_hash(vgen_port_t *portp) { char hashname[MAXNAMELEN]; (void) snprintf(hashname, MAXNAMELEN, "port%d-vlan-hash", portp->port_num); portp->vlan_nchains = vgen_vlan_nchains; portp->vlan_hashp = mod_hash_create_idhash(hashname, portp->vlan_nchains, mod_hash_null_valdtor); } /* * Destroy the vlan id hash table in the given port. */ static void vgen_vlan_destroy_hash(vgen_port_t *portp) { if (portp->vlan_hashp != NULL) { mod_hash_destroy_hash(portp->vlan_hashp); portp->vlan_hashp = NULL; portp->vlan_nchains = 0; } } /* * Add a port to the vlans specified in its port properites. */ static void vgen_vlan_add_ids(vgen_port_t *portp) { int rv; int i; rv = mod_hash_insert(portp->vlan_hashp, (mod_hash_key_t)VLAN_ID_KEY(portp->pvid), (mod_hash_val_t)B_TRUE); ASSERT(rv == 0); for (i = 0; i < portp->nvids; i++) { rv = mod_hash_insert(portp->vlan_hashp, (mod_hash_key_t)VLAN_ID_KEY(portp->vids[i]), (mod_hash_val_t)B_TRUE); ASSERT(rv == 0); } } /* * Remove a port from the vlans it has been assigned to. */ static void vgen_vlan_remove_ids(vgen_port_t *portp) { int rv; int i; mod_hash_val_t vp; rv = mod_hash_remove(portp->vlan_hashp, (mod_hash_key_t)VLAN_ID_KEY(portp->pvid), (mod_hash_val_t *)&vp); ASSERT(rv == 0); for (i = 0; i < portp->nvids; i++) { rv = mod_hash_remove(portp->vlan_hashp, (mod_hash_key_t)VLAN_ID_KEY(portp->vids[i]), (mod_hash_val_t *)&vp); ASSERT(rv == 0); } } /* * Lookup the vlan id of the given tx frame. If it is a vlan-tagged frame, * then the vlan-id is available in the tag; otherwise, its vlan id is * implicitly obtained from the port-vlan-id of the vnet device. * The vlan id determined is returned in vidp. * Returns: B_TRUE if it is a tagged frame; B_FALSE if it is untagged. */ static boolean_t vgen_frame_lookup_vid(vnet_t *vnetp, struct ether_header *ehp, uint16_t *vidp) { struct ether_vlan_header *evhp; /* If it's a tagged frame, get the vlan id from vlan header */ if (ehp->ether_type == ETHERTYPE_VLAN) { evhp = (struct ether_vlan_header *)ehp; *vidp = VLAN_ID(ntohs(evhp->ether_tci)); return (B_TRUE); } /* Untagged frame, vlan-id is the pvid of vnet device */ *vidp = vnetp->pvid; return (B_FALSE); } /* * Find the given vlan id in the hash table. * Return: B_TRUE if the id is found; B_FALSE if not found. */ static boolean_t vgen_vlan_lookup(mod_hash_t *vlan_hashp, uint16_t vid) { int rv; mod_hash_val_t vp; rv = mod_hash_find(vlan_hashp, VLAN_ID_KEY(vid), (mod_hash_val_t *)&vp); if (rv != 0) return (B_FALSE); return (B_TRUE); } /* * This function reads "priority-ether-types" property from md. This property * is used to enable support for priority frames. Applications which need * guaranteed and timely delivery of certain high priority frames to/from * a vnet or vsw within ldoms, should configure this property by providing * the ether type(s) for which the priority facility is needed. * Normal data frames are delivered over a ldc channel using the descriptor * ring mechanism which is constrained by factors such as descriptor ring size, * the rate at which the ring is processed at the peer ldc end point, etc. * The priority mechanism provides an Out-Of-Band path to send/receive frames * as raw pkt data (VIO_PKT_DATA) messages over the channel, avoiding the * descriptor ring path and enables a more reliable and timely delivery of * frames to the peer. */ static void vgen_read_pri_eth_types(vgen_t *vgenp, md_t *mdp, mde_cookie_t node) { int rv; uint16_t *types; uint64_t *data; int size; int i; size_t mblk_sz; rv = md_get_prop_data(mdp, node, pri_types_propname, (uint8_t **)&data, &size); if (rv != 0) { /* * Property may not exist if we are running pre-ldoms1.1 f/w. * Check if 'vgen_pri_eth_type' has been set in that case. */ if (vgen_pri_eth_type != 0) { size = sizeof (vgen_pri_eth_type); data = &vgen_pri_eth_type; } else { DBG2(vgenp, NULL, "prop(%s) not found", pri_types_propname); size = 0; } } if (size == 0) { vgenp->pri_num_types = 0; return; } /* * we have some priority-ether-types defined; * allocate a table of these types and also * allocate a pool of mblks to transmit these * priority packets. */ size /= sizeof (uint64_t); vgenp->pri_num_types = size; vgenp->pri_types = kmem_zalloc(size * sizeof (uint16_t), KM_SLEEP); for (i = 0, types = vgenp->pri_types; i < size; i++) { types[i] = data[i] & 0xFFFF; } mblk_sz = (VIO_PKT_DATA_HDRSIZE + vgenp->max_frame_size + 7) & ~7; (void) vio_create_mblks(vgen_pri_tx_nmblks, mblk_sz, &vgenp->pri_tx_vmp); } static void vgen_mtu_read(vgen_t *vgenp, md_t *mdp, mde_cookie_t node, uint32_t *mtu) { int rv; uint64_t val; char *mtu_propname; mtu_propname = vgen_mtu_propname; rv = md_get_prop_val(mdp, node, mtu_propname, &val); if (rv != 0) { DWARN(vgenp, NULL, "prop(%s) not found", mtu_propname); *mtu = vnet_ethermtu; } else { *mtu = val & 0xFFFF; DBG2(vgenp, NULL, "%s(%d): (%d)\n", mtu_propname, vgenp->instance, *mtu); } } /* register with MD event generator */ static int vgen_mdeg_reg(vgen_t *vgenp) { mdeg_prop_spec_t *pspecp; mdeg_node_spec_t *parentp; uint_t templatesz; int rv; mdeg_handle_t dev_hdl = NULL; mdeg_handle_t port_hdl = NULL; templatesz = sizeof (vgen_prop_template); pspecp = kmem_zalloc(templatesz, KM_NOSLEEP); if (pspecp == NULL) { return (DDI_FAILURE); } parentp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_NOSLEEP); if (parentp == NULL) { kmem_free(pspecp, templatesz); return (DDI_FAILURE); } bcopy(vgen_prop_template, pspecp, templatesz); /* * NOTE: The instance here refers to the value of "reg" property and * not the dev_info instance (ddi_get_instance()) of vnet. */ VGEN_SET_MDEG_PROP_INST(pspecp, vgenp->regprop); parentp->namep = "virtual-device"; parentp->specp = pspecp; /* save parentp in vgen_t */ vgenp->mdeg_parentp = parentp; /* * Register an interest in 'virtual-device' nodes with a * 'name' property of 'network' */ rv = mdeg_register(parentp, &vdev_match, vgen_mdeg_cb, vgenp, &dev_hdl); if (rv != MDEG_SUCCESS) { DERR(vgenp, NULL, "mdeg_register failed\n"); goto mdeg_reg_fail; } /* Register an interest in 'port' nodes */ rv = mdeg_register(parentp, &vport_match, vgen_mdeg_port_cb, vgenp, &port_hdl); if (rv != MDEG_SUCCESS) { DERR(vgenp, NULL, "mdeg_register failed\n"); goto mdeg_reg_fail; } /* save mdeg handle in vgen_t */ vgenp->mdeg_dev_hdl = dev_hdl; vgenp->mdeg_port_hdl = port_hdl; return (DDI_SUCCESS); mdeg_reg_fail: if (dev_hdl != NULL) { (void) mdeg_unregister(dev_hdl); } KMEM_FREE(parentp); kmem_free(pspecp, templatesz); vgenp->mdeg_parentp = NULL; return (DDI_FAILURE); } /* unregister with MD event generator */ static void vgen_mdeg_unreg(vgen_t *vgenp) { (void) mdeg_unregister(vgenp->mdeg_dev_hdl); (void) mdeg_unregister(vgenp->mdeg_port_hdl); kmem_free(vgenp->mdeg_parentp->specp, sizeof (vgen_prop_template)); KMEM_FREE(vgenp->mdeg_parentp); vgenp->mdeg_parentp = NULL; vgenp->mdeg_dev_hdl = NULL; vgenp->mdeg_port_hdl = NULL; } /* mdeg callback function for the port node */ static int vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp) { int idx; int vsw_idx = -1; uint64_t val; vgen_t *vgenp; if ((resp == NULL) || (cb_argp == NULL)) { return (MDEG_FAILURE); } vgenp = (vgen_t *)cb_argp; DBG1(vgenp, NULL, "enter\n"); mutex_enter(&vgenp->lock); DBG1(vgenp, NULL, "ports: removed(%x), " "added(%x), updated(%x)\n", resp->removed.nelem, resp->added.nelem, resp->match_curr.nelem); for (idx = 0; idx < resp->removed.nelem; idx++) { (void) vgen_remove_port(vgenp, resp->removed.mdp, resp->removed.mdep[idx]); } if (vgenp->vsw_portp == NULL) { /* * find vsw_port and add it first, because other ports need * this when adding fdb entry (see vgen_port_init()). */ for (idx = 0; idx < resp->added.nelem; idx++) { if (!(md_get_prop_val(resp->added.mdp, resp->added.mdep[idx], swport_propname, &val))) { if (val == 0) { /* * This port is connected to the * vsw on service domain. */ vsw_idx = idx; if (vgen_add_port(vgenp, resp->added.mdp, resp->added.mdep[idx]) != DDI_SUCCESS) { cmn_err(CE_NOTE, "vnet%d Could " "not initialize virtual " "switch port.", vgenp->instance); mutex_exit(&vgenp->lock); return (MDEG_FAILURE); } break; } } } if (vsw_idx == -1) { DWARN(vgenp, NULL, "can't find vsw_port\n"); mutex_exit(&vgenp->lock); return (MDEG_FAILURE); } } for (idx = 0; idx < resp->added.nelem; idx++) { if ((vsw_idx != -1) && (vsw_idx == idx)) /* skip vsw_port */ continue; /* If this port can't be added just skip it. */ (void) vgen_add_port(vgenp, resp->added.mdp, resp->added.mdep[idx]); } for (idx = 0; idx < resp->match_curr.nelem; idx++) { (void) vgen_update_port(vgenp, resp->match_curr.mdp, resp->match_curr.mdep[idx], resp->match_prev.mdp, resp->match_prev.mdep[idx]); } mutex_exit(&vgenp->lock); DBG1(vgenp, NULL, "exit\n"); return (MDEG_SUCCESS); } /* mdeg callback function for the vnet node */ static int vgen_mdeg_cb(void *cb_argp, mdeg_result_t *resp) { vgen_t *vgenp; vnet_t *vnetp; md_t *mdp; mde_cookie_t node; uint64_t inst; char *node_name = NULL; if ((resp == NULL) || (cb_argp == NULL)) { return (MDEG_FAILURE); } vgenp = (vgen_t *)cb_argp; vnetp = vgenp->vnetp; DBG1(vgenp, NULL, "added %d : removed %d : curr matched %d" " : prev matched %d", resp->added.nelem, resp->removed.nelem, resp->match_curr.nelem, resp->match_prev.nelem); mutex_enter(&vgenp->lock); /* * We get an initial callback for this node as 'added' after * registering with mdeg. Note that we would have already gathered * information about this vnet node by walking MD earlier during attach * (in vgen_read_mdprops()). So, there is a window where the properties * of this node might have changed when we get this initial 'added' * callback. We handle this as if an update occured and invoke the same * function which handles updates to the properties of this vnet-node * if any. A non-zero 'match' value indicates that the MD has been * updated and that a 'network' node is present which may or may not * have been updated. It is up to the clients to examine their own * nodes and determine if they have changed. */ if (resp->added.nelem != 0) { if (resp->added.nelem != 1) { cmn_err(CE_NOTE, "!vnet%d: number of nodes added " "invalid: %d\n", vnetp->instance, resp->added.nelem); goto vgen_mdeg_cb_err; } mdp = resp->added.mdp; node = resp->added.mdep[0]; } else if (resp->match_curr.nelem != 0) { if (resp->match_curr.nelem != 1) { cmn_err(CE_NOTE, "!vnet%d: number of nodes updated " "invalid: %d\n", vnetp->instance, resp->match_curr.nelem); goto vgen_mdeg_cb_err; } mdp = resp->match_curr.mdp; node = resp->match_curr.mdep[0]; } else { goto vgen_mdeg_cb_err; } /* Validate name and instance */ if (md_get_prop_str(mdp, node, "name", &node_name) != 0) { DERR(vgenp, NULL, "unable to get node name\n"); goto vgen_mdeg_cb_err; } /* is this a virtual-network device? */ if (strcmp(node_name, vnet_propname) != 0) { DERR(vgenp, NULL, "%s: Invalid node name: %s\n", node_name); goto vgen_mdeg_cb_err; } if (md_get_prop_val(mdp, node, "cfg-handle", &inst)) { DERR(vgenp, NULL, "prop(cfg-handle) not found\n"); goto vgen_mdeg_cb_err; } /* is this the right instance of vnet? */ if (inst != vgenp->regprop) { DERR(vgenp, NULL, "Invalid cfg-handle: %lx\n", inst); goto vgen_mdeg_cb_err; } vgen_update_md_prop(vgenp, mdp, node); mutex_exit(&vgenp->lock); return (MDEG_SUCCESS); vgen_mdeg_cb_err: mutex_exit(&vgenp->lock); return (MDEG_FAILURE); } /* * Check to see if the relevant properties in the specified node have * changed, and if so take the appropriate action. */ static void vgen_update_md_prop(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex) { uint16_t pvid; uint16_t *vids; uint16_t nvids; vnet_t *vnetp = vgenp->vnetp; uint32_t mtu; enum { MD_init = 0x1, MD_vlans = 0x2, MD_mtu = 0x4 } updated; int rv; updated = MD_init; /* Read the vlan ids */ vgen_vlan_read_ids(vgenp, VGEN_LOCAL, mdp, mdex, &pvid, &vids, &nvids, NULL); /* Determine if there are any vlan id updates */ if ((pvid != vnetp->pvid) || /* pvid changed? */ (nvids != vnetp->nvids) || /* # of vids changed? */ ((nvids != 0) && (vnetp->nvids != 0) && /* vids changed? */ bcmp(vids, vnetp->vids, sizeof (uint16_t) * nvids))) { updated |= MD_vlans; } /* Read mtu */ vgen_mtu_read(vgenp, mdp, mdex, &mtu); if (mtu != vnetp->mtu) { if (mtu >= ETHERMTU && mtu <= VNET_MAX_MTU) { updated |= MD_mtu; } else { cmn_err(CE_NOTE, "!vnet%d: Unable to process mtu update" " as the specified value:%d is invalid\n", vnetp->instance, mtu); } } /* Now process the updated props */ if (updated & MD_vlans) { /* save the new vlan ids */ vnetp->pvid = pvid; if (vnetp->nvids != 0) { kmem_free(vnetp->vids, sizeof (uint16_t) * vnetp->nvids); vnetp->nvids = 0; } if (nvids != 0) { vnetp->nvids = nvids; vnetp->vids = vids; } /* reset vlan-unaware peers (ver < 1.3) and restart handshake */ vgen_reset_vlan_unaware_ports(vgenp); } else { if (nvids != 0) { kmem_free(vids, sizeof (uint16_t) * nvids); } } if (updated & MD_mtu) { DBG2(vgenp, NULL, "curr_mtu(%d) new_mtu(%d)\n", vnetp->mtu, mtu); rv = vnet_mtu_update(vnetp, mtu); if (rv == 0) { vgenp->max_frame_size = mtu + sizeof (struct ether_header) + VLAN_TAGSZ; } } } /* add a new port to the device */ static int vgen_add_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex) { vgen_port_t *portp; int rv; portp = kmem_zalloc(sizeof (vgen_port_t), KM_SLEEP); rv = vgen_port_read_props(portp, vgenp, mdp, mdex); if (rv != DDI_SUCCESS) { KMEM_FREE(portp); return (DDI_FAILURE); } rv = vgen_port_attach(portp); if (rv != DDI_SUCCESS) { return (DDI_FAILURE); } return (DDI_SUCCESS); } /* read properties of the port from its md node */ static int vgen_port_read_props(vgen_port_t *portp, vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex) { uint64_t port_num; uint64_t *ldc_ids; uint64_t macaddr; uint64_t val; int num_ldcs; int i; int addrsz; int num_nodes = 0; int listsz = 0; mde_cookie_t *listp = NULL; uint8_t *addrp; struct ether_addr ea; /* read "id" property to get the port number */ if (md_get_prop_val(mdp, mdex, id_propname, &port_num)) { DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname); return (DDI_FAILURE); } /* * Find the channel endpoint node(s) under this port node. */ if ((num_nodes = md_node_count(mdp)) <= 0) { DWARN(vgenp, NULL, "invalid number of nodes found (%d)", num_nodes); return (DDI_FAILURE); } /* allocate space for node list */ listsz = num_nodes * sizeof (mde_cookie_t); listp = kmem_zalloc(listsz, KM_NOSLEEP); if (listp == NULL) return (DDI_FAILURE); num_ldcs = md_scan_dag(mdp, mdex, md_find_name(mdp, channel_propname), md_find_name(mdp, "fwd"), listp); if (num_ldcs <= 0) { DWARN(vgenp, NULL, "can't find %s nodes", channel_propname); kmem_free(listp, listsz); return (DDI_FAILURE); } DBG2(vgenp, NULL, "num_ldcs %d", num_ldcs); ldc_ids = kmem_zalloc(num_ldcs * sizeof (uint64_t), KM_NOSLEEP); if (ldc_ids == NULL) { kmem_free(listp, listsz); return (DDI_FAILURE); } for (i = 0; i < num_ldcs; i++) { /* read channel ids */ if (md_get_prop_val(mdp, listp[i], id_propname, &ldc_ids[i])) { DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname); kmem_free(listp, listsz); kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t)); return (DDI_FAILURE); } DBG2(vgenp, NULL, "ldc_id 0x%llx", ldc_ids[i]); } kmem_free(listp, listsz); if (md_get_prop_data(mdp, mdex, rmacaddr_propname, &addrp, &addrsz)) { DWARN(vgenp, NULL, "prop(%s) not found\n", rmacaddr_propname); kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t)); return (DDI_FAILURE); } if (addrsz < ETHERADDRL) { DWARN(vgenp, NULL, "invalid address size (%d)\n", addrsz); kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t)); return (DDI_FAILURE); } macaddr = *((uint64_t *)addrp); DBG2(vgenp, NULL, "remote mac address 0x%llx\n", macaddr); for (i = ETHERADDRL - 1; i >= 0; i--) { ea.ether_addr_octet[i] = macaddr & 0xFF; macaddr >>= 8; } if (vgenp->vsw_portp == NULL) { if (!(md_get_prop_val(mdp, mdex, swport_propname, &val))) { if (val == 0) { (void) atomic_swap_32( &vgenp->vsw_port_refcnt, 0); /* This port is connected to the vsw */ vgenp->vsw_portp = portp; } } } /* now update all properties into the port */ portp->vgenp = vgenp; portp->port_num = port_num; ether_copy(&ea, &portp->macaddr); portp->ldc_ids = kmem_zalloc(sizeof (uint64_t) * num_ldcs, KM_SLEEP); bcopy(ldc_ids, portp->ldc_ids, sizeof (uint64_t) * num_ldcs); portp->num_ldcs = num_ldcs; /* read vlan id properties of this port node */ vgen_vlan_read_ids(portp, VGEN_PEER, mdp, mdex, &portp->pvid, &portp->vids, &portp->nvids, NULL); kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t)); return (DDI_SUCCESS); } /* remove a port from the device */ static int vgen_remove_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex) { uint64_t port_num; vgen_port_t *portp; vgen_portlist_t *plistp; /* read "id" property to get the port number */ if (md_get_prop_val(mdp, mdex, id_propname, &port_num)) { DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname); return (DDI_FAILURE); } plistp = &(vgenp->vgenports); WRITE_ENTER(&plistp->rwlock); portp = vgen_port_lookup(plistp, (int)port_num); if (portp == NULL) { DWARN(vgenp, NULL, "can't find port(%lx)\n", port_num); RW_EXIT(&plistp->rwlock); return (DDI_FAILURE); } vgen_port_detach_mdeg(portp); RW_EXIT(&plistp->rwlock); return (DDI_SUCCESS); } /* attach a port to the device based on mdeg data */ static int vgen_port_attach(vgen_port_t *portp) { int i; vgen_portlist_t *plistp; vgen_t *vgenp; uint64_t *ldcids; uint32_t num_ldcs; mac_register_t *macp; vio_net_res_type_t type; int rv; ASSERT(portp != NULL); vgenp = portp->vgenp; ldcids = portp->ldc_ids; num_ldcs = portp->num_ldcs; DBG1(vgenp, NULL, "port_num(%d)\n", portp->port_num); mutex_init(&portp->lock, NULL, MUTEX_DRIVER, NULL); rw_init(&portp->ldclist.rwlock, NULL, RW_DRIVER, NULL); portp->ldclist.headp = NULL; for (i = 0; i < num_ldcs; i++) { DBG2(vgenp, NULL, "ldcid (%lx)\n", ldcids[i]); if (vgen_ldc_attach(portp, ldcids[i]) == DDI_FAILURE) { vgen_port_detach(portp); return (DDI_FAILURE); } } /* create vlan id hash table */ vgen_vlan_create_hash(portp); if (portp == vgenp->vsw_portp) { /* This port is connected to the switch port */ vgenp->vsw_portp = portp; (void) atomic_swap_32(&portp->use_vsw_port, B_FALSE); type = VIO_NET_RES_LDC_SERVICE; } else { (void) atomic_swap_32(&portp->use_vsw_port, B_TRUE); type = VIO_NET_RES_LDC_GUEST; } if ((macp = mac_alloc(MAC_VERSION)) == NULL) { vgen_port_detach(portp); return (DDI_FAILURE); } macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = portp; macp->m_dip = vgenp->vnetdip; macp->m_src_addr = (uint8_t *)&(vgenp->macaddr); macp->m_callbacks = &vgen_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = ETHERMTU; mutex_enter(&portp->lock); rv = vio_net_resource_reg(macp, type, vgenp->macaddr, portp->macaddr, &portp->vhp, &portp->vcb); mutex_exit(&portp->lock); mac_free(macp); if (rv == 0) { /* link it into the list of ports */ plistp = &(vgenp->vgenports); WRITE_ENTER(&plistp->rwlock); vgen_port_list_insert(portp); RW_EXIT(&plistp->rwlock); } else { DERR(vgenp, NULL, "vio_net_resource_reg failed for portp=0x%p", portp); vgen_port_detach(portp); } DBG1(vgenp, NULL, "exit: port_num(%d)\n", portp->port_num); return (DDI_SUCCESS); } /* detach a port from the device based on mdeg data */ static void vgen_port_detach_mdeg(vgen_port_t *portp) { vgen_t *vgenp = portp->vgenp; DBG1(vgenp, NULL, "enter: port_num(%d)\n", portp->port_num); mutex_enter(&portp->lock); /* stop the port if needed */ if (portp->flags & VGEN_STARTED) { vgen_port_uninit(portp); } mutex_exit(&portp->lock); vgen_port_detach(portp); DBG1(vgenp, NULL, "exit: port_num(%d)\n", portp->port_num); } static int vgen_update_port(vgen_t *vgenp, md_t *curr_mdp, mde_cookie_t curr_mdex, md_t *prev_mdp, mde_cookie_t prev_mdex) { uint64_t cport_num; uint64_t pport_num; vgen_portlist_t *plistp; vgen_port_t *portp; boolean_t updated_vlans = B_FALSE; uint16_t pvid; uint16_t *vids; uint16_t nvids; /* * For now, we get port updates only if vlan ids changed. * We read the port num and do some sanity check. */ if (md_get_prop_val(curr_mdp, curr_mdex, id_propname, &cport_num)) { DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname); return (DDI_FAILURE); } if (md_get_prop_val(prev_mdp, prev_mdex, id_propname, &pport_num)) { DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname); return (DDI_FAILURE); } if (cport_num != pport_num) return (DDI_FAILURE); plistp = &(vgenp->vgenports); READ_ENTER(&plistp->rwlock); portp = vgen_port_lookup(plistp, (int)cport_num); if (portp == NULL) { DWARN(vgenp, NULL, "can't find port(%lx)\n", cport_num); RW_EXIT(&plistp->rwlock); return (DDI_FAILURE); } /* Read the vlan ids */ vgen_vlan_read_ids(portp, VGEN_PEER, curr_mdp, curr_mdex, &pvid, &vids, &nvids, NULL); /* Determine if there are any vlan id updates */ if ((pvid != portp->pvid) || /* pvid changed? */ (nvids != portp->nvids) || /* # of vids changed? */ ((nvids != 0) && (portp->nvids != 0) && /* vids changed? */ bcmp(vids, portp->vids, sizeof (uint16_t) * nvids))) { updated_vlans = B_TRUE; } if (updated_vlans == B_FALSE) { RW_EXIT(&plistp->rwlock); return (DDI_FAILURE); } /* remove the port from vlans it has been assigned to */ vgen_vlan_remove_ids(portp); /* save the new vlan ids */ portp->pvid = pvid; if (portp->nvids != 0) { kmem_free(portp->vids, sizeof (uint16_t) * portp->nvids); portp->nvids = 0; } if (nvids != 0) { portp->vids = kmem_zalloc(sizeof (uint16_t) * nvids, KM_SLEEP); bcopy(vids, portp->vids, sizeof (uint16_t) * nvids); portp->nvids = nvids; kmem_free(vids, sizeof (uint16_t) * nvids); } /* add port to the new vlans */ vgen_vlan_add_ids(portp); /* reset the port if it is vlan unaware (ver < 1.3) */ vgen_vlan_unaware_port_reset(portp); RW_EXIT(&plistp->rwlock); return (DDI_SUCCESS); } static uint64_t vgen_port_stat(vgen_port_t *portp, uint_t stat) { vgen_ldclist_t *ldclp; vgen_ldc_t *ldcp; uint64_t val; val = 0; ldclp = &portp->ldclist; READ_ENTER(&ldclp->rwlock); for (ldcp = ldclp->headp; ldcp != NULL; ldcp = ldcp->nextp) { val += vgen_ldc_stat(ldcp, stat); } RW_EXIT(&ldclp->rwlock); return (val); } /* allocate receive resources */ static int vgen_init_multipools(vgen_ldc_t *ldcp) { size_t data_sz; vgen_t *vgenp = LDC_TO_VGEN(ldcp); int status; uint32_t sz1 = 0; uint32_t sz2 = 0; uint32_t sz3 = 0; uint32_t sz4 = 0; /* * We round up the mtu specified to be a multiple of 2K. * We then create rx pools based on the rounded up size. */ data_sz = vgenp->max_frame_size + VNET_IPALIGN + VNET_LDCALIGN; data_sz = VNET_ROUNDUP_2K(data_sz); /* * If pool sizes are specified, use them. Note that the presence of * the first tunable will be used as a hint. */ if (vgen_rbufsz1 != 0) { sz1 = vgen_rbufsz1; sz2 = vgen_rbufsz2; sz3 = vgen_rbufsz3; sz4 = vgen_rbufsz4; if (sz4 == 0) { /* need 3 pools */ ldcp->max_rxpool_size = sz3; status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS, sz1, sz2, sz3, vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3); } else { ldcp->max_rxpool_size = sz4; status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS + 1, sz1, sz2, sz3, sz4, vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3, vgen_nrbufs4); } return (status); } /* * Pool sizes are not specified. We select the pool sizes based on the * mtu if vnet_jumbo_rxpools is enabled. */ if (vnet_jumbo_rxpools == B_FALSE || data_sz == VNET_2K) { /* * Receive buffer pool allocation based on mtu is disabled. * Use the default mechanism of standard size pool allocation. */ sz1 = VGEN_DBLK_SZ_128; sz2 = VGEN_DBLK_SZ_256; sz3 = VGEN_DBLK_SZ_2048; ldcp->max_rxpool_size = sz3; status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS, sz1, sz2, sz3, vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3); return (status); } switch (data_sz) { case VNET_4K: sz1 = VGEN_DBLK_SZ_128; sz2 = VGEN_DBLK_SZ_256; sz3 = VGEN_DBLK_SZ_2048; sz4 = sz3 << 1; /* 4K */ ldcp->max_rxpool_size = sz4; status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS + 1, sz1, sz2, sz3, sz4, vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3, vgen_nrbufs4); break; default: /* data_sz: 4K+ to 16K */ sz1 = VGEN_DBLK_SZ_256; sz2 = VGEN_DBLK_SZ_2048; sz3 = data_sz >> 1; /* Jumbo-size/2 */ sz4 = data_sz; /* Jumbo-size */ ldcp->max_rxpool_size = sz4; status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS + 1, sz1, sz2, sz3, sz4, vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3, vgen_nrbufs4); break; } return (status); } /* attach the channel corresponding to the given ldc_id to the port */ static int vgen_ldc_attach(vgen_port_t *portp, uint64_t ldc_id) { vgen_t *vgenp; vgen_ldclist_t *ldclp; vgen_ldc_t *ldcp, **prev_ldcp; ldc_attr_t attr; int status; ldc_status_t istatus; char kname[MAXNAMELEN]; int instance; enum {AST_init = 0x0, AST_ldc_alloc = 0x1, AST_mutex_init = 0x2, AST_ldc_init = 0x4, AST_ldc_reg_cb = 0x8, AST_alloc_tx_ring = 0x10, AST_create_rxmblks = 0x20, AST_create_rcv_thread = 0x40} attach_state; attach_state = AST_init; vgenp = portp->vgenp; ldclp = &portp->ldclist; ldcp = kmem_zalloc(sizeof (vgen_ldc_t), KM_NOSLEEP); if (ldcp == NULL) { goto ldc_attach_failed; } ldcp->ldc_id = ldc_id; ldcp->portp = portp; attach_state |= AST_ldc_alloc; mutex_init(&ldcp->txlock, NULL, MUTEX_DRIVER, NULL); mutex_init(&ldcp->cblock, NULL, MUTEX_DRIVER, NULL); mutex_init(&ldcp->tclock, NULL, MUTEX_DRIVER, NULL); mutex_init(&ldcp->wrlock, NULL, MUTEX_DRIVER, NULL); mutex_init(&ldcp->rxlock, NULL, MUTEX_DRIVER, NULL); attach_state |= AST_mutex_init; attr.devclass = LDC_DEV_NT; attr.instance = vgenp->instance; attr.mode = LDC_MODE_UNRELIABLE; attr.mtu = vnet_ldc_mtu; status = ldc_init(ldc_id, &attr, &ldcp->ldc_handle); if (status != 0) { DWARN(vgenp, ldcp, "ldc_init failed,rv (%d)\n", status); goto ldc_attach_failed; } attach_state |= AST_ldc_init; if (vgen_rcv_thread_enabled) { ldcp->rcv_thr_flags = 0; mutex_init(&ldcp->rcv_thr_lock, NULL, MUTEX_DRIVER, NULL); cv_init(&ldcp->rcv_thr_cv, NULL, CV_DRIVER, NULL); ldcp->rcv_thread = thread_create(NULL, 2 * DEFAULTSTKSZ, vgen_ldc_rcv_worker, ldcp, 0, &p0, TS_RUN, maxclsyspri); attach_state |= AST_create_rcv_thread; if (ldcp->rcv_thread == NULL) { DWARN(vgenp, ldcp, "Failed to create worker thread"); goto ldc_attach_failed; } } status = ldc_reg_callback(ldcp->ldc_handle, vgen_ldc_cb, (caddr_t)ldcp); if (status != 0) { DWARN(vgenp, ldcp, "ldc_reg_callback failed, rv (%d)\n", status); goto ldc_attach_failed; } /* * allocate a message for ldc_read()s, big enough to hold ctrl and * data msgs, including raw data msgs used to recv priority frames. */ ldcp->msglen = VIO_PKT_DATA_HDRSIZE + vgenp->max_frame_size; ldcp->ldcmsg = kmem_alloc(ldcp->msglen, KM_SLEEP); attach_state |= AST_ldc_reg_cb; (void) ldc_status(ldcp->ldc_handle, &istatus); ASSERT(istatus == LDC_INIT); ldcp->ldc_status = istatus; /* allocate transmit resources */ status = vgen_alloc_tx_ring(ldcp); if (status != 0) { goto ldc_attach_failed; } attach_state |= AST_alloc_tx_ring; /* allocate receive resources */ status = vgen_init_multipools(ldcp); if (status != 0) { /* * We do not return failure if receive mblk pools can't be * allocated; instead allocb(9F) will be used to dynamically * allocate buffers during receive. */ DWARN(vgenp, ldcp, "vnet%d: status(%d), failed to allocate rx mblk pools for " "channel(0x%lx)\n", vgenp->instance, status, ldcp->ldc_id); } else { attach_state |= AST_create_rxmblks; } /* Setup kstats for the channel */ instance = vgenp->instance; (void) sprintf(kname, "vnetldc0x%lx", ldcp->ldc_id); ldcp->ksp = vgen_setup_kstats("vnet", instance, kname, &ldcp->stats); if (ldcp->ksp == NULL) { goto ldc_attach_failed; } /* initialize vgen_versions supported */ bcopy(vgen_versions, ldcp->vgen_versions, sizeof (ldcp->vgen_versions)); vgen_reset_vnet_proto_ops(ldcp); /* link it into the list of channels for this port */ WRITE_ENTER(&ldclp->rwlock); prev_ldcp = (vgen_ldc_t **)(&ldclp->headp); ldcp->nextp = *prev_ldcp; *prev_ldcp = ldcp; RW_EXIT(&ldclp->rwlock); ldcp->flags |= CHANNEL_ATTACHED; return (DDI_SUCCESS); ldc_attach_failed: if (attach_state & AST_ldc_reg_cb) { (void) ldc_unreg_callback(ldcp->ldc_handle); kmem_free(ldcp->ldcmsg, ldcp->msglen); } if (attach_state & AST_create_rcv_thread) { if (ldcp->rcv_thread != NULL) { vgen_stop_rcv_thread(ldcp); } mutex_destroy(&ldcp->rcv_thr_lock); cv_destroy(&ldcp->rcv_thr_cv); } if (attach_state & AST_create_rxmblks) { vio_mblk_pool_t *fvmp = NULL; vio_destroy_multipools(&ldcp->vmp, &fvmp); ASSERT(fvmp == NULL); } if (attach_state & AST_alloc_tx_ring) { vgen_free_tx_ring(ldcp); } if (attach_state & AST_ldc_init) { (void) ldc_fini(ldcp->ldc_handle); } if (attach_state & AST_mutex_init) { mutex_destroy(&ldcp->tclock); mutex_destroy(&ldcp->txlock); mutex_destroy(&ldcp->cblock); mutex_destroy(&ldcp->wrlock); mutex_destroy(&ldcp->rxlock); } if (attach_state & AST_ldc_alloc) { KMEM_FREE(ldcp); } return (DDI_FAILURE); } /* detach a channel from the port */ static void vgen_ldc_detach(vgen_ldc_t *ldcp) { vgen_port_t *portp; vgen_t *vgenp; vgen_ldc_t *pldcp; vgen_ldc_t **prev_ldcp; vgen_ldclist_t *ldclp; portp = ldcp->portp; vgenp = portp->vgenp; ldclp = &portp->ldclist; prev_ldcp = (vgen_ldc_t **)&ldclp->headp; for (; (pldcp = *prev_ldcp) != NULL; prev_ldcp = &pldcp->nextp) { if (pldcp == ldcp) { break; } } if (pldcp == NULL) { /* invalid ldcp? */ return; } if (ldcp->ldc_status != LDC_INIT) { DWARN(vgenp, ldcp, "ldc_status is not INIT\n"); } if (ldcp->flags & CHANNEL_ATTACHED) { ldcp->flags &= ~(CHANNEL_ATTACHED); (void) ldc_unreg_callback(ldcp->ldc_handle); if (ldcp->rcv_thread != NULL) { /* First stop the receive thread */ vgen_stop_rcv_thread(ldcp); mutex_destroy(&ldcp->rcv_thr_lock); cv_destroy(&ldcp->rcv_thr_cv); } kmem_free(ldcp->ldcmsg, ldcp->msglen); vgen_destroy_kstats(ldcp->ksp); ldcp->ksp = NULL; /* * if we cannot reclaim all mblks, put this * on the list of pools(vgenp->rmp) to be reclaimed when the * device gets detached (see vgen_uninit()). */ vio_destroy_multipools(&ldcp->vmp, &vgenp->rmp); /* free transmit resources */ vgen_free_tx_ring(ldcp); (void) ldc_fini(ldcp->ldc_handle); mutex_destroy(&ldcp->tclock); mutex_destroy(&ldcp->txlock); mutex_destroy(&ldcp->cblock); mutex_destroy(&ldcp->wrlock); mutex_destroy(&ldcp->rxlock); /* unlink it from the list */ *prev_ldcp = ldcp->nextp; KMEM_FREE(ldcp); } } /* * This function allocates transmit resources for the channel. * The resources consist of a transmit descriptor ring and an associated * transmit buffer ring. */ static int vgen_alloc_tx_ring(vgen_ldc_t *ldcp) { void *tbufp; ldc_mem_info_t minfo; uint32_t txdsize; uint32_t tbufsize; int status; vgen_t *vgenp = LDC_TO_VGEN(ldcp); ldcp->num_txds = vnet_ntxds; txdsize = sizeof (vnet_public_desc_t); tbufsize = sizeof (vgen_private_desc_t); /* allocate transmit buffer ring */ tbufp = kmem_zalloc(ldcp->num_txds * tbufsize, KM_NOSLEEP); if (tbufp == NULL) { return (DDI_FAILURE); } /* create transmit descriptor ring */ status = ldc_mem_dring_create(ldcp->num_txds, txdsize, &ldcp->tx_dhandle); if (status) { DWARN(vgenp, ldcp, "ldc_mem_dring_create() failed\n"); kmem_free(tbufp, ldcp->num_txds * tbufsize); return (DDI_FAILURE); } /* get the addr of descripror ring */ status = ldc_mem_dring_info(ldcp->tx_dhandle, &minfo); if (status) { DWARN(vgenp, ldcp, "ldc_mem_dring_info() failed\n"); kmem_free(tbufp, ldcp->num_txds * tbufsize); (void) ldc_mem_dring_destroy(ldcp->tx_dhandle); ldcp->tbufp = NULL; return (DDI_FAILURE); } ldcp->txdp = (vnet_public_desc_t *)(minfo.vaddr); ldcp->tbufp = tbufp; ldcp->txdendp = &((ldcp->txdp)[ldcp->num_txds]); ldcp->tbufendp = &((ldcp->tbufp)[ldcp->num_txds]); return (DDI_SUCCESS); } /* Free transmit resources for the channel */ static void vgen_free_tx_ring(vgen_ldc_t *ldcp) { int tbufsize = sizeof (vgen_private_desc_t); /* free transmit descriptor ring */ (void) ldc_mem_dring_destroy(ldcp->tx_dhandle); /* free transmit buffer ring */ kmem_free(ldcp->tbufp, ldcp->num_txds * tbufsize); ldcp->txdp = ldcp->txdendp = NULL; ldcp->tbufp = ldcp->tbufendp = NULL; } /* enable transmit/receive on the channels for the port */ static void vgen_init_ldcs(vgen_port_t *portp) { vgen_ldclist_t *ldclp = &portp->ldclist; vgen_ldc_t *ldcp; READ_ENTER(&ldclp->rwlock); ldcp = ldclp->headp; for (; ldcp != NULL; ldcp = ldcp->nextp) { (void) vgen_ldc_init(ldcp); } RW_EXIT(&ldclp->rwlock); } /* stop transmit/receive on the channels for the port */ static void vgen_uninit_ldcs(vgen_port_t *portp) { vgen_ldclist_t *ldclp = &portp->ldclist; vgen_ldc_t *ldcp; READ_ENTER(&ldclp->rwlock); ldcp = ldclp->headp; for (; ldcp != NULL; ldcp = ldcp->nextp) { vgen_ldc_uninit(ldcp); } RW_EXIT(&ldclp->rwlock); } /* enable transmit/receive on the channel */ static int vgen_ldc_init(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); ldc_status_t istatus; int rv; uint32_t retries = 0; enum { ST_init = 0x0, ST_ldc_open = 0x1, ST_init_tbufs = 0x2, ST_cb_enable = 0x4} init_state; init_state = ST_init; DBG1(vgenp, ldcp, "enter\n"); LDC_LOCK(ldcp); rv = ldc_open(ldcp->ldc_handle); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_open failed: rv(%d)\n", rv); goto ldcinit_failed; } init_state |= ST_ldc_open; (void) ldc_status(ldcp->ldc_handle, &istatus); if (istatus != LDC_OPEN && istatus != LDC_READY) { DWARN(vgenp, ldcp, "status(%d) is not OPEN/READY\n", istatus); goto ldcinit_failed; } ldcp->ldc_status = istatus; rv = vgen_init_tbufs(ldcp); if (rv != 0) { DWARN(vgenp, ldcp, "vgen_init_tbufs() failed\n"); goto ldcinit_failed; } init_state |= ST_init_tbufs; rv = ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_ENABLE); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_set_cb_mode failed: rv(%d)\n", rv); goto ldcinit_failed; } init_state |= ST_cb_enable; do { rv = ldc_up(ldcp->ldc_handle); if ((rv != 0) && (rv == EWOULDBLOCK)) { DBG2(vgenp, ldcp, "ldc_up err rv(%d)\n", rv); drv_usecwait(VGEN_LDC_UP_DELAY); } if (retries++ >= vgen_ldcup_retries) break; } while (rv == EWOULDBLOCK); (void) ldc_status(ldcp->ldc_handle, &istatus); if (istatus == LDC_UP) { DWARN(vgenp, ldcp, "status(%d) is UP\n", istatus); } ldcp->ldc_status = istatus; /* initialize transmit watchdog timeout */ ldcp->wd_tid = timeout(vgen_ldc_watchdog, (caddr_t)ldcp, drv_usectohz(vnet_ldcwd_interval * 1000)); ldcp->hphase = -1; ldcp->flags |= CHANNEL_STARTED; /* if channel is already UP - start handshake */ if (istatus == LDC_UP) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (ldcp->portp != vgenp->vsw_portp) { /* * As the channel is up, use this port from now on. */ (void) atomic_swap_32( &ldcp->portp->use_vsw_port, B_FALSE); } /* Initialize local session id */ ldcp->local_sid = ddi_get_lbolt(); /* clear peer session id */ ldcp->peer_sid = 0; ldcp->hretries = 0; /* Initiate Handshake process with peer ldc endpoint */ vgen_reset_hphase(ldcp); mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->txlock); mutex_exit(&ldcp->wrlock); mutex_exit(&ldcp->rxlock); vgen_handshake(vh_nextphase(ldcp)); mutex_exit(&ldcp->cblock); } else { LDC_UNLOCK(ldcp); } return (DDI_SUCCESS); ldcinit_failed: if (init_state & ST_cb_enable) { (void) ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_DISABLE); } if (init_state & ST_init_tbufs) { vgen_uninit_tbufs(ldcp); } if (init_state & ST_ldc_open) { (void) ldc_close(ldcp->ldc_handle); } LDC_UNLOCK(ldcp); DBG1(vgenp, ldcp, "exit\n"); return (DDI_FAILURE); } /* stop transmit/receive on the channel */ static void vgen_ldc_uninit(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); int rv; uint_t retries = 0; DBG1(vgenp, ldcp, "enter\n"); LDC_LOCK(ldcp); if ((ldcp->flags & CHANNEL_STARTED) == 0) { LDC_UNLOCK(ldcp); DWARN(vgenp, ldcp, "CHANNEL_STARTED flag is not set\n"); return; } /* disable further callbacks */ rv = ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_DISABLE); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_set_cb_mode failed\n"); } if (vgenp->vsw_portp == ldcp->portp) { vio_net_report_err_t rep_err = ldcp->portp->vcb.vio_net_report_err; rep_err(ldcp->portp->vhp, VIO_NET_RES_DOWN); } /* * clear handshake done bit and wait for pending tx and cb to finish. * release locks before untimeout(9F) is invoked to cancel timeouts. */ ldcp->hphase &= ~(VH_DONE); LDC_UNLOCK(ldcp); /* cancel handshake watchdog timeout */ if (ldcp->htid) { (void) untimeout(ldcp->htid); ldcp->htid = 0; } if (ldcp->cancel_htid) { (void) untimeout(ldcp->cancel_htid); ldcp->cancel_htid = 0; } /* cancel transmit watchdog timeout */ if (ldcp->wd_tid) { (void) untimeout(ldcp->wd_tid); ldcp->wd_tid = 0; } drv_usecwait(1000); if (ldcp->rcv_thread != NULL) { /* * Note that callbacks have been disabled already(above). The * drain function takes care of the condition when an already * executing callback signals the worker to start processing or * the worker has already been signalled and is in the middle of * processing. */ vgen_drain_rcv_thread(ldcp); } /* acquire locks again; any pending transmits and callbacks are done */ LDC_LOCK(ldcp); vgen_reset_hphase(ldcp); vgen_uninit_tbufs(ldcp); /* close the channel - retry on EAGAIN */ while ((rv = ldc_close(ldcp->ldc_handle)) == EAGAIN) { if (++retries > vgen_ldccl_retries) { break; } drv_usecwait(VGEN_LDC_CLOSE_DELAY); } if (rv != 0) { cmn_err(CE_NOTE, "!vnet%d: Error(%d) closing the channel(0x%lx)\n", vgenp->instance, rv, ldcp->ldc_id); } ldcp->ldc_status = LDC_INIT; ldcp->flags &= ~(CHANNEL_STARTED); LDC_UNLOCK(ldcp); DBG1(vgenp, ldcp, "exit\n"); } /* Initialize the transmit buffer ring for the channel */ static int vgen_init_tbufs(vgen_ldc_t *ldcp) { vgen_private_desc_t *tbufp; vnet_public_desc_t *txdp; vio_dring_entry_hdr_t *hdrp; int i; int rv; caddr_t datap = NULL; int ci; uint32_t ncookies; size_t data_sz; vgen_t *vgenp; vgenp = LDC_TO_VGEN(ldcp); bzero(ldcp->tbufp, sizeof (*tbufp) * (ldcp->num_txds)); bzero(ldcp->txdp, sizeof (*txdp) * (ldcp->num_txds)); /* * In order to ensure that the number of ldc cookies per descriptor is * limited to be within the default MAX_COOKIES (2), we take the steps * outlined below: * * Align the entire data buffer area to 8K and carve out per descriptor * data buffers starting from this 8K aligned base address. * * We round up the mtu specified to be a multiple of 2K or 4K. * For sizes up to 12K we round up the size to the next 2K. * For sizes > 12K we round up to the next 4K (otherwise sizes such as * 14K could end up needing 3 cookies, with the buffer spread across * 3 8K pages: 8K+6K, 2K+8K+2K, 6K+8K, ...). */ data_sz = vgenp->max_frame_size + VNET_IPALIGN + VNET_LDCALIGN; if (data_sz <= VNET_12K) { data_sz = VNET_ROUNDUP_2K(data_sz); } else { data_sz = VNET_ROUNDUP_4K(data_sz); } /* allocate extra 8K bytes for alignment */ ldcp->tx_data_sz = (data_sz * ldcp->num_txds) + VNET_8K; datap = kmem_zalloc(ldcp->tx_data_sz, KM_SLEEP); ldcp->tx_datap = datap; /* align the starting address of the data area to 8K */ datap = (caddr_t)VNET_ROUNDUP_8K((uintptr_t)datap); /* * for each private descriptor, allocate a ldc mem_handle which is * required to map the data during transmit, set the flags * to free (available for use by transmit routine). */ for (i = 0; i < ldcp->num_txds; i++) { tbufp = &(ldcp->tbufp[i]); rv = ldc_mem_alloc_handle(ldcp->ldc_handle, &(tbufp->memhandle)); if (rv) { tbufp->memhandle = 0; goto init_tbufs_failed; } /* * bind ldc memhandle to the corresponding transmit buffer. */ ci = ncookies = 0; rv = ldc_mem_bind_handle(tbufp->memhandle, (caddr_t)datap, data_sz, LDC_SHADOW_MAP, LDC_MEM_R, &(tbufp->memcookie[ci]), &ncookies); if (rv != 0) { goto init_tbufs_failed; } /* * successful in binding the handle to tx data buffer. * set datap in the private descr to this buffer. */ tbufp->datap = datap; if ((ncookies == 0) || (ncookies > MAX_COOKIES)) { goto init_tbufs_failed; } for (ci = 1; ci < ncookies; ci++) { rv = ldc_mem_nextcookie(tbufp->memhandle, &(tbufp->memcookie[ci])); if (rv != 0) { goto init_tbufs_failed; } } tbufp->ncookies = ncookies; datap += data_sz; tbufp->flags = VGEN_PRIV_DESC_FREE; txdp = &(ldcp->txdp[i]); hdrp = &txdp->hdr; hdrp->dstate = VIO_DESC_FREE; hdrp->ack = B_FALSE; tbufp->descp = txdp; } /* reset tbuf walking pointers */ ldcp->next_tbufp = ldcp->tbufp; ldcp->cur_tbufp = ldcp->tbufp; /* initialize tx seqnum and index */ ldcp->next_txseq = VNET_ISS; ldcp->next_txi = 0; ldcp->resched_peer = B_TRUE; ldcp->resched_peer_txi = 0; return (DDI_SUCCESS); init_tbufs_failed:; vgen_uninit_tbufs(ldcp); return (DDI_FAILURE); } /* Uninitialize transmit buffer ring for the channel */ static void vgen_uninit_tbufs(vgen_ldc_t *ldcp) { vgen_private_desc_t *tbufp = ldcp->tbufp; int i; /* for each tbuf (priv_desc), free ldc mem_handle */ for (i = 0; i < ldcp->num_txds; i++) { tbufp = &(ldcp->tbufp[i]); if (tbufp->datap) { /* if bound to a ldc memhandle */ (void) ldc_mem_unbind_handle(tbufp->memhandle); tbufp->datap = NULL; } if (tbufp->memhandle) { (void) ldc_mem_free_handle(tbufp->memhandle); tbufp->memhandle = 0; } } if (ldcp->tx_datap) { /* prealloc'd tx data buffer */ kmem_free(ldcp->tx_datap, ldcp->tx_data_sz); ldcp->tx_datap = NULL; ldcp->tx_data_sz = 0; } bzero(ldcp->tbufp, sizeof (vgen_private_desc_t) * (ldcp->num_txds)); bzero(ldcp->txdp, sizeof (vnet_public_desc_t) * (ldcp->num_txds)); } /* clobber tx descriptor ring */ static void vgen_clobber_tbufs(vgen_ldc_t *ldcp) { vnet_public_desc_t *txdp; vgen_private_desc_t *tbufp; vio_dring_entry_hdr_t *hdrp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); int i; #ifdef DEBUG int ndone = 0; #endif for (i = 0; i < ldcp->num_txds; i++) { tbufp = &(ldcp->tbufp[i]); txdp = tbufp->descp; hdrp = &txdp->hdr; if (tbufp->flags & VGEN_PRIV_DESC_BUSY) { tbufp->flags = VGEN_PRIV_DESC_FREE; #ifdef DEBUG if (hdrp->dstate == VIO_DESC_DONE) ndone++; #endif hdrp->dstate = VIO_DESC_FREE; hdrp->ack = B_FALSE; } } /* reset tbuf walking pointers */ ldcp->next_tbufp = ldcp->tbufp; ldcp->cur_tbufp = ldcp->tbufp; /* reset tx seqnum and index */ ldcp->next_txseq = VNET_ISS; ldcp->next_txi = 0; ldcp->resched_peer = B_TRUE; ldcp->resched_peer_txi = 0; DBG2(vgenp, ldcp, "num descrs done (%d)\n", ndone); } /* clobber receive descriptor ring */ static void vgen_clobber_rxds(vgen_ldc_t *ldcp) { ldcp->rx_dhandle = 0; bzero(&ldcp->rx_dcookie, sizeof (ldcp->rx_dcookie)); ldcp->rxdp = NULL; ldcp->next_rxi = 0; ldcp->num_rxds = 0; ldcp->next_rxseq = VNET_ISS; } /* initialize receive descriptor ring */ static int vgen_init_rxds(vgen_ldc_t *ldcp, uint32_t num_desc, uint32_t desc_size, ldc_mem_cookie_t *dcookie, uint32_t ncookies) { int rv; ldc_mem_info_t minfo; rv = ldc_mem_dring_map(ldcp->ldc_handle, dcookie, ncookies, num_desc, desc_size, LDC_DIRECT_MAP, &(ldcp->rx_dhandle)); if (rv != 0) { return (DDI_FAILURE); } /* * sucessfully mapped, now try to * get info about the mapped dring */ rv = ldc_mem_dring_info(ldcp->rx_dhandle, &minfo); if (rv != 0) { (void) ldc_mem_dring_unmap(ldcp->rx_dhandle); return (DDI_FAILURE); } /* * save ring address, number of descriptors. */ ldcp->rxdp = (vnet_public_desc_t *)(minfo.vaddr); bcopy(dcookie, &(ldcp->rx_dcookie), sizeof (*dcookie)); ldcp->num_rxdcookies = ncookies; ldcp->num_rxds = num_desc; ldcp->next_rxi = 0; ldcp->next_rxseq = VNET_ISS; ldcp->dring_mtype = minfo.mtype; return (DDI_SUCCESS); } /* get channel statistics */ static uint64_t vgen_ldc_stat(vgen_ldc_t *ldcp, uint_t stat) { vgen_stats_t *statsp; uint64_t val; val = 0; statsp = &ldcp->stats; switch (stat) { case MAC_STAT_MULTIRCV: val = statsp->multircv; break; case MAC_STAT_BRDCSTRCV: val = statsp->brdcstrcv; break; case MAC_STAT_MULTIXMT: val = statsp->multixmt; break; case MAC_STAT_BRDCSTXMT: val = statsp->brdcstxmt; break; case MAC_STAT_NORCVBUF: val = statsp->norcvbuf; break; case MAC_STAT_IERRORS: val = statsp->ierrors; break; case MAC_STAT_NOXMTBUF: val = statsp->noxmtbuf; break; case MAC_STAT_OERRORS: val = statsp->oerrors; break; case MAC_STAT_COLLISIONS: break; case MAC_STAT_RBYTES: val = statsp->rbytes; break; case MAC_STAT_IPACKETS: val = statsp->ipackets; break; case MAC_STAT_OBYTES: val = statsp->obytes; break; case MAC_STAT_OPACKETS: val = statsp->opackets; break; /* stats not relevant to ldc, return 0 */ case MAC_STAT_IFSPEED: case ETHER_STAT_ALIGN_ERRORS: case ETHER_STAT_FCS_ERRORS: case ETHER_STAT_FIRST_COLLISIONS: case ETHER_STAT_MULTI_COLLISIONS: case ETHER_STAT_DEFER_XMTS: case ETHER_STAT_TX_LATE_COLLISIONS: case ETHER_STAT_EX_COLLISIONS: case ETHER_STAT_MACXMT_ERRORS: case ETHER_STAT_CARRIER_ERRORS: case ETHER_STAT_TOOLONG_ERRORS: case ETHER_STAT_XCVR_ADDR: case ETHER_STAT_XCVR_ID: case ETHER_STAT_XCVR_INUSE: case ETHER_STAT_CAP_1000FDX: case ETHER_STAT_CAP_1000HDX: case ETHER_STAT_CAP_100FDX: case ETHER_STAT_CAP_100HDX: case ETHER_STAT_CAP_10FDX: case ETHER_STAT_CAP_10HDX: case ETHER_STAT_CAP_ASMPAUSE: case ETHER_STAT_CAP_PAUSE: case ETHER_STAT_CAP_AUTONEG: case ETHER_STAT_ADV_CAP_1000FDX: case ETHER_STAT_ADV_CAP_1000HDX: case ETHER_STAT_ADV_CAP_100FDX: case ETHER_STAT_ADV_CAP_100HDX: case ETHER_STAT_ADV_CAP_10FDX: case ETHER_STAT_ADV_CAP_10HDX: case ETHER_STAT_ADV_CAP_ASMPAUSE: case ETHER_STAT_ADV_CAP_PAUSE: case ETHER_STAT_ADV_CAP_AUTONEG: case ETHER_STAT_LP_CAP_1000FDX: case ETHER_STAT_LP_CAP_1000HDX: case ETHER_STAT_LP_CAP_100FDX: case ETHER_STAT_LP_CAP_100HDX: case ETHER_STAT_LP_CAP_10FDX: case ETHER_STAT_LP_CAP_10HDX: case ETHER_STAT_LP_CAP_ASMPAUSE: case ETHER_STAT_LP_CAP_PAUSE: case ETHER_STAT_LP_CAP_AUTONEG: case ETHER_STAT_LINK_ASMPAUSE: case ETHER_STAT_LINK_PAUSE: case ETHER_STAT_LINK_AUTONEG: case ETHER_STAT_LINK_DUPLEX: default: val = 0; break; } return (val); } /* * LDC channel is UP, start handshake process with peer. */ static void vgen_handle_evt_up(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); ASSERT(MUTEX_HELD(&ldcp->cblock)); if (ldcp->portp != vgenp->vsw_portp) { /* * As the channel is up, use this port from now on. */ (void) atomic_swap_32(&ldcp->portp->use_vsw_port, B_FALSE); } /* Initialize local session id */ ldcp->local_sid = ddi_get_lbolt(); /* clear peer session id */ ldcp->peer_sid = 0; ldcp->hretries = 0; if (ldcp->hphase != VH_PHASE0) { vgen_handshake_reset(ldcp); } /* Initiate Handshake process with peer ldc endpoint */ vgen_handshake(vh_nextphase(ldcp)); DBG1(vgenp, ldcp, "exit\n"); } /* * LDC channel is Reset, terminate connection with peer and try to * bring the channel up again. */ static void vgen_handle_evt_reset(vgen_ldc_t *ldcp) { ldc_status_t istatus; vgen_t *vgenp = LDC_TO_VGEN(ldcp); int rv; DBG1(vgenp, ldcp, "enter\n"); ASSERT(MUTEX_HELD(&ldcp->cblock)); if ((ldcp->portp != vgenp->vsw_portp) && (vgenp->vsw_portp != NULL)) { /* * As the channel is down, use the switch port until * the channel becomes ready to be used. */ (void) atomic_swap_32(&ldcp->portp->use_vsw_port, B_TRUE); } if (vgenp->vsw_portp == ldcp->portp) { vio_net_report_err_t rep_err = ldcp->portp->vcb.vio_net_report_err; /* Post a reset message */ rep_err(ldcp->portp->vhp, VIO_NET_RES_DOWN); } if (ldcp->hphase != VH_PHASE0) { vgen_handshake_reset(ldcp); } /* try to bring the channel up */ rv = ldc_up(ldcp->ldc_handle); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_up err rv(%d)\n", rv); } if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status err\n"); } else { ldcp->ldc_status = istatus; } /* if channel is already UP - restart handshake */ if (ldcp->ldc_status == LDC_UP) { vgen_handle_evt_up(ldcp); } DBG1(vgenp, ldcp, "exit\n"); } /* Interrupt handler for the channel */ static uint_t vgen_ldc_cb(uint64_t event, caddr_t arg) { _NOTE(ARGUNUSED(event)) vgen_ldc_t *ldcp; vgen_t *vgenp; ldc_status_t istatus; vgen_stats_t *statsp; timeout_id_t cancel_htid = 0; uint_t ret = LDC_SUCCESS; ldcp = (vgen_ldc_t *)arg; vgenp = LDC_TO_VGEN(ldcp); statsp = &ldcp->stats; DBG1(vgenp, ldcp, "enter\n"); mutex_enter(&ldcp->cblock); statsp->callbacks++; if ((ldcp->ldc_status == LDC_INIT) || (ldcp->ldc_handle == NULL)) { DWARN(vgenp, ldcp, "status(%d) is LDC_INIT\n", ldcp->ldc_status); mutex_exit(&ldcp->cblock); return (LDC_SUCCESS); } /* * cache cancel_htid before the events specific * code may overwrite it. Do not clear ldcp->cancel_htid * as it is also used to indicate the timer to quit immediately. */ cancel_htid = ldcp->cancel_htid; /* * NOTE: not using switch() as event could be triggered by * a state change and a read request. Also the ordering of the * check for the event types is deliberate. */ if (event & LDC_EVT_UP) { if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status err\n"); /* status couldn't be determined */ ret = LDC_FAILURE; goto ldc_cb_ret; } ldcp->ldc_status = istatus; if (ldcp->ldc_status != LDC_UP) { DWARN(vgenp, ldcp, "LDC_EVT_UP received " " but ldc status is not UP(0x%x)\n", ldcp->ldc_status); /* spurious interrupt, return success */ goto ldc_cb_ret; } DWARN(vgenp, ldcp, "event(%lx) UP, status(%d)\n", event, ldcp->ldc_status); vgen_handle_evt_up(ldcp); ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0); } /* Handle RESET/DOWN before READ event */ if (event & (LDC_EVT_RESET | LDC_EVT_DOWN)) { if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status error\n"); /* status couldn't be determined */ ret = LDC_FAILURE; goto ldc_cb_ret; } ldcp->ldc_status = istatus; DWARN(vgenp, ldcp, "event(%lx) RESET/DOWN, status(%d)\n", event, ldcp->ldc_status); vgen_handle_evt_reset(ldcp); /* * As the channel is down/reset, ignore READ event * but print a debug warning message. */ if (event & LDC_EVT_READ) { DWARN(vgenp, ldcp, "LDC_EVT_READ set along with RESET/DOWN\n"); event &= ~LDC_EVT_READ; } } if (event & LDC_EVT_READ) { DBG2(vgenp, ldcp, "event(%lx) READ, status(%d)\n", event, ldcp->ldc_status); ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0); if (ldcp->rcv_thread != NULL) { /* * If the receive thread is enabled, then * wakeup the receive thread to process the * LDC messages. */ mutex_exit(&ldcp->cblock); mutex_enter(&ldcp->rcv_thr_lock); if (!(ldcp->rcv_thr_flags & VGEN_WTHR_DATARCVD)) { ldcp->rcv_thr_flags |= VGEN_WTHR_DATARCVD; cv_signal(&ldcp->rcv_thr_cv); } mutex_exit(&ldcp->rcv_thr_lock); mutex_enter(&ldcp->cblock); } else { vgen_handle_evt_read(ldcp); } } ldc_cb_ret: /* * Check to see if the status of cancel_htid has * changed. If another timer needs to be cancelled, * then let the next callback to clear it. */ if (cancel_htid == 0) { cancel_htid = ldcp->cancel_htid; } mutex_exit(&ldcp->cblock); if (cancel_htid) { /* * Cancel handshake timer. * untimeout(9F) will not return until the pending callback is * cancelled or has run. No problems will result from calling * untimeout if the handler has already completed. * If the timeout handler did run, then it would just * return as cancel_htid is set. */ DBG2(vgenp, ldcp, "calling cance_htid =0x%X \n", cancel_htid); (void) untimeout(cancel_htid); mutex_enter(&ldcp->cblock); /* clear it only if its the same as the one we cancelled */ if (ldcp->cancel_htid == cancel_htid) { ldcp->cancel_htid = 0; } mutex_exit(&ldcp->cblock); } DBG1(vgenp, ldcp, "exit\n"); return (ret); } static void vgen_handle_evt_read(vgen_ldc_t *ldcp) { int rv; uint64_t *ldcmsg; size_t msglen; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_msg_tag_t *tagp; ldc_status_t istatus; boolean_t has_data; DBG1(vgenp, ldcp, "enter\n"); ldcmsg = ldcp->ldcmsg; /* * If the receive thread is enabled, then the cblock * need to be acquired here. If not, the vgen_ldc_cb() * calls this function with cblock held already. */ if (ldcp->rcv_thread != NULL) { mutex_enter(&ldcp->cblock); } else { ASSERT(MUTEX_HELD(&ldcp->cblock)); } vgen_evt_read: do { msglen = ldcp->msglen; rv = ldc_read(ldcp->ldc_handle, (caddr_t)ldcmsg, &msglen); if (rv != 0) { DWARN(vgenp, ldcp, "err rv(%d) len(%d)\n", rv, msglen); if (rv == ECONNRESET) goto vgen_evtread_error; break; } if (msglen == 0) { DBG2(vgenp, ldcp, "ldc_read NODATA"); break; } DBG2(vgenp, ldcp, "ldc_read msglen(%d)", msglen); tagp = (vio_msg_tag_t *)ldcmsg; if (ldcp->peer_sid) { /* * check sid only after we have received peer's sid * in the version negotiate msg. */ #ifdef DEBUG if (vgen_hdbg & HDBG_BAD_SID) { /* simulate bad sid condition */ tagp->vio_sid = 0; vgen_hdbg &= ~(HDBG_BAD_SID); } #endif rv = vgen_check_sid(ldcp, tagp); if (rv != VGEN_SUCCESS) { /* * If sid mismatch is detected, * reset the channel. */ ldcp->need_ldc_reset = B_TRUE; goto vgen_evtread_error; } } switch (tagp->vio_msgtype) { case VIO_TYPE_CTRL: rv = vgen_handle_ctrlmsg(ldcp, tagp); break; case VIO_TYPE_DATA: rv = vgen_handle_datamsg(ldcp, tagp, msglen); break; case VIO_TYPE_ERR: vgen_handle_errmsg(ldcp, tagp); break; default: DWARN(vgenp, ldcp, "Unknown VIO_TYPE(%x)\n", tagp->vio_msgtype); break; } /* * If an error is encountered, stop processing and * handle the error. */ if (rv != 0) { goto vgen_evtread_error; } } while (msglen); /* check once more before exiting */ rv = ldc_chkq(ldcp->ldc_handle, &has_data); if ((rv == 0) && (has_data == B_TRUE)) { DTRACE_PROBE(vgen_chkq); goto vgen_evt_read; } vgen_evtread_error: if (rv == ECONNRESET) { if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status err\n"); } else { ldcp->ldc_status = istatus; } vgen_handle_evt_reset(ldcp); } else if (rv) { vgen_handshake_retry(ldcp); } /* * If the receive thread is enabled, then cancel the * handshake timeout here. */ if (ldcp->rcv_thread != NULL) { timeout_id_t cancel_htid = ldcp->cancel_htid; mutex_exit(&ldcp->cblock); if (cancel_htid) { /* * Cancel handshake timer. untimeout(9F) will * not return until the pending callback is cancelled * or has run. No problems will result from calling * untimeout if the handler has already completed. * If the timeout handler did run, then it would just * return as cancel_htid is set. */ DBG2(vgenp, ldcp, "calling cance_htid =0x%X \n", cancel_htid); (void) untimeout(cancel_htid); /* * clear it only if its the same as the one we * cancelled */ mutex_enter(&ldcp->cblock); if (ldcp->cancel_htid == cancel_htid) { ldcp->cancel_htid = 0; } mutex_exit(&ldcp->cblock); } } DBG1(vgenp, ldcp, "exit\n"); } /* vgen handshake functions */ /* change the hphase for the channel to the next phase */ static vgen_ldc_t * vh_nextphase(vgen_ldc_t *ldcp) { if (ldcp->hphase == VH_PHASE3) { ldcp->hphase = VH_DONE; } else { ldcp->hphase++; } return (ldcp); } /* * wrapper routine to send the given message over ldc using ldc_write(). */ static int vgen_sendmsg(vgen_ldc_t *ldcp, caddr_t msg, size_t msglen, boolean_t caller_holds_lock) { int rv; size_t len; uint32_t retries = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_msg_tag_t *tagp = (vio_msg_tag_t *)msg; vio_dring_msg_t *dmsg; vio_raw_data_msg_t *rmsg; boolean_t data_msg = B_FALSE; len = msglen; if ((len == 0) || (msg == NULL)) return (VGEN_FAILURE); if (!caller_holds_lock) { mutex_enter(&ldcp->wrlock); } if (tagp->vio_subtype == VIO_SUBTYPE_INFO) { if (tagp->vio_subtype_env == VIO_DRING_DATA) { dmsg = (vio_dring_msg_t *)tagp; dmsg->seq_num = ldcp->next_txseq; data_msg = B_TRUE; } else if (tagp->vio_subtype_env == VIO_PKT_DATA) { rmsg = (vio_raw_data_msg_t *)tagp; rmsg->seq_num = ldcp->next_txseq; data_msg = B_TRUE; } } do { len = msglen; rv = ldc_write(ldcp->ldc_handle, (caddr_t)msg, &len); if (retries++ >= vgen_ldcwr_retries) break; } while (rv == EWOULDBLOCK); if (rv == 0 && data_msg == B_TRUE) { ldcp->next_txseq++; } if (!caller_holds_lock) { mutex_exit(&ldcp->wrlock); } if (rv != 0) { DWARN(vgenp, ldcp, "ldc_write failed: rv(%d)\n", rv, msglen); return (rv); } if (len != msglen) { DWARN(vgenp, ldcp, "ldc_write failed: rv(%d) msglen (%d)\n", rv, msglen); return (VGEN_FAILURE); } return (VGEN_SUCCESS); } /* send version negotiate message to the peer over ldc */ static int vgen_send_version_negotiate(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_ver_msg_t vermsg; vio_msg_tag_t *tagp = &vermsg.tag; int rv; bzero(&vermsg, sizeof (vermsg)); tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VIO_VER_INFO; tagp->vio_sid = ldcp->local_sid; /* get version msg payload from ldcp->local */ vermsg.ver_major = ldcp->local_hparams.ver_major; vermsg.ver_minor = ldcp->local_hparams.ver_minor; vermsg.dev_class = ldcp->local_hparams.dev_class; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (vermsg), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); return (rv); } ldcp->hstate |= VER_INFO_SENT; DBG2(vgenp, ldcp, "VER_INFO_SENT ver(%d,%d)\n", vermsg.ver_major, vermsg.ver_minor); return (VGEN_SUCCESS); } /* send attr info message to the peer over ldc */ static int vgen_send_attr_info(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vnet_attr_msg_t attrmsg; vio_msg_tag_t *tagp = &attrmsg.tag; int rv; bzero(&attrmsg, sizeof (attrmsg)); tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VIO_ATTR_INFO; tagp->vio_sid = ldcp->local_sid; /* get attr msg payload from ldcp->local */ attrmsg.mtu = ldcp->local_hparams.mtu; attrmsg.addr = ldcp->local_hparams.addr; attrmsg.addr_type = ldcp->local_hparams.addr_type; attrmsg.xfer_mode = ldcp->local_hparams.xfer_mode; attrmsg.ack_freq = ldcp->local_hparams.ack_freq; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (attrmsg), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); return (rv); } ldcp->hstate |= ATTR_INFO_SENT; DBG2(vgenp, ldcp, "ATTR_INFO_SENT\n"); return (VGEN_SUCCESS); } /* send descriptor ring register message to the peer over ldc */ static int vgen_send_dring_reg(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_dring_reg_msg_t msg; vio_msg_tag_t *tagp = &msg.tag; int rv; bzero(&msg, sizeof (msg)); tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VIO_DRING_REG; tagp->vio_sid = ldcp->local_sid; /* get dring info msg payload from ldcp->local */ bcopy(&(ldcp->local_hparams.dring_cookie), (msg.cookie), sizeof (ldc_mem_cookie_t)); msg.ncookies = ldcp->local_hparams.num_dcookies; msg.num_descriptors = ldcp->local_hparams.num_desc; msg.descriptor_size = ldcp->local_hparams.desc_size; /* * dring_ident is set to 0. After mapping the dring, peer sets this * value and sends it in the ack, which is saved in * vgen_handle_dring_reg(). */ msg.dring_ident = 0; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (msg), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); return (rv); } ldcp->hstate |= DRING_INFO_SENT; DBG2(vgenp, ldcp, "DRING_INFO_SENT \n"); return (VGEN_SUCCESS); } static int vgen_send_rdx_info(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_rdx_msg_t rdxmsg; vio_msg_tag_t *tagp = &rdxmsg.tag; int rv; bzero(&rdxmsg, sizeof (rdxmsg)); tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VIO_RDX; tagp->vio_sid = ldcp->local_sid; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (rdxmsg), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); return (rv); } ldcp->hstate |= RDX_INFO_SENT; DBG2(vgenp, ldcp, "RDX_INFO_SENT\n"); return (VGEN_SUCCESS); } /* send descriptor ring data message to the peer over ldc */ static int vgen_send_dring_data(vgen_ldc_t *ldcp, uint32_t start, int32_t end) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_dring_msg_t dringmsg, *msgp = &dringmsg; vio_msg_tag_t *tagp = &msgp->tag; vgen_stats_t *statsp = &ldcp->stats; int rv; bzero(msgp, sizeof (*msgp)); tagp->vio_msgtype = VIO_TYPE_DATA; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VIO_DRING_DATA; tagp->vio_sid = ldcp->local_sid; msgp->dring_ident = ldcp->local_hparams.dring_ident; msgp->start_idx = start; msgp->end_idx = end; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (dringmsg), B_TRUE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); return (rv); } statsp->dring_data_msgs++; DBG2(vgenp, ldcp, "DRING_DATA_SENT \n"); return (VGEN_SUCCESS); } /* send multicast addr info message to vsw */ static int vgen_send_mcast_info(vgen_ldc_t *ldcp) { vnet_mcast_msg_t mcastmsg; vnet_mcast_msg_t *msgp; vio_msg_tag_t *tagp; vgen_t *vgenp; struct ether_addr *mca; int rv; int i; uint32_t size; uint32_t mccount; uint32_t n; msgp = &mcastmsg; tagp = &msgp->tag; vgenp = LDC_TO_VGEN(ldcp); mccount = vgenp->mccount; i = 0; do { tagp->vio_msgtype = VIO_TYPE_CTRL; tagp->vio_subtype = VIO_SUBTYPE_INFO; tagp->vio_subtype_env = VNET_MCAST_INFO; tagp->vio_sid = ldcp->local_sid; n = ((mccount >= VNET_NUM_MCAST) ? VNET_NUM_MCAST : mccount); size = n * sizeof (struct ether_addr); mca = &(vgenp->mctab[i]); bcopy(mca, (msgp->mca), size); msgp->set = B_TRUE; msgp->count = n; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msgp), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg err(%d)\n", rv); return (rv); } mccount -= n; i += n; } while (mccount); return (VGEN_SUCCESS); } /* Initiate Phase 2 of handshake */ static int vgen_handshake_phase2(vgen_ldc_t *ldcp) { int rv; uint32_t ncookies = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); #ifdef DEBUG if (vgen_hdbg & HDBG_OUT_STATE) { /* simulate out of state condition */ vgen_hdbg &= ~(HDBG_OUT_STATE); rv = vgen_send_rdx_info(ldcp); return (rv); } if (vgen_hdbg & HDBG_TIMEOUT) { /* simulate timeout condition */ vgen_hdbg &= ~(HDBG_TIMEOUT); return (VGEN_SUCCESS); } #endif rv = vgen_send_attr_info(ldcp); if (rv != VGEN_SUCCESS) { return (rv); } /* Bind descriptor ring to the channel */ if (ldcp->num_txdcookies == 0) { rv = ldc_mem_dring_bind(ldcp->ldc_handle, ldcp->tx_dhandle, LDC_DIRECT_MAP | LDC_SHADOW_MAP, LDC_MEM_RW, &ldcp->tx_dcookie, &ncookies); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_mem_dring_bind failed " "rv(%x)\n", rv); return (rv); } ASSERT(ncookies == 1); ldcp->num_txdcookies = ncookies; } /* update local dring_info params */ bcopy(&(ldcp->tx_dcookie), &(ldcp->local_hparams.dring_cookie), sizeof (ldc_mem_cookie_t)); ldcp->local_hparams.num_dcookies = ldcp->num_txdcookies; ldcp->local_hparams.num_desc = ldcp->num_txds; ldcp->local_hparams.desc_size = sizeof (vnet_public_desc_t); rv = vgen_send_dring_reg(ldcp); if (rv != VGEN_SUCCESS) { return (rv); } return (VGEN_SUCCESS); } /* * Set vnet-protocol-version dependent functions based on version. */ static void vgen_set_vnet_proto_ops(vgen_ldc_t *ldcp) { vgen_hparams_t *lp = &ldcp->local_hparams; vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (VGEN_VER_GTEQ(ldcp, 1, 4)) { /* * If the version negotiated with peer is >= 1.4(Jumbo Frame * Support), set the mtu in our attributes to max_frame_size. */ lp->mtu = vgenp->max_frame_size; } else if (VGEN_VER_EQ(ldcp, 1, 3)) { /* * If the version negotiated with peer is == 1.3 (Vlan Tag * Support) set the attr.mtu to ETHERMAX + VLAN_TAGSZ. */ lp->mtu = ETHERMAX + VLAN_TAGSZ; } else { vgen_port_t *portp = ldcp->portp; vnet_t *vnetp = vgenp->vnetp; /* * Pre-1.3 peers expect max frame size of ETHERMAX. * We can negotiate that size with those peers provided the * following conditions are true: * - Only pvid is defined for our peer and there are no vids. * - pvids are equal. * If the above conditions are true, then we can send/recv only * untagged frames of max size ETHERMAX. */ if (portp->nvids == 0 && portp->pvid == vnetp->pvid) { lp->mtu = ETHERMAX; } } if (VGEN_VER_GTEQ(ldcp, 1, 2)) { /* Versions >= 1.2 */ if (VGEN_PRI_ETH_DEFINED(vgenp)) { /* * enable priority routines and pkt mode only if * at least one pri-eth-type is specified in MD. */ ldcp->tx = vgen_ldcsend; ldcp->rx_pktdata = vgen_handle_pkt_data; /* set xfer mode for vgen_send_attr_info() */ lp->xfer_mode = VIO_PKT_MODE | VIO_DRING_MODE_V1_2; } else { /* no priority eth types defined in MD */ ldcp->tx = vgen_ldcsend_dring; ldcp->rx_pktdata = vgen_handle_pkt_data_nop; /* set xfer mode for vgen_send_attr_info() */ lp->xfer_mode = VIO_DRING_MODE_V1_2; } } else { /* Versions prior to 1.2 */ vgen_reset_vnet_proto_ops(ldcp); } } /* * Reset vnet-protocol-version dependent functions to pre-v1.2. */ static void vgen_reset_vnet_proto_ops(vgen_ldc_t *ldcp) { vgen_hparams_t *lp = &ldcp->local_hparams; ldcp->tx = vgen_ldcsend_dring; ldcp->rx_pktdata = vgen_handle_pkt_data_nop; /* set xfer mode for vgen_send_attr_info() */ lp->xfer_mode = VIO_DRING_MODE_V1_0; } static void vgen_vlan_unaware_port_reset(vgen_port_t *portp) { vgen_ldclist_t *ldclp; vgen_ldc_t *ldcp; vgen_t *vgenp = portp->vgenp; vnet_t *vnetp = vgenp->vnetp; ldclp = &portp->ldclist; READ_ENTER(&ldclp->rwlock); /* * NOTE: for now, we will assume we have a single channel. */ if (ldclp->headp == NULL) { RW_EXIT(&ldclp->rwlock); return; } ldcp = ldclp->headp; mutex_enter(&ldcp->cblock); /* * If the peer is vlan_unaware(ver < 1.3), reset channel and terminate * the connection. See comments in vgen_set_vnet_proto_ops(). */ if (ldcp->hphase == VH_DONE && VGEN_VER_LT(ldcp, 1, 3) && (portp->nvids != 0 || portp->pvid != vnetp->pvid)) { ldcp->need_ldc_reset = B_TRUE; vgen_handshake_retry(ldcp); } mutex_exit(&ldcp->cblock); RW_EXIT(&ldclp->rwlock); } static void vgen_reset_vlan_unaware_ports(vgen_t *vgenp) { vgen_port_t *portp; vgen_portlist_t *plistp; plistp = &(vgenp->vgenports); READ_ENTER(&plistp->rwlock); for (portp = plistp->headp; portp != NULL; portp = portp->nextp) { vgen_vlan_unaware_port_reset(portp); } RW_EXIT(&plistp->rwlock); } /* * This function resets the handshake phase to VH_PHASE0(pre-handshake phase). * This can happen after a channel comes up (status: LDC_UP) or * when handshake gets terminated due to various conditions. */ static void vgen_reset_hphase(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); ldc_status_t istatus; int rv; DBG1(vgenp, ldcp, "enter\n"); /* reset hstate and hphase */ ldcp->hstate = 0; ldcp->hphase = VH_PHASE0; vgen_reset_vnet_proto_ops(ldcp); /* * Save the id of pending handshake timer in cancel_htid. * This will be checked in vgen_ldc_cb() and the handshake timer will * be cancelled after releasing cblock. */ if (ldcp->htid) { ldcp->cancel_htid = ldcp->htid; ldcp->htid = 0; } if (ldcp->local_hparams.dring_ready) { ldcp->local_hparams.dring_ready = B_FALSE; } /* Unbind tx descriptor ring from the channel */ if (ldcp->num_txdcookies) { rv = ldc_mem_dring_unbind(ldcp->tx_dhandle); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_mem_dring_unbind failed\n"); } ldcp->num_txdcookies = 0; } if (ldcp->peer_hparams.dring_ready) { ldcp->peer_hparams.dring_ready = B_FALSE; /* Unmap peer's dring */ (void) ldc_mem_dring_unmap(ldcp->rx_dhandle); vgen_clobber_rxds(ldcp); } vgen_clobber_tbufs(ldcp); /* * clear local handshake params and initialize. */ bzero(&(ldcp->local_hparams), sizeof (ldcp->local_hparams)); /* set version to the highest version supported */ ldcp->local_hparams.ver_major = ldcp->vgen_versions[0].ver_major; ldcp->local_hparams.ver_minor = ldcp->vgen_versions[0].ver_minor; ldcp->local_hparams.dev_class = VDEV_NETWORK; /* set attr_info params */ ldcp->local_hparams.mtu = vgenp->max_frame_size; ldcp->local_hparams.addr = vnet_macaddr_strtoul(vgenp->macaddr); ldcp->local_hparams.addr_type = ADDR_TYPE_MAC; ldcp->local_hparams.xfer_mode = VIO_DRING_MODE_V1_0; ldcp->local_hparams.ack_freq = 0; /* don't need acks */ /* * Note: dring is created, but not bound yet. * local dring_info params will be updated when we bind the dring in * vgen_handshake_phase2(). * dring_ident is set to 0. After mapping the dring, peer sets this * value and sends it in the ack, which is saved in * vgen_handle_dring_reg(). */ ldcp->local_hparams.dring_ident = 0; /* clear peer_hparams */ bzero(&(ldcp->peer_hparams), sizeof (ldcp->peer_hparams)); /* reset the channel if required */ if (ldcp->need_ldc_reset) { DWARN(vgenp, ldcp, "Doing Channel Reset...\n"); ldcp->need_ldc_reset = B_FALSE; (void) ldc_down(ldcp->ldc_handle); (void) ldc_status(ldcp->ldc_handle, &istatus); DBG2(vgenp, ldcp, "Reset Done,ldc_status(%x)\n", istatus); ldcp->ldc_status = istatus; /* clear sids */ ldcp->local_sid = 0; ldcp->peer_sid = 0; /* try to bring the channel up */ rv = ldc_up(ldcp->ldc_handle); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_up err rv(%d)\n", rv); } if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status err\n"); } else { ldcp->ldc_status = istatus; } } } /* wrapper function for vgen_reset_hphase */ static void vgen_handshake_reset(vgen_ldc_t *ldcp) { ASSERT(MUTEX_HELD(&ldcp->cblock)); mutex_enter(&ldcp->rxlock); mutex_enter(&ldcp->wrlock); mutex_enter(&ldcp->txlock); mutex_enter(&ldcp->tclock); vgen_reset_hphase(ldcp); mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->txlock); mutex_exit(&ldcp->wrlock); mutex_exit(&ldcp->rxlock); } /* * Initiate handshake with the peer by sending various messages * based on the handshake-phase that the channel is currently in. */ static void vgen_handshake(vgen_ldc_t *ldcp) { uint32_t hphase = ldcp->hphase; vgen_t *vgenp = LDC_TO_VGEN(ldcp); ldc_status_t istatus; int rv = 0; switch (hphase) { case VH_PHASE1: /* * start timer, for entire handshake process, turn this timer * off if all phases of handshake complete successfully and * hphase goes to VH_DONE(below) or * vgen_reset_hphase() gets called or * channel is reset due to errors or * vgen_ldc_uninit() is invoked(vgen_stop). */ ASSERT(ldcp->htid == 0); ldcp->htid = timeout(vgen_hwatchdog, (caddr_t)ldcp, drv_usectohz(vgen_hwd_interval * MICROSEC)); /* Phase 1 involves negotiating the version */ rv = vgen_send_version_negotiate(ldcp); break; case VH_PHASE2: rv = vgen_handshake_phase2(ldcp); break; case VH_PHASE3: rv = vgen_send_rdx_info(ldcp); break; case VH_DONE: /* * Save the id of pending handshake timer in cancel_htid. * This will be checked in vgen_ldc_cb() and the handshake * timer will be cancelled after releasing cblock. */ if (ldcp->htid) { ldcp->cancel_htid = ldcp->htid; ldcp->htid = 0; } ldcp->hretries = 0; DBG1(vgenp, ldcp, "Handshake Done\n"); if (ldcp->portp == vgenp->vsw_portp) { /* * If this channel(port) is connected to vsw, * need to sync multicast table with vsw. */ mutex_exit(&ldcp->cblock); mutex_enter(&vgenp->lock); rv = vgen_send_mcast_info(ldcp); mutex_exit(&vgenp->lock); mutex_enter(&ldcp->cblock); if (rv != VGEN_SUCCESS) break; } /* * Check if mac layer should be notified to restart * transmissions. This can happen if the channel got * reset and vgen_clobber_tbufs() is called, while * need_resched is set. */ mutex_enter(&ldcp->tclock); if (ldcp->need_resched) { vio_net_tx_update_t vtx_update = ldcp->portp->vcb.vio_net_tx_update; ldcp->need_resched = B_FALSE; vtx_update(ldcp->portp->vhp); } mutex_exit(&ldcp->tclock); break; default: break; } if (rv == ECONNRESET) { if (ldc_status(ldcp->ldc_handle, &istatus) != 0) { DWARN(vgenp, ldcp, "ldc_status err\n"); } else { ldcp->ldc_status = istatus; } vgen_handle_evt_reset(ldcp); } else if (rv) { vgen_handshake_reset(ldcp); } } /* * Check if the current handshake phase has completed successfully and * return the status. */ static int vgen_handshake_done(vgen_ldc_t *ldcp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); uint32_t hphase = ldcp->hphase; int status = 0; switch (hphase) { case VH_PHASE1: /* * Phase1 is done, if version negotiation * completed successfully. */ status = ((ldcp->hstate & VER_NEGOTIATED) == VER_NEGOTIATED); break; case VH_PHASE2: /* * Phase 2 is done, if attr info and dring info * have been exchanged successfully. */ status = (((ldcp->hstate & ATTR_INFO_EXCHANGED) == ATTR_INFO_EXCHANGED) && ((ldcp->hstate & DRING_INFO_EXCHANGED) == DRING_INFO_EXCHANGED)); break; case VH_PHASE3: /* Phase 3 is done, if rdx msg has been exchanged */ status = ((ldcp->hstate & RDX_EXCHANGED) == RDX_EXCHANGED); break; default: break; } if (status == 0) { return (VGEN_FAILURE); } DBG2(vgenp, ldcp, "PHASE(%d)\n", hphase); return (VGEN_SUCCESS); } /* retry handshake on failure */ static void vgen_handshake_retry(vgen_ldc_t *ldcp) { /* reset handshake phase */ vgen_handshake_reset(ldcp); /* handshake retry is specified and the channel is UP */ if (vgen_max_hretries && (ldcp->ldc_status == LDC_UP)) { if (ldcp->hretries++ < vgen_max_hretries) { ldcp->local_sid = ddi_get_lbolt(); vgen_handshake(vh_nextphase(ldcp)); } } } /* * Handle a version info msg from the peer or an ACK/NACK from the peer * to a version info msg that we sent. */ static int vgen_handle_version_negotiate(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vgen_t *vgenp; vio_ver_msg_t *vermsg = (vio_ver_msg_t *)tagp; int ack = 0; int failed = 0; int idx; vgen_ver_t *versions = ldcp->vgen_versions; int rv = 0; vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: /* Cache sid of peer if this is the first time */ if (ldcp->peer_sid == 0) { DBG2(vgenp, ldcp, "Caching peer_sid(%x)\n", tagp->vio_sid); ldcp->peer_sid = tagp->vio_sid; } if (ldcp->hphase != VH_PHASE1) { /* * If we are not already in VH_PHASE1, reset to * pre-handshake state, and initiate handshake * to the peer too. */ vgen_handshake_reset(ldcp); vgen_handshake(vh_nextphase(ldcp)); } ldcp->hstate |= VER_INFO_RCVD; /* save peer's requested values */ ldcp->peer_hparams.ver_major = vermsg->ver_major; ldcp->peer_hparams.ver_minor = vermsg->ver_minor; ldcp->peer_hparams.dev_class = vermsg->dev_class; if ((vermsg->dev_class != VDEV_NETWORK) && (vermsg->dev_class != VDEV_NETWORK_SWITCH)) { /* unsupported dev_class, send NACK */ DWARN(vgenp, ldcp, "Version Negotiation Failed\n"); tagp->vio_subtype = VIO_SUBTYPE_NACK; tagp->vio_sid = ldcp->local_sid; /* send reply msg back to peer */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*vermsg), B_FALSE); if (rv != VGEN_SUCCESS) { return (rv); } return (VGEN_FAILURE); } DBG2(vgenp, ldcp, "VER_INFO_RCVD, ver(%d,%d)\n", vermsg->ver_major, vermsg->ver_minor); idx = 0; for (;;) { if (vermsg->ver_major > versions[idx].ver_major) { /* nack with next lower version */ tagp->vio_subtype = VIO_SUBTYPE_NACK; vermsg->ver_major = versions[idx].ver_major; vermsg->ver_minor = versions[idx].ver_minor; break; } if (vermsg->ver_major == versions[idx].ver_major) { /* major version match - ACK version */ tagp->vio_subtype = VIO_SUBTYPE_ACK; ack = 1; /* * lower minor version to the one this endpt * supports, if necessary */ if (vermsg->ver_minor > versions[idx].ver_minor) { vermsg->ver_minor = versions[idx].ver_minor; ldcp->peer_hparams.ver_minor = versions[idx].ver_minor; } break; } idx++; if (idx == VGEN_NUM_VER) { /* no version match - send NACK */ tagp->vio_subtype = VIO_SUBTYPE_NACK; vermsg->ver_major = 0; vermsg->ver_minor = 0; failed = 1; break; } } tagp->vio_sid = ldcp->local_sid; /* send reply msg back to peer */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*vermsg), B_FALSE); if (rv != VGEN_SUCCESS) { return (rv); } if (ack) { ldcp->hstate |= VER_ACK_SENT; DBG2(vgenp, ldcp, "VER_ACK_SENT, ver(%d,%d) \n", vermsg->ver_major, vermsg->ver_minor); } if (failed) { DWARN(vgenp, ldcp, "Negotiation Failed\n"); return (VGEN_FAILURE); } if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { /* VER_ACK_SENT and VER_ACK_RCVD */ /* local and peer versions match? */ ASSERT((ldcp->local_hparams.ver_major == ldcp->peer_hparams.ver_major) && (ldcp->local_hparams.ver_minor == ldcp->peer_hparams.ver_minor)); vgen_set_vnet_proto_ops(ldcp); /* move to the next phase */ vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_ACK: if (ldcp->hphase != VH_PHASE1) { /* This should not happen. */ DWARN(vgenp, ldcp, "Invalid Phase(%u)\n", ldcp->hphase); return (VGEN_FAILURE); } /* SUCCESS - we have agreed on a version */ ldcp->local_hparams.ver_major = vermsg->ver_major; ldcp->local_hparams.ver_minor = vermsg->ver_minor; ldcp->hstate |= VER_ACK_RCVD; DBG2(vgenp, ldcp, "VER_ACK_RCVD, ver(%d,%d) \n", vermsg->ver_major, vermsg->ver_minor); if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { /* VER_ACK_SENT and VER_ACK_RCVD */ /* local and peer versions match? */ ASSERT((ldcp->local_hparams.ver_major == ldcp->peer_hparams.ver_major) && (ldcp->local_hparams.ver_minor == ldcp->peer_hparams.ver_minor)); vgen_set_vnet_proto_ops(ldcp); /* move to the next phase */ vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_NACK: if (ldcp->hphase != VH_PHASE1) { /* This should not happen. */ DWARN(vgenp, ldcp, "VER_NACK_RCVD Invalid " "Phase(%u)\n", ldcp->hphase); return (VGEN_FAILURE); } DBG2(vgenp, ldcp, "VER_NACK_RCVD next ver(%d,%d)\n", vermsg->ver_major, vermsg->ver_minor); /* check if version in NACK is zero */ if (vermsg->ver_major == 0 && vermsg->ver_minor == 0) { /* * Version Negotiation has failed. */ DWARN(vgenp, ldcp, "Version Negotiation Failed\n"); return (VGEN_FAILURE); } idx = 0; for (;;) { if (vermsg->ver_major > versions[idx].ver_major) { /* select next lower version */ ldcp->local_hparams.ver_major = versions[idx].ver_major; ldcp->local_hparams.ver_minor = versions[idx].ver_minor; break; } if (vermsg->ver_major == versions[idx].ver_major) { /* major version match */ ldcp->local_hparams.ver_major = versions[idx].ver_major; ldcp->local_hparams.ver_minor = versions[idx].ver_minor; break; } idx++; if (idx == VGEN_NUM_VER) { /* * no version match. * Version Negotiation has failed. */ DWARN(vgenp, ldcp, "Version Negotiation Failed\n"); return (VGEN_FAILURE); } } rv = vgen_send_version_negotiate(ldcp); if (rv != VGEN_SUCCESS) { return (rv); } break; } DBG1(vgenp, ldcp, "exit\n"); return (VGEN_SUCCESS); } /* Check if the attributes are supported */ static int vgen_check_attr_info(vgen_ldc_t *ldcp, vnet_attr_msg_t *msg) { vgen_hparams_t *lp = &ldcp->local_hparams; if ((msg->addr_type != ADDR_TYPE_MAC) || (msg->ack_freq > 64) || (msg->xfer_mode != lp->xfer_mode)) { return (VGEN_FAILURE); } if (VGEN_VER_LT(ldcp, 1, 4)) { /* versions < 1.4, mtu must match */ if (msg->mtu != lp->mtu) { return (VGEN_FAILURE); } } else { /* Ver >= 1.4, validate mtu of the peer is at least ETHERMAX */ if (msg->mtu < ETHERMAX) { return (VGEN_FAILURE); } } return (VGEN_SUCCESS); } /* * Handle an attribute info msg from the peer or an ACK/NACK from the peer * to an attr info msg that we sent. */ static int vgen_handle_attr_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vnet_attr_msg_t *msg = (vnet_attr_msg_t *)tagp; vgen_hparams_t *lp = &ldcp->local_hparams; vgen_hparams_t *rp = &ldcp->peer_hparams; int ack = 1; int rv = 0; uint32_t mtu; DBG1(vgenp, ldcp, "enter\n"); if (ldcp->hphase != VH_PHASE2) { DWARN(vgenp, ldcp, "Rcvd ATTR_INFO subtype(%d)," " Invalid Phase(%u)\n", tagp->vio_subtype, ldcp->hphase); return (VGEN_FAILURE); } switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: DBG2(vgenp, ldcp, "ATTR_INFO_RCVD \n"); ldcp->hstate |= ATTR_INFO_RCVD; /* save peer's values */ rp->mtu = msg->mtu; rp->addr = msg->addr; rp->addr_type = msg->addr_type; rp->xfer_mode = msg->xfer_mode; rp->ack_freq = msg->ack_freq; rv = vgen_check_attr_info(ldcp, msg); if (rv == VGEN_FAILURE) { /* unsupported attr, send NACK */ ack = 0; } else { if (VGEN_VER_GTEQ(ldcp, 1, 4)) { /* * Versions >= 1.4: * The mtu is negotiated down to the * minimum of our mtu and peer's mtu. */ mtu = MIN(msg->mtu, vgenp->max_frame_size); /* * If we have received an ack for the attr info * that we sent, then check if the mtu computed * above matches the mtu that the peer had ack'd * (saved in local hparams). If they don't * match, we fail the handshake. */ if (ldcp->hstate & ATTR_ACK_RCVD) { if (mtu != lp->mtu) { /* send NACK */ ack = 0; } } else { /* * Save the mtu computed above in our * attr parameters, so it gets sent in * the attr info from us to the peer. */ lp->mtu = mtu; } /* save the MIN mtu in the msg to be replied */ msg->mtu = mtu; } } if (ack) { tagp->vio_subtype = VIO_SUBTYPE_ACK; } else { tagp->vio_subtype = VIO_SUBTYPE_NACK; } tagp->vio_sid = ldcp->local_sid; /* send reply msg back to peer */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msg), B_FALSE); if (rv != VGEN_SUCCESS) { return (rv); } if (ack) { ldcp->hstate |= ATTR_ACK_SENT; DBG2(vgenp, ldcp, "ATTR_ACK_SENT \n"); } else { /* failed */ DWARN(vgenp, ldcp, "ATTR_NACK_SENT \n"); return (VGEN_FAILURE); } if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_ACK: if (VGEN_VER_GTEQ(ldcp, 1, 4)) { /* * Versions >= 1.4: * The ack msg sent by the peer contains the minimum of * our mtu (that we had sent in our attr info) and the * peer's mtu. * * If we have sent an ack for the attr info msg from * the peer, check if the mtu that was computed then * (saved in local hparams) matches the mtu that the * peer has ack'd. If they don't match, we fail the * handshake. */ if (ldcp->hstate & ATTR_ACK_SENT) { if (lp->mtu != msg->mtu) { return (VGEN_FAILURE); } } else { /* * If the mtu ack'd by the peer is > our mtu * fail handshake. Otherwise, save the mtu, so * we can validate it when we receive attr info * from our peer. */ if (msg->mtu > lp->mtu) { return (VGEN_FAILURE); } if (msg->mtu <= lp->mtu) { lp->mtu = msg->mtu; } } } ldcp->hstate |= ATTR_ACK_RCVD; DBG2(vgenp, ldcp, "ATTR_ACK_RCVD \n"); if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_NACK: DBG2(vgenp, ldcp, "ATTR_NACK_RCVD \n"); return (VGEN_FAILURE); } DBG1(vgenp, ldcp, "exit\n"); return (VGEN_SUCCESS); } /* Check if the dring info msg is ok */ static int vgen_check_dring_reg(vio_dring_reg_msg_t *msg) { /* check if msg contents are ok */ if ((msg->num_descriptors < 128) || (msg->descriptor_size < sizeof (vnet_public_desc_t))) { return (VGEN_FAILURE); } return (VGEN_SUCCESS); } /* * Handle a descriptor ring register msg from the peer or an ACK/NACK from * the peer to a dring register msg that we sent. */ static int vgen_handle_dring_reg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vio_dring_reg_msg_t *msg = (vio_dring_reg_msg_t *)tagp; ldc_mem_cookie_t dcookie; vgen_t *vgenp = LDC_TO_VGEN(ldcp); int ack = 0; int rv = 0; DBG1(vgenp, ldcp, "enter\n"); if (ldcp->hphase < VH_PHASE2) { /* dring_info can be rcvd in any of the phases after Phase1 */ DWARN(vgenp, ldcp, "Rcvd DRING_INFO Subtype (%d), Invalid Phase(%u)\n", tagp->vio_subtype, ldcp->hphase); return (VGEN_FAILURE); } switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: DBG2(vgenp, ldcp, "DRING_INFO_RCVD \n"); ldcp->hstate |= DRING_INFO_RCVD; bcopy((msg->cookie), &dcookie, sizeof (dcookie)); ASSERT(msg->ncookies == 1); if (vgen_check_dring_reg(msg) == VGEN_SUCCESS) { /* * verified dring info msg to be ok, * now try to map the remote dring. */ rv = vgen_init_rxds(ldcp, msg->num_descriptors, msg->descriptor_size, &dcookie, msg->ncookies); if (rv == DDI_SUCCESS) { /* now we can ack the peer */ ack = 1; } } if (ack == 0) { /* failed, send NACK */ tagp->vio_subtype = VIO_SUBTYPE_NACK; } else { if (!(ldcp->peer_hparams.dring_ready)) { /* save peer's dring_info values */ bcopy(&dcookie, &(ldcp->peer_hparams.dring_cookie), sizeof (dcookie)); ldcp->peer_hparams.num_desc = msg->num_descriptors; ldcp->peer_hparams.desc_size = msg->descriptor_size; ldcp->peer_hparams.num_dcookies = msg->ncookies; /* set dring_ident for the peer */ ldcp->peer_hparams.dring_ident = (uint64_t)ldcp->rxdp; /* return the dring_ident in ack msg */ msg->dring_ident = (uint64_t)ldcp->rxdp; ldcp->peer_hparams.dring_ready = B_TRUE; } tagp->vio_subtype = VIO_SUBTYPE_ACK; } tagp->vio_sid = ldcp->local_sid; /* send reply msg back to peer */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msg), B_FALSE); if (rv != VGEN_SUCCESS) { return (rv); } if (ack) { ldcp->hstate |= DRING_ACK_SENT; DBG2(vgenp, ldcp, "DRING_ACK_SENT"); } else { DWARN(vgenp, ldcp, "DRING_NACK_SENT"); return (VGEN_FAILURE); } if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_ACK: ldcp->hstate |= DRING_ACK_RCVD; DBG2(vgenp, ldcp, "DRING_ACK_RCVD"); if (!(ldcp->local_hparams.dring_ready)) { /* local dring is now ready */ ldcp->local_hparams.dring_ready = B_TRUE; /* save dring_ident acked by peer */ ldcp->local_hparams.dring_ident = msg->dring_ident; } if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_NACK: DBG2(vgenp, ldcp, "DRING_NACK_RCVD"); return (VGEN_FAILURE); } DBG1(vgenp, ldcp, "exit\n"); return (VGEN_SUCCESS); } /* * Handle a rdx info msg from the peer or an ACK/NACK * from the peer to a rdx info msg that we sent. */ static int vgen_handle_rdx_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); if (ldcp->hphase != VH_PHASE3) { DWARN(vgenp, ldcp, "Rcvd RDX_INFO Subtype (%d), Invalid Phase(%u)\n", tagp->vio_subtype, ldcp->hphase); return (VGEN_FAILURE); } switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: DBG2(vgenp, ldcp, "RDX_INFO_RCVD \n"); ldcp->hstate |= RDX_INFO_RCVD; tagp->vio_subtype = VIO_SUBTYPE_ACK; tagp->vio_sid = ldcp->local_sid; /* send reply msg back to peer */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (vio_rdx_msg_t), B_FALSE); if (rv != VGEN_SUCCESS) { return (rv); } ldcp->hstate |= RDX_ACK_SENT; DBG2(vgenp, ldcp, "RDX_ACK_SENT \n"); if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_ACK: ldcp->hstate |= RDX_ACK_RCVD; DBG2(vgenp, ldcp, "RDX_ACK_RCVD \n"); if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) { vgen_handshake(vh_nextphase(ldcp)); } break; case VIO_SUBTYPE_NACK: DBG2(vgenp, ldcp, "RDX_NACK_RCVD \n"); return (VGEN_FAILURE); } DBG1(vgenp, ldcp, "exit\n"); return (VGEN_SUCCESS); } /* Handle ACK/NACK from vsw to a set multicast msg that we sent */ static int vgen_handle_mcast_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); vnet_mcast_msg_t *msgp = (vnet_mcast_msg_t *)tagp; struct ether_addr *addrp; int count; int i; DBG1(vgenp, ldcp, "enter\n"); switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: /* vnet shouldn't recv set mcast msg, only vsw handles it */ DWARN(vgenp, ldcp, "rcvd SET_MCAST_INFO \n"); break; case VIO_SUBTYPE_ACK: /* success adding/removing multicast addr */ DBG1(vgenp, ldcp, "rcvd SET_MCAST_ACK \n"); break; case VIO_SUBTYPE_NACK: DWARN(vgenp, ldcp, "rcvd SET_MCAST_NACK \n"); if (!(msgp->set)) { /* multicast remove request failed */ break; } /* multicast add request failed */ for (count = 0; count < msgp->count; count++) { addrp = &(msgp->mca[count]); /* delete address from the table */ for (i = 0; i < vgenp->mccount; i++) { if (ether_cmp(addrp, &(vgenp->mctab[i])) == 0) { if (vgenp->mccount > 1) { int t = vgenp->mccount - 1; vgenp->mctab[i] = vgenp->mctab[t]; } vgenp->mccount--; break; } } } break; } DBG1(vgenp, ldcp, "exit\n"); return (VGEN_SUCCESS); } /* handler for control messages received from the peer ldc end-point */ static int vgen_handle_ctrlmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); switch (tagp->vio_subtype_env) { case VIO_VER_INFO: rv = vgen_handle_version_negotiate(ldcp, tagp); break; case VIO_ATTR_INFO: rv = vgen_handle_attr_info(ldcp, tagp); break; case VIO_DRING_REG: rv = vgen_handle_dring_reg(ldcp, tagp); break; case VIO_RDX: rv = vgen_handle_rdx_info(ldcp, tagp); break; case VNET_MCAST_INFO: rv = vgen_handle_mcast_info(ldcp, tagp); break; case VIO_DDS_INFO: rv = vgen_dds_rx(ldcp, tagp); break; } DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } /* handler for data messages received from the peer ldc end-point */ static int vgen_handle_datamsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t msglen) { int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); if (ldcp->hphase != VH_DONE) return (rv); if (tagp->vio_subtype == VIO_SUBTYPE_INFO) { rv = vgen_check_datamsg_seq(ldcp, tagp); if (rv != 0) { return (rv); } } switch (tagp->vio_subtype_env) { case VIO_DRING_DATA: rv = vgen_handle_dring_data(ldcp, tagp); break; case VIO_PKT_DATA: ldcp->rx_pktdata((void *)ldcp, (void *)tagp, msglen); break; default: break; } DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } /* * dummy pkt data handler function for vnet protocol version 1.0 */ static void vgen_handle_pkt_data_nop(void *arg1, void *arg2, uint32_t msglen) { _NOTE(ARGUNUSED(arg1, arg2, msglen)) } /* * This function handles raw pkt data messages received over the channel. * Currently, only priority-eth-type frames are received through this mechanism. * In this case, the frame(data) is present within the message itself which * is copied into an mblk before sending it up the stack. */ static void vgen_handle_pkt_data(void *arg1, void *arg2, uint32_t msglen) { vgen_ldc_t *ldcp = (vgen_ldc_t *)arg1; vio_raw_data_msg_t *pkt = (vio_raw_data_msg_t *)arg2; uint32_t size; mblk_t *mp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vgen_stats_t *statsp = &ldcp->stats; vgen_hparams_t *lp = &ldcp->local_hparams; vio_net_rx_cb_t vrx_cb; ASSERT(MUTEX_HELD(&ldcp->cblock)); mutex_exit(&ldcp->cblock); size = msglen - VIO_PKT_DATA_HDRSIZE; if (size < ETHERMIN || size > lp->mtu) { (void) atomic_inc_32(&statsp->rx_pri_fail); goto exit; } mp = vio_multipool_allocb(&ldcp->vmp, size); if (mp == NULL) { mp = allocb(size, BPRI_MED); if (mp == NULL) { (void) atomic_inc_32(&statsp->rx_pri_fail); DWARN(vgenp, ldcp, "allocb failure, " "unable to process priority frame\n"); goto exit; } } /* copy the frame from the payload of raw data msg into the mblk */ bcopy(pkt->data, mp->b_rptr, size); mp->b_wptr = mp->b_rptr + size; /* update stats */ (void) atomic_inc_64(&statsp->rx_pri_packets); (void) atomic_add_64(&statsp->rx_pri_bytes, size); /* send up; call vrx_cb() as cblock is already released */ vrx_cb = ldcp->portp->vcb.vio_net_rx_cb; vrx_cb(ldcp->portp->vhp, mp); exit: mutex_enter(&ldcp->cblock); } static int vgen_send_dring_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t start, int32_t end, uint8_t pstate) { int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_dring_msg_t *msgp = (vio_dring_msg_t *)tagp; tagp->vio_subtype = VIO_SUBTYPE_ACK; tagp->vio_sid = ldcp->local_sid; msgp->start_idx = start; msgp->end_idx = end; msgp->dring_process_state = pstate; rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msgp), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed\n"); } return (rv); } static int vgen_handle_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { int rv = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); switch (tagp->vio_subtype) { case VIO_SUBTYPE_INFO: /* * To reduce the locking contention, release the * cblock here and re-acquire it once we are done * receiving packets. */ mutex_exit(&ldcp->cblock); mutex_enter(&ldcp->rxlock); rv = vgen_handle_dring_data_info(ldcp, tagp); mutex_exit(&ldcp->rxlock); mutex_enter(&ldcp->cblock); break; case VIO_SUBTYPE_ACK: rv = vgen_handle_dring_data_ack(ldcp, tagp); break; case VIO_SUBTYPE_NACK: rv = vgen_handle_dring_data_nack(ldcp, tagp); break; } DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } static int vgen_handle_dring_data_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { uint32_t start; int32_t end; int rv = 0; vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); #ifdef VGEN_HANDLE_LOST_PKTS vgen_stats_t *statsp = &ldcp->stats; uint32_t rxi; int n; #endif DBG1(vgenp, ldcp, "enter\n"); start = dringmsg->start_idx; end = dringmsg->end_idx; /* * received a data msg, which contains the start and end * indices of the descriptors within the rx ring holding data, * the seq_num of data packet corresponding to the start index, * and the dring_ident. * We can now read the contents of each of these descriptors * and gather data from it. */ DBG1(vgenp, ldcp, "INFO: start(%d), end(%d)\n", start, end); /* validate rx start and end indeces */ if (!(CHECK_RXI(start, ldcp)) || ((end != -1) && !(CHECK_RXI(end, ldcp)))) { DWARN(vgenp, ldcp, "Invalid Rx start(%d) or end(%d)\n", start, end); /* drop the message if invalid index */ return (rv); } /* validate dring_ident */ if (dringmsg->dring_ident != ldcp->peer_hparams.dring_ident) { DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n", dringmsg->dring_ident); /* invalid dring_ident, drop the msg */ return (rv); } #ifdef DEBUG if (vgen_trigger_rxlost) { /* drop this msg to simulate lost pkts for debugging */ vgen_trigger_rxlost = 0; return (rv); } #endif #ifdef VGEN_HANDLE_LOST_PKTS /* receive start index doesn't match expected index */ if (ldcp->next_rxi != start) { DWARN(vgenp, ldcp, "next_rxi(%d) != start(%d)\n", ldcp->next_rxi, start); /* calculate the number of pkts lost */ if (start >= ldcp->next_rxi) { n = start - ldcp->next_rxi; } else { n = ldcp->num_rxds - (ldcp->next_rxi - start); } statsp->rx_lost_pkts += n; tagp->vio_subtype = VIO_SUBTYPE_NACK; tagp->vio_sid = ldcp->local_sid; /* indicate the range of lost descriptors */ dringmsg->start_idx = ldcp->next_rxi; rxi = start; DECR_RXI(rxi, ldcp); dringmsg->end_idx = rxi; /* dring ident is left unchanged */ rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*dringmsg), B_FALSE); if (rv != VGEN_SUCCESS) { DWARN(vgenp, ldcp, "vgen_sendmsg failed, stype:NACK\n"); return (rv); } /* * treat this range of descrs/pkts as dropped * and set the new expected value of next_rxi * and continue(below) to process from the new * start index. */ ldcp->next_rxi = start; } #endif /* VGEN_HANDLE_LOST_PKTS */ /* Now receive messages */ rv = vgen_process_dring_data(ldcp, tagp); DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } static int vgen_process_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { boolean_t set_ack_start = B_FALSE; uint32_t start; uint32_t ack_end; uint32_t next_rxi; uint32_t rxi; int count = 0; int rv = 0; uint32_t retries = 0; vgen_stats_t *statsp; vnet_public_desc_t rxd; vio_dring_entry_hdr_t *hdrp; mblk_t *bp = NULL; mblk_t *bpt = NULL; uint32_t ack_start; boolean_t rxd_err = B_FALSE; mblk_t *mp = NULL; size_t nbytes; boolean_t ack_needed = B_FALSE; size_t nread; uint64_t off = 0; struct ether_header *ehp; vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vgen_hparams_t *lp = &ldcp->local_hparams; DBG1(vgenp, ldcp, "enter\n"); statsp = &ldcp->stats; start = dringmsg->start_idx; /* * start processing the descriptors from the specified * start index, up to the index a descriptor is not ready * to be processed or we process the entire descriptor ring * and wrap around upto the start index. */ /* need to set the start index of descriptors to be ack'd */ set_ack_start = B_TRUE; /* index upto which we have ack'd */ ack_end = start; DECR_RXI(ack_end, ldcp); next_rxi = rxi = start; do { vgen_recv_retry: rv = vnet_dring_entry_copy(&(ldcp->rxdp[rxi]), &rxd, ldcp->dring_mtype, ldcp->rx_dhandle, rxi, rxi); if (rv != 0) { DWARN(vgenp, ldcp, "ldc_mem_dring_acquire() failed" " rv(%d)\n", rv); statsp->ierrors++; return (rv); } hdrp = &rxd.hdr; if (hdrp->dstate != VIO_DESC_READY) { /* * Before waiting and retry here, send up * the packets that are received already */ if (bp != NULL) { DTRACE_PROBE1(vgen_rcv_msgs, int, count); vgen_rx(ldcp, bp); count = 0; bp = bpt = NULL; } /* * descriptor is not ready. * retry descriptor acquire, stop processing * after max # retries. */ if (retries == vgen_recv_retries) break; retries++; drv_usecwait(vgen_recv_delay); goto vgen_recv_retry; } retries = 0; if (set_ack_start) { /* * initialize the start index of the range * of descriptors to be ack'd. */ ack_start = rxi; set_ack_start = B_FALSE; } if ((rxd.nbytes < ETHERMIN) || (rxd.nbytes > lp->mtu) || (rxd.ncookies == 0) || (rxd.ncookies > MAX_COOKIES)) { rxd_err = B_TRUE; } else { /* * Try to allocate an mblk from the free pool * of recv mblks for the channel. * If this fails, use allocb(). */ nbytes = (VNET_IPALIGN + rxd.nbytes + 7) & ~7; if (nbytes > ldcp->max_rxpool_size) { mp = allocb(VNET_IPALIGN + rxd.nbytes + 8, BPRI_MED); } else { mp = vio_multipool_allocb(&ldcp->vmp, nbytes); if (mp == NULL) { statsp->rx_vio_allocb_fail++; /* * Data buffer returned by allocb(9F) * is 8byte aligned. We allocate extra * 8 bytes to ensure size is multiple * of 8 bytes for ldc_mem_copy(). */ mp = allocb(VNET_IPALIGN + rxd.nbytes + 8, BPRI_MED); } } } if ((rxd_err) || (mp == NULL)) { /* * rxd_err or allocb() failure, * drop this packet, get next. */ if (rxd_err) { statsp->ierrors++; rxd_err = B_FALSE; } else { statsp->rx_allocb_fail++; } ack_needed = hdrp->ack; /* set descriptor done bit */ rv = vnet_dring_entry_set_dstate(&(ldcp->rxdp[rxi]), ldcp->dring_mtype, ldcp->rx_dhandle, rxi, rxi, VIO_DESC_DONE); if (rv != 0) { DWARN(vgenp, ldcp, "vnet_dring_entry_set_dstate err rv(%d)\n", rv); return (rv); } if (ack_needed) { ack_needed = B_FALSE; /* * sender needs ack for this packet, * ack pkts upto this index. */ ack_end = rxi; rv = vgen_send_dring_ack(ldcp, tagp, ack_start, ack_end, VIO_DP_ACTIVE); if (rv != VGEN_SUCCESS) { goto error_ret; } /* need to set new ack start index */ set_ack_start = B_TRUE; } goto vgen_next_rxi; } nread = nbytes; rv = ldc_mem_copy(ldcp->ldc_handle, (caddr_t)mp->b_rptr, off, &nread, rxd.memcookie, rxd.ncookies, LDC_COPY_IN); /* if ldc_mem_copy() failed */ if (rv) { DWARN(vgenp, ldcp, "ldc_mem_copy err rv(%d)\n", rv); statsp->ierrors++; freemsg(mp); goto error_ret; } ack_needed = hdrp->ack; rv = vnet_dring_entry_set_dstate(&(ldcp->rxdp[rxi]), ldcp->dring_mtype, ldcp->rx_dhandle, rxi, rxi, VIO_DESC_DONE); if (rv != 0) { DWARN(vgenp, ldcp, "vnet_dring_entry_set_dstate err rv(%d)\n", rv); goto error_ret; } mp->b_rptr += VNET_IPALIGN; if (ack_needed) { ack_needed = B_FALSE; /* * sender needs ack for this packet, * ack pkts upto this index. */ ack_end = rxi; rv = vgen_send_dring_ack(ldcp, tagp, ack_start, ack_end, VIO_DP_ACTIVE); if (rv != VGEN_SUCCESS) { goto error_ret; } /* need to set new ack start index */ set_ack_start = B_TRUE; } if (nread != nbytes) { DWARN(vgenp, ldcp, "ldc_mem_copy nread(%lx), nbytes(%lx)\n", nread, nbytes); statsp->ierrors++; freemsg(mp); goto vgen_next_rxi; } /* point to the actual end of data */ mp->b_wptr = mp->b_rptr + rxd.nbytes; /* update stats */ statsp->ipackets++; statsp->rbytes += rxd.nbytes; ehp = (struct ether_header *)mp->b_rptr; if (IS_BROADCAST(ehp)) statsp->brdcstrcv++; else if (IS_MULTICAST(ehp)) statsp->multircv++; /* build a chain of received packets */ if (bp == NULL) { /* first pkt */ bp = mp; bpt = bp; bpt->b_next = NULL; } else { mp->b_next = NULL; bpt->b_next = mp; bpt = mp; } if (count++ > vgen_chain_len) { DTRACE_PROBE1(vgen_rcv_msgs, int, count); vgen_rx(ldcp, bp); count = 0; bp = bpt = NULL; } vgen_next_rxi: /* update end index of range of descrs to be ack'd */ ack_end = rxi; /* update the next index to be processed */ INCR_RXI(next_rxi, ldcp); if (next_rxi == start) { /* * processed the entire descriptor ring upto * the index at which we started. */ break; } rxi = next_rxi; _NOTE(CONSTCOND) } while (1); /* * send an ack message to peer indicating that we have stopped * processing descriptors. */ if (set_ack_start) { /* * We have ack'd upto some index and we have not * processed any descriptors beyond that index. * Use the last ack'd index as both the start and * end of range of descrs being ack'd. * Note: This results in acking the last index twice * and should be harmless. */ ack_start = ack_end; } rv = vgen_send_dring_ack(ldcp, tagp, ack_start, ack_end, VIO_DP_STOPPED); if (rv != VGEN_SUCCESS) { goto error_ret; } /* save new recv index of next dring msg */ ldcp->next_rxi = next_rxi; error_ret: /* send up packets received so far */ if (bp != NULL) { DTRACE_PROBE1(vgen_rcv_msgs, int, count); vgen_rx(ldcp, bp); bp = bpt = NULL; } DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } static int vgen_handle_dring_data_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { int rv = 0; uint32_t start; int32_t end; uint32_t txi; boolean_t ready_txd = B_FALSE; vgen_stats_t *statsp; vgen_private_desc_t *tbufp; vnet_public_desc_t *txdp; vio_dring_entry_hdr_t *hdrp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp; DBG1(vgenp, ldcp, "enter\n"); start = dringmsg->start_idx; end = dringmsg->end_idx; statsp = &ldcp->stats; /* * received an ack corresponding to a specific descriptor for * which we had set the ACK bit in the descriptor (during * transmit). This enables us to reclaim descriptors. */ DBG2(vgenp, ldcp, "ACK: start(%d), end(%d)\n", start, end); /* validate start and end indeces in the tx ack msg */ if (!(CHECK_TXI(start, ldcp)) || !(CHECK_TXI(end, ldcp))) { /* drop the message if invalid index */ DWARN(vgenp, ldcp, "Invalid Tx ack start(%d) or end(%d)\n", start, end); return (rv); } /* validate dring_ident */ if (dringmsg->dring_ident != ldcp->local_hparams.dring_ident) { /* invalid dring_ident, drop the msg */ DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n", dringmsg->dring_ident); return (rv); } statsp->dring_data_acks++; /* reclaim descriptors that are done */ vgen_reclaim(ldcp); if (dringmsg->dring_process_state != VIO_DP_STOPPED) { /* * receiver continued processing descriptors after * sending us the ack. */ return (rv); } statsp->dring_stopped_acks++; /* receiver stopped processing descriptors */ mutex_enter(&ldcp->wrlock); mutex_enter(&ldcp->tclock); /* * determine if there are any pending tx descriptors * ready to be processed by the receiver(peer) and if so, * send a message to the peer to restart receiving. */ ready_txd = B_FALSE; /* * using the end index of the descriptor range for which * we received the ack, check if the next descriptor is * ready. */ txi = end; INCR_TXI(txi, ldcp); tbufp = &ldcp->tbufp[txi]; txdp = tbufp->descp; hdrp = &txdp->hdr; if (hdrp->dstate == VIO_DESC_READY) { ready_txd = B_TRUE; } else { /* * descr next to the end of ack'd descr range is not * ready. * starting from the current reclaim index, check * if any descriptor is ready. */ txi = ldcp->cur_tbufp - ldcp->tbufp; tbufp = &ldcp->tbufp[txi]; txdp = tbufp->descp; hdrp = &txdp->hdr; if (hdrp->dstate == VIO_DESC_READY) { ready_txd = B_TRUE; } } if (ready_txd) { /* * we have tx descriptor(s) ready to be * processed by the receiver. * send a message to the peer with the start index * of ready descriptors. */ rv = vgen_send_dring_data(ldcp, txi, -1); if (rv != VGEN_SUCCESS) { ldcp->resched_peer = B_TRUE; ldcp->resched_peer_txi = txi; mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->wrlock); return (rv); } } else { /* * no ready tx descriptors. set the flag to send a * message to peer when tx descriptors are ready in * transmit routine. */ ldcp->resched_peer = B_TRUE; ldcp->resched_peer_txi = ldcp->cur_tbufp - ldcp->tbufp; } mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->wrlock); DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } static int vgen_handle_dring_data_nack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { int rv = 0; uint32_t start; int32_t end; uint32_t txi; vnet_public_desc_t *txdp; vio_dring_entry_hdr_t *hdrp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp; DBG1(vgenp, ldcp, "enter\n"); start = dringmsg->start_idx; end = dringmsg->end_idx; /* * peer sent a NACK msg to indicate lost packets. * The start and end correspond to the range of descriptors * for which the peer didn't receive a dring data msg and so * didn't receive the corresponding data. */ DWARN(vgenp, ldcp, "NACK: start(%d), end(%d)\n", start, end); /* validate start and end indeces in the tx nack msg */ if (!(CHECK_TXI(start, ldcp)) || !(CHECK_TXI(end, ldcp))) { /* drop the message if invalid index */ DWARN(vgenp, ldcp, "Invalid Tx nack start(%d) or end(%d)\n", start, end); return (rv); } /* validate dring_ident */ if (dringmsg->dring_ident != ldcp->local_hparams.dring_ident) { /* invalid dring_ident, drop the msg */ DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n", dringmsg->dring_ident); return (rv); } mutex_enter(&ldcp->txlock); mutex_enter(&ldcp->tclock); if (ldcp->next_tbufp == ldcp->cur_tbufp) { /* no busy descriptors, bogus nack ? */ mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->txlock); return (rv); } /* we just mark the descrs as done so they can be reclaimed */ for (txi = start; txi <= end; ) { txdp = &(ldcp->txdp[txi]); hdrp = &txdp->hdr; if (hdrp->dstate == VIO_DESC_READY) hdrp->dstate = VIO_DESC_DONE; INCR_TXI(txi, ldcp); } mutex_exit(&ldcp->tclock); mutex_exit(&ldcp->txlock); DBG1(vgenp, ldcp, "exit rv(%d)\n", rv); return (rv); } static void vgen_reclaim(vgen_ldc_t *ldcp) { mutex_enter(&ldcp->tclock); vgen_reclaim_dring(ldcp); ldcp->reclaim_lbolt = ddi_get_lbolt(); mutex_exit(&ldcp->tclock); } /* * transmit reclaim function. starting from the current reclaim index * look for descriptors marked DONE and reclaim the descriptor and the * corresponding buffers (tbuf). */ static void vgen_reclaim_dring(vgen_ldc_t *ldcp) { int count = 0; vnet_public_desc_t *txdp; vgen_private_desc_t *tbufp; vio_dring_entry_hdr_t *hdrp; #ifdef DEBUG if (vgen_trigger_txtimeout) return; #endif tbufp = ldcp->cur_tbufp; txdp = tbufp->descp; hdrp = &txdp->hdr; while ((hdrp->dstate == VIO_DESC_DONE) && (tbufp != ldcp->next_tbufp)) { tbufp->flags = VGEN_PRIV_DESC_FREE; hdrp->dstate = VIO_DESC_FREE; hdrp->ack = B_FALSE; tbufp = NEXTTBUF(ldcp, tbufp); txdp = tbufp->descp; hdrp = &txdp->hdr; count++; } ldcp->cur_tbufp = tbufp; /* * Check if mac layer should be notified to restart transmissions */ if ((ldcp->need_resched) && (count > 0)) { vio_net_tx_update_t vtx_update = ldcp->portp->vcb.vio_net_tx_update; ldcp->need_resched = B_FALSE; vtx_update(ldcp->portp->vhp); } } /* return the number of pending transmits for the channel */ static int vgen_num_txpending(vgen_ldc_t *ldcp) { int n; if (ldcp->next_tbufp >= ldcp->cur_tbufp) { n = ldcp->next_tbufp - ldcp->cur_tbufp; } else { /* cur_tbufp > next_tbufp */ n = ldcp->num_txds - (ldcp->cur_tbufp - ldcp->next_tbufp); } return (n); } /* determine if the transmit descriptor ring is full */ static int vgen_tx_dring_full(vgen_ldc_t *ldcp) { vgen_private_desc_t *tbufp; vgen_private_desc_t *ntbufp; tbufp = ldcp->next_tbufp; ntbufp = NEXTTBUF(ldcp, tbufp); if (ntbufp == ldcp->cur_tbufp) { /* out of tbufs/txds */ return (VGEN_SUCCESS); } return (VGEN_FAILURE); } /* determine if timeout condition has occured */ static int vgen_ldc_txtimeout(vgen_ldc_t *ldcp) { if (((ddi_get_lbolt() - ldcp->reclaim_lbolt) > drv_usectohz(vnet_ldcwd_txtimeout * 1000)) && (vnet_ldcwd_txtimeout) && (vgen_tx_dring_full(ldcp) == VGEN_SUCCESS)) { return (VGEN_SUCCESS); } else { return (VGEN_FAILURE); } } /* transmit watchdog timeout handler */ static void vgen_ldc_watchdog(void *arg) { vgen_ldc_t *ldcp; vgen_t *vgenp; int rv; ldcp = (vgen_ldc_t *)arg; vgenp = LDC_TO_VGEN(ldcp); rv = vgen_ldc_txtimeout(ldcp); if (rv == VGEN_SUCCESS) { DWARN(vgenp, ldcp, "transmit timeout\n"); #ifdef DEBUG if (vgen_trigger_txtimeout) { /* tx timeout triggered for debugging */ vgen_trigger_txtimeout = 0; } #endif mutex_enter(&ldcp->cblock); ldcp->need_ldc_reset = B_TRUE; vgen_handshake_retry(ldcp); mutex_exit(&ldcp->cblock); if (ldcp->need_resched) { vio_net_tx_update_t vtx_update = ldcp->portp->vcb.vio_net_tx_update; ldcp->need_resched = B_FALSE; vtx_update(ldcp->portp->vhp); } } ldcp->wd_tid = timeout(vgen_ldc_watchdog, (caddr_t)ldcp, drv_usectohz(vnet_ldcwd_interval * 1000)); } /* handler for error messages received from the peer ldc end-point */ static void vgen_handle_errmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { _NOTE(ARGUNUSED(ldcp, tagp)) } static int vgen_check_datamsg_seq(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vio_raw_data_msg_t *rmsg; vio_dring_msg_t *dmsg; uint64_t seq_num; vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (tagp->vio_subtype_env == VIO_DRING_DATA) { dmsg = (vio_dring_msg_t *)tagp; seq_num = dmsg->seq_num; } else if (tagp->vio_subtype_env == VIO_PKT_DATA) { rmsg = (vio_raw_data_msg_t *)tagp; seq_num = rmsg->seq_num; } else { return (EINVAL); } if (seq_num != ldcp->next_rxseq) { /* seqnums don't match */ DWARN(vgenp, ldcp, "next_rxseq(0x%lx) != seq_num(0x%lx)\n", ldcp->next_rxseq, seq_num); ldcp->need_ldc_reset = B_TRUE; return (EINVAL); } ldcp->next_rxseq++; return (0); } /* Check if the session id in the received message is valid */ static int vgen_check_sid(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (tagp->vio_sid != ldcp->peer_sid) { DWARN(vgenp, ldcp, "sid mismatch: expected(%x), rcvd(%x)\n", ldcp->peer_sid, tagp->vio_sid); return (VGEN_FAILURE); } else return (VGEN_SUCCESS); } static caddr_t vgen_print_ethaddr(uint8_t *a, char *ebuf) { (void) sprintf(ebuf, "%x:%x:%x:%x:%x:%x", a[0], a[1], a[2], a[3], a[4], a[5]); return (ebuf); } /* Handshake watchdog timeout handler */ static void vgen_hwatchdog(void *arg) { vgen_ldc_t *ldcp = (vgen_ldc_t *)arg; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DWARN(vgenp, ldcp, "handshake timeout ldc(%lx) phase(%x) state(%x)\n", ldcp->hphase, ldcp->hstate); mutex_enter(&ldcp->cblock); if (ldcp->cancel_htid) { ldcp->cancel_htid = 0; mutex_exit(&ldcp->cblock); return; } ldcp->htid = 0; ldcp->need_ldc_reset = B_TRUE; vgen_handshake_retry(ldcp); mutex_exit(&ldcp->cblock); } static void vgen_print_hparams(vgen_hparams_t *hp) { uint8_t addr[6]; char ea[6]; ldc_mem_cookie_t *dc; cmn_err(CE_CONT, "version_info:\n"); cmn_err(CE_CONT, "\tver_major: %d, ver_minor: %d, dev_class: %d\n", hp->ver_major, hp->ver_minor, hp->dev_class); vnet_macaddr_ultostr(hp->addr, addr); cmn_err(CE_CONT, "attr_info:\n"); cmn_err(CE_CONT, "\tMTU: %lx, addr: %s\n", hp->mtu, vgen_print_ethaddr(addr, ea)); cmn_err(CE_CONT, "\taddr_type: %x, xfer_mode: %x, ack_freq: %x\n", hp->addr_type, hp->xfer_mode, hp->ack_freq); dc = &hp->dring_cookie; cmn_err(CE_CONT, "dring_info:\n"); cmn_err(CE_CONT, "\tlength: %d, dsize: %d\n", hp->num_desc, hp->desc_size); cmn_err(CE_CONT, "\tldc_addr: 0x%lx, ldc_size: %ld\n", dc->addr, dc->size); cmn_err(CE_CONT, "\tdring_ident: 0x%lx\n", hp->dring_ident); } static void vgen_print_ldcinfo(vgen_ldc_t *ldcp) { vgen_hparams_t *hp; cmn_err(CE_CONT, "Channel Information:\n"); cmn_err(CE_CONT, "\tldc_id: 0x%lx, ldc_status: 0x%x\n", ldcp->ldc_id, ldcp->ldc_status); cmn_err(CE_CONT, "\tlocal_sid: 0x%x, peer_sid: 0x%x\n", ldcp->local_sid, ldcp->peer_sid); cmn_err(CE_CONT, "\thphase: 0x%x, hstate: 0x%x\n", ldcp->hphase, ldcp->hstate); cmn_err(CE_CONT, "Local handshake params:\n"); hp = &ldcp->local_hparams; vgen_print_hparams(hp); cmn_err(CE_CONT, "Peer handshake params:\n"); hp = &ldcp->peer_hparams; vgen_print_hparams(hp); } /* * Send received packets up the stack. */ static void vgen_rx(vgen_ldc_t *ldcp, mblk_t *bp) { vio_net_rx_cb_t vrx_cb = ldcp->portp->vcb.vio_net_rx_cb; if (ldcp->rcv_thread != NULL) { ASSERT(MUTEX_HELD(&ldcp->rxlock)); mutex_exit(&ldcp->rxlock); } else { ASSERT(MUTEX_HELD(&ldcp->cblock)); mutex_exit(&ldcp->cblock); } vrx_cb(ldcp->portp->vhp, bp); if (ldcp->rcv_thread != NULL) { mutex_enter(&ldcp->rxlock); } else { mutex_enter(&ldcp->cblock); } } /* * vgen_ldc_rcv_worker -- A per LDC worker thread to receive data. * This thread is woken up by the LDC interrupt handler to process * LDC packets and receive data. */ static void vgen_ldc_rcv_worker(void *arg) { callb_cpr_t cprinfo; vgen_ldc_t *ldcp = (vgen_ldc_t *)arg; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); CALLB_CPR_INIT(&cprinfo, &ldcp->rcv_thr_lock, callb_generic_cpr, "vnet_rcv_thread"); mutex_enter(&ldcp->rcv_thr_lock); while (!(ldcp->rcv_thr_flags & VGEN_WTHR_STOP)) { CALLB_CPR_SAFE_BEGIN(&cprinfo); /* * Wait until the data is received or a stop * request is received. */ while (!(ldcp->rcv_thr_flags & (VGEN_WTHR_DATARCVD | VGEN_WTHR_STOP))) { cv_wait(&ldcp->rcv_thr_cv, &ldcp->rcv_thr_lock); } CALLB_CPR_SAFE_END(&cprinfo, &ldcp->rcv_thr_lock) /* * First process the stop request. */ if (ldcp->rcv_thr_flags & VGEN_WTHR_STOP) { DBG2(vgenp, ldcp, "stopped\n"); break; } ldcp->rcv_thr_flags &= ~VGEN_WTHR_DATARCVD; ldcp->rcv_thr_flags |= VGEN_WTHR_PROCESSING; mutex_exit(&ldcp->rcv_thr_lock); DBG2(vgenp, ldcp, "calling vgen_handle_evt_read\n"); vgen_handle_evt_read(ldcp); mutex_enter(&ldcp->rcv_thr_lock); ldcp->rcv_thr_flags &= ~VGEN_WTHR_PROCESSING; } /* * Update the run status and wakeup the thread that * has sent the stop request. */ ldcp->rcv_thr_flags &= ~VGEN_WTHR_STOP; ldcp->rcv_thread = NULL; CALLB_CPR_EXIT(&cprinfo); thread_exit(); DBG1(vgenp, ldcp, "exit\n"); } /* vgen_stop_rcv_thread -- Co-ordinate with receive thread to stop it */ static void vgen_stop_rcv_thread(vgen_ldc_t *ldcp) { kt_did_t tid = 0; vgen_t *vgenp = LDC_TO_VGEN(ldcp); DBG1(vgenp, ldcp, "enter\n"); /* * Send a stop request by setting the stop flag and * wait until the receive thread stops. */ mutex_enter(&ldcp->rcv_thr_lock); if (ldcp->rcv_thread != NULL) { tid = ldcp->rcv_thread->t_did; ldcp->rcv_thr_flags |= VGEN_WTHR_STOP; cv_signal(&ldcp->rcv_thr_cv); } mutex_exit(&ldcp->rcv_thr_lock); if (tid != 0) { thread_join(tid); } DBG1(vgenp, ldcp, "exit\n"); } /* * Wait for the channel rx-queue to be drained by allowing the receive * worker thread to read all messages from the rx-queue of the channel. * Assumption: further callbacks are disabled at this time. */ static void vgen_drain_rcv_thread(vgen_ldc_t *ldcp) { clock_t tm; clock_t wt; clock_t rv; /* * If there is data in ldc rx queue, wait until the rx * worker thread runs and drains all msgs in the queue. */ wt = drv_usectohz(MILLISEC); mutex_enter(&ldcp->rcv_thr_lock); tm = ddi_get_lbolt() + wt; /* * We need to check both bits - DATARCVD and PROCESSING, to be cleared. * If DATARCVD is set, that means the callback has signalled the worker * thread, but the worker hasn't started processing yet. If PROCESSING * is set, that means the thread is awake and processing. Note that the * DATARCVD state can only be seen once, as the assumption is that * further callbacks have been disabled at this point. */ while (ldcp->rcv_thr_flags & (VGEN_WTHR_DATARCVD | VGEN_WTHR_PROCESSING)) { rv = cv_timedwait(&ldcp->rcv_thr_cv, &ldcp->rcv_thr_lock, tm); if (rv == -1) { /* timeout */ /* * Note that the only way we return is due to a timeout; * we set the new time to wait, before we go back and * check the condition. The other(unlikely) possibility * is a premature wakeup(see cv_timedwait(9F)) in which * case we just continue to use the same time to wait. */ tm = ddi_get_lbolt() + wt; } } mutex_exit(&ldcp->rcv_thr_lock); } /* * vgen_dds_rx -- post DDS messages to vnet. */ static int vgen_dds_rx(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp) { vio_dds_msg_t *dmsg = (vio_dds_msg_t *)tagp; vgen_t *vgenp = LDC_TO_VGEN(ldcp); if (dmsg->dds_class != DDS_VNET_NIU) { DWARN(vgenp, ldcp, "Unknown DDS class, dropping"); return (EBADMSG); } vnet_dds_rx(vgenp->vnetp, dmsg); return (0); } /* * vgen_dds_tx -- an interface called by vnet to send DDS messages. */ int vgen_dds_tx(void *arg, void *msg) { vgen_t *vgenp = arg; vio_dds_msg_t *dmsg = msg; vgen_portlist_t *plistp = &vgenp->vgenports; vgen_ldc_t *ldcp; vgen_ldclist_t *ldclp; int rv = EIO; READ_ENTER(&plistp->rwlock); ldclp = &(vgenp->vsw_portp->ldclist); READ_ENTER(&ldclp->rwlock); ldcp = ldclp->headp; if ((ldcp == NULL) || (ldcp->hphase != VH_DONE)) { goto vgen_dsend_exit; } dmsg->tag.vio_sid = ldcp->local_sid; rv = vgen_sendmsg(ldcp, (caddr_t)dmsg, sizeof (vio_dds_msg_t), B_FALSE); if (rv != VGEN_SUCCESS) { rv = EIO; } else { rv = 0; } vgen_dsend_exit: RW_EXIT(&ldclp->rwlock); RW_EXIT(&plistp->rwlock); return (rv); } #if DEBUG /* * Print debug messages - set to 0xf to enable all msgs */ static void debug_printf(const char *fname, vgen_t *vgenp, vgen_ldc_t *ldcp, const char *fmt, ...) { char buf[256]; char *bufp = buf; va_list ap; if ((vgenp != NULL) && (vgenp->vnetp != NULL)) { (void) sprintf(bufp, "vnet%d:", ((vnet_t *)(vgenp->vnetp))->instance); bufp += strlen(bufp); } if (ldcp != NULL) { (void) sprintf(bufp, "ldc(%ld):", ldcp->ldc_id); bufp += strlen(bufp); } (void) sprintf(bufp, "%s: ", fname); bufp += strlen(bufp); va_start(ap, fmt); (void) vsprintf(bufp, fmt, ap); va_end(ap); if ((ldcp == NULL) ||(vgendbg_ldcid == -1) || (vgendbg_ldcid == ldcp->ldc_id)) { cmn_err(CE_CONT, "%s\n", buf); } } #endif