/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * OPL CMU-CH PCI nexus driver. * */ #include <sys/types.h> #include <sys/sysmacros.h> #include <sys/systm.h> #include <sys/intreg.h> #include <sys/intr.h> #include <sys/machsystm.h> #include <sys/conf.h> #include <sys/stat.h> #include <sys/kmem.h> #include <sys/async.h> #include <sys/ivintr.h> #include <sys/sunddi.h> #include <sys/sunndi.h> #include <sys/ndifm.h> #include <sys/ontrap.h> #include <sys/ddi_impldefs.h> #include <sys/ddi_subrdefs.h> #include <sys/epm.h> #include <sys/spl.h> #include <sys/fm/util.h> #include <sys/fm/util.h> #include <sys/fm/protocol.h> #include <sys/fm/io/pci.h> #include <sys/fm/io/sun4upci.h> #include <sys/pcicmu/pcicmu.h> #include <sys/cmn_err.h> #include <sys/time.h> #include <sys/pci.h> #include <sys/modctl.h> #include <sys/open.h> #include <sys/errno.h> #include <sys/file.h> uint32_t pcmu_spurintr_duration = 60000000; /* One minute */ /* * The variable controls the default setting of the command register * for pci devices. See pcmu_init_child() for details. * * This flags also controls the setting of bits in the bridge control * register pci to pci bridges. See pcmu_init_child() for details. */ ushort_t pcmu_command_default = PCI_COMM_SERR_ENABLE | PCI_COMM_WAIT_CYC_ENAB | PCI_COMM_PARITY_DETECT | PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO; /* * The following driver parameters are defined as variables to allow * patching for debugging and tuning. Flags that can be set on a per * PBM basis are bit fields where the PBM device instance number maps * to the bit position. */ #ifdef DEBUG uint64_t pcmu_debug_flags = 0; #endif uint_t ecc_error_intr_enable = 1; uint_t pcmu_ecc_afsr_retries = 100; /* XXX - what's a good value? */ uint_t pcmu_intr_retry_intv = 5; /* for interrupt retry reg */ uint_t pcmu_panic_on_fatal_errors = 1; /* should be 1 at beta */ hrtime_t pcmu_intrpend_timeout = 5ll * NANOSEC; /* 5 seconds in nanoseconds */ uint64_t pcmu_errtrig_pa = 0x0; /* * The following value is the number of consecutive unclaimed interrupts that * will be tolerated for a particular ino_p before the interrupt is deemed to * be jabbering and is blocked. */ uint_t pcmu_unclaimed_intr_max = 20; /* * function prototypes for dev ops routines: */ static int pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); static int pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); static int pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); static int pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp); static int pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp); static int pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp); static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, char *name, caddr_t valuep, int *lengthp); static int pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args); static int pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args, void *result); static int map_pcmu_registers(pcmu_t *, dev_info_t *); static void unmap_pcmu_registers(pcmu_t *); static void pcmu_pbm_clear_error(pcmu_pbm_t *); static int pcmu_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *); static int pcmu_map(dev_info_t *, dev_info_t *, ddi_map_req_t *, off_t, off_t, caddr_t *); static int pcmu_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, ddi_intr_handle_impl_t *, void *); static uint32_t pcmu_identity_init(pcmu_t *pcmu_p); static int pcmu_intr_setup(pcmu_t *pcmu_p); static void pcmu_pbm_errstate_get(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p); static int pcmu_obj_setup(pcmu_t *pcmu_p); static void pcmu_obj_destroy(pcmu_t *pcmu_p); static void pcmu_obj_resume(pcmu_t *pcmu_p); static void pcmu_obj_suspend(pcmu_t *pcmu_p); static void u2u_ittrans_init(pcmu_t *, u2u_ittrans_data_t **); static void u2u_ittrans_resume(u2u_ittrans_data_t **); static void u2u_ittrans_uninit(u2u_ittrans_data_t *); static pcmu_ksinfo_t *pcmu_name_kstat; /* * bus ops and dev ops structures: */ static struct bus_ops pcmu_bus_ops = { BUSO_REV, pcmu_map, 0, 0, 0, i_ddi_map_fault, 0, 0, 0, 0, 0, 0, 0, 0, pcmu_ctlops, ddi_bus_prop_op, ndi_busop_get_eventcookie, /* (*bus_get_eventcookie)(); */ ndi_busop_add_eventcall, /* (*bus_add_eventcall)(); */ ndi_busop_remove_eventcall, /* (*bus_remove_eventcall)(); */ ndi_post_event, /* (*bus_post_event)(); */ NULL, /* (*bus_intr_ctl)(); */ NULL, /* (*bus_config)(); */ NULL, /* (*bus_unconfig)(); */ NULL, /* (*bus_fm_init)(); */ NULL, /* (*bus_fm_fini)(); */ NULL, /* (*bus_fm_access_enter)(); */ NULL, /* (*bus_fm_access_fini)(); */ NULL, /* (*bus_power)(); */ pcmu_intr_ops /* (*bus_intr_op)(); */ }; struct cb_ops pcmu_cb_ops = { pcmu_open, /* open */ pcmu_close, /* close */ nodev, /* strategy */ nodev, /* print */ nodev, /* dump */ nodev, /* read */ nodev, /* write */ pcmu_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ pcmu_prop_op, /* cb_prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */ CB_REV, /* rev */ nodev, /* int (*cb_aread)() */ nodev /* int (*cb_awrite)() */ }; static struct dev_ops pcmu_ops = { DEVO_REV, 0, pcmu_info, nulldev, 0, pcmu_attach, pcmu_detach, nodev, &pcmu_cb_ops, &pcmu_bus_ops, 0, ddi_quiesce_not_needed, /* quiesce */ }; /* * module definitions: */ extern struct mod_ops mod_driverops; static struct modldrv modldrv = { &mod_driverops, /* Type of module - driver */ "OPL CMU-CH PCI Nexus driver", /* Name of module. */ &pcmu_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; /* * driver global data: */ void *per_pcmu_state; /* per-pbm soft state pointer */ kmutex_t pcmu_global_mutex; /* attach/detach common struct lock */ errorq_t *pcmu_ecc_queue = NULL; /* per-system ecc handling queue */ extern void pcmu_child_cfg_save(dev_info_t *dip); extern void pcmu_child_cfg_restore(dev_info_t *dip); int _init(void) { int e; /* * Initialize per-pci bus soft state pointer. */ e = ddi_soft_state_init(&per_pcmu_state, sizeof (pcmu_t), 1); if (e != 0) return (e); /* * Initialize global mutexes. */ mutex_init(&pcmu_global_mutex, NULL, MUTEX_DRIVER, NULL); /* * Create the performance kstats. */ pcmu_kstat_init(); /* * Install the module. */ e = mod_install(&modlinkage); if (e != 0) { ddi_soft_state_fini(&per_pcmu_state); mutex_destroy(&pcmu_global_mutex); } return (e); } int _fini(void) { int e; /* * Remove the module. */ e = mod_remove(&modlinkage); if (e != 0) { return (e); } /* * Destroy pcmu_ecc_queue, and set it to NULL. */ if (pcmu_ecc_queue) { errorq_destroy(pcmu_ecc_queue); pcmu_ecc_queue = NULL; } /* * Destroy the performance kstats. */ pcmu_kstat_fini(); /* * Free the per-pci and per-CMU-CH soft state info and destroy * mutex for per-CMU-CH soft state. */ ddi_soft_state_fini(&per_pcmu_state); mutex_destroy(&pcmu_global_mutex); return (e); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /*ARGSUSED*/ static int pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { int instance = getminor((dev_t)arg) >> 8; pcmu_t *pcmu_p = get_pcmu_soft_state(instance); switch (infocmd) { case DDI_INFO_DEVT2INSTANCE: *result = (void *)(uintptr_t)instance; return (DDI_SUCCESS); case DDI_INFO_DEVT2DEVINFO: if (pcmu_p == NULL) return (DDI_FAILURE); *result = (void *)pcmu_p->pcmu_dip; return (DDI_SUCCESS); default: return (DDI_FAILURE); } } /* device driver entry points */ /* * attach entry point: */ static int pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { pcmu_t *pcmu_p; int instance = ddi_get_instance(dip); switch (cmd) { case DDI_ATTACH: PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_ATTACH\n"); /* * Allocate and get the per-pci soft state structure. */ if (alloc_pcmu_soft_state(instance) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: can't allocate pci state", ddi_driver_name(dip), instance); goto err_bad_pcmu_softstate; } pcmu_p = get_pcmu_soft_state(instance); pcmu_p->pcmu_dip = dip; mutex_init(&pcmu_p->pcmu_mutex, NULL, MUTEX_DRIVER, NULL); pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED; pcmu_p->pcmu_open_count = 0; /* * Get key properties of the pci bridge node. */ if (get_pcmu_properties(pcmu_p, dip) == DDI_FAILURE) { goto err_bad_pcmu_prop; } /* * Map in the registers. */ if (map_pcmu_registers(pcmu_p, dip) == DDI_FAILURE) { goto err_bad_reg_prop; } if (pcmu_obj_setup(pcmu_p) != DDI_SUCCESS) { goto err_bad_objs; } if (ddi_create_minor_node(dip, "devctl", S_IFCHR, (uint_t)instance<<8 | 0xff, DDI_NT_NEXUS, 0) != DDI_SUCCESS) { goto err_bad_devctl_node; } /* * Due to unresolved hardware issues, disable PCIPM until * the problem is fully understood. * * pcmu_pwr_setup(pcmu_p, dip); */ ddi_report_dev(dip); pcmu_p->pcmu_state = PCMU_ATTACHED; PCMU_DBG0(PCMU_DBG_ATTACH, dip, "attach success\n"); break; err_bad_objs: ddi_remove_minor_node(dip, "devctl"); err_bad_devctl_node: unmap_pcmu_registers(pcmu_p); err_bad_reg_prop: free_pcmu_properties(pcmu_p); err_bad_pcmu_prop: mutex_destroy(&pcmu_p->pcmu_mutex); free_pcmu_soft_state(instance); err_bad_pcmu_softstate: return (DDI_FAILURE); case DDI_RESUME: PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_RESUME\n"); /* * Make sure the CMU-CH control registers * are configured properly. */ pcmu_p = get_pcmu_soft_state(instance); mutex_enter(&pcmu_p->pcmu_mutex); /* * Make sure this instance has been suspended. */ if (pcmu_p->pcmu_state != PCMU_SUSPENDED) { PCMU_DBG0(PCMU_DBG_ATTACH, dip, "instance NOT suspended\n"); mutex_exit(&pcmu_p->pcmu_mutex); return (DDI_FAILURE); } pcmu_obj_resume(pcmu_p); pcmu_p->pcmu_state = PCMU_ATTACHED; pcmu_child_cfg_restore(dip); mutex_exit(&pcmu_p->pcmu_mutex); break; default: PCMU_DBG0(PCMU_DBG_ATTACH, dip, "unsupported attach op\n"); return (DDI_FAILURE); } return (DDI_SUCCESS); } /* * detach entry point: */ static int pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { int instance = ddi_get_instance(dip); pcmu_t *pcmu_p = get_pcmu_soft_state(instance); int len; /* * Make sure we are currently attached */ if (pcmu_p->pcmu_state != PCMU_ATTACHED) { PCMU_DBG0(PCMU_DBG_ATTACH, dip, "failed - instance not attached\n"); return (DDI_FAILURE); } mutex_enter(&pcmu_p->pcmu_mutex); switch (cmd) { case DDI_DETACH: PCMU_DBG0(PCMU_DBG_DETACH, dip, "DDI_DETACH\n"); pcmu_obj_destroy(pcmu_p); /* * Free the pci soft state structure and the rest of the * resources it's using. */ free_pcmu_properties(pcmu_p); unmap_pcmu_registers(pcmu_p); mutex_exit(&pcmu_p->pcmu_mutex); mutex_destroy(&pcmu_p->pcmu_mutex); free_pcmu_soft_state(instance); /* Free the interrupt-priorities prop if we created it. */ if (ddi_getproplen(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, "interrupt-priorities", &len) == DDI_PROP_SUCCESS) { (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "interrupt-priorities"); } return (DDI_SUCCESS); case DDI_SUSPEND: pcmu_child_cfg_save(dip); pcmu_obj_suspend(pcmu_p); pcmu_p->pcmu_state = PCMU_SUSPENDED; mutex_exit(&pcmu_p->pcmu_mutex); return (DDI_SUCCESS); default: PCMU_DBG0(PCMU_DBG_DETACH, dip, "unsupported detach op\n"); mutex_exit(&pcmu_p->pcmu_mutex); return (DDI_FAILURE); } } /* ARGSUSED3 */ static int pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp) { pcmu_t *pcmu_p; if (otyp != OTYP_CHR) { return (EINVAL); } /* * Get the soft state structure for the device. */ pcmu_p = DEV_TO_SOFTSTATE(*devp); if (pcmu_p == NULL) { return (ENXIO); } /* * Handle the open by tracking the device state. */ PCMU_DBG2(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "devp=%x: flags=%x\n", devp, flags); mutex_enter(&pcmu_p->pcmu_mutex); if (flags & FEXCL) { if (pcmu_p->pcmu_soft_state != PCMU_SOFT_STATE_CLOSED) { mutex_exit(&pcmu_p->pcmu_mutex); PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n"); return (EBUSY); } pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN_EXCL; } else { if (pcmu_p->pcmu_soft_state == PCMU_SOFT_STATE_OPEN_EXCL) { mutex_exit(&pcmu_p->pcmu_mutex); PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n"); return (EBUSY); } pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN; } pcmu_p->pcmu_open_count++; mutex_exit(&pcmu_p->pcmu_mutex); return (0); } /* ARGSUSED */ static int pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp) { pcmu_t *pcmu_p; if (otyp != OTYP_CHR) { return (EINVAL); } pcmu_p = DEV_TO_SOFTSTATE(dev); if (pcmu_p == NULL) { return (ENXIO); } PCMU_DBG2(PCMU_DBG_CLOSE, pcmu_p->pcmu_dip, "dev=%x: flags=%x\n", dev, flags); mutex_enter(&pcmu_p->pcmu_mutex); pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED; pcmu_p->pcmu_open_count = 0; mutex_exit(&pcmu_p->pcmu_mutex); return (0); } /* ARGSUSED */ static int pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) { pcmu_t *pcmu_p; dev_info_t *dip; struct devctl_iocdata *dcp; uint_t bus_state; int rv = 0; pcmu_p = DEV_TO_SOFTSTATE(dev); if (pcmu_p == NULL) { return (ENXIO); } dip = pcmu_p->pcmu_dip; PCMU_DBG2(PCMU_DBG_IOCTL, dip, "dev=%x: cmd=%x\n", dev, cmd); /* * We can use the generic implementation for these ioctls */ switch (cmd) { case DEVCTL_DEVICE_GETSTATE: case DEVCTL_DEVICE_ONLINE: case DEVCTL_DEVICE_OFFLINE: case DEVCTL_BUS_GETSTATE: return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0)); } /* * read devctl ioctl data */ if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS) return (EFAULT); switch (cmd) { case DEVCTL_DEVICE_RESET: PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_DEVICE_RESET\n"); rv = ENOTSUP; break; case DEVCTL_BUS_QUIESCE: PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_QUIESCE\n"); if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) { if (bus_state == BUS_QUIESCED) { break; } } (void) ndi_set_bus_state(dip, BUS_QUIESCED); break; case DEVCTL_BUS_UNQUIESCE: PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_UNQUIESCE\n"); if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) { if (bus_state == BUS_ACTIVE) { break; } } (void) ndi_set_bus_state(dip, BUS_ACTIVE); break; case DEVCTL_BUS_RESET: PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESET\n"); rv = ENOTSUP; break; case DEVCTL_BUS_RESETALL: PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESETALL\n"); rv = ENOTSUP; break; default: rv = ENOTTY; } ndi_dc_freehdl(dcp); return (rv); } static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, char *name, caddr_t valuep, int *lengthp) { return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); } /* bus driver entry points */ /* * bus map entry point: * * if map request is for an rnumber * get the corresponding regspec from device node * build a new regspec in our parent's format * build a new map_req with the new regspec * call up the tree to complete the mapping */ static int pcmu_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t off, off_t len, caddr_t *addrp) { pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip)); struct regspec p_regspec; ddi_map_req_t p_mapreq; int reglen, rval, r_no; pci_regspec_t reloc_reg, *rp = &reloc_reg; PCMU_DBG2(PCMU_DBG_MAP, dip, "rdip=%s%d:", ddi_driver_name(rdip), ddi_get_instance(rdip)); if (mp->map_flags & DDI_MF_USER_MAPPING) { return (DDI_ME_UNIMPLEMENTED); } switch (mp->map_type) { case DDI_MT_REGSPEC: reloc_reg = *(pci_regspec_t *)mp->map_obj.rp; /* dup whole */ break; case DDI_MT_RNUMBER: r_no = mp->map_obj.rnumber; PCMU_DBG1(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, " r#=%x", r_no); if (ddi_getlongprop(DDI_DEV_T_NONE, rdip, DDI_PROP_DONTPASS, "reg", (caddr_t)&rp, ®len) != DDI_SUCCESS) { return (DDI_ME_RNUMBER_RANGE); } if (r_no < 0 || r_no >= reglen / sizeof (pci_regspec_t)) { kmem_free(rp, reglen); return (DDI_ME_RNUMBER_RANGE); } rp += r_no; break; default: return (DDI_ME_INVAL); } PCMU_DBG0(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, "\n"); /* use "assigned-addresses" to relocate regspec within pci space */ if (rval = pcmu_reloc_reg(dip, rdip, pcmu_p, rp)) { goto done; } /* adjust regspec according to mapping request */ if (len) { rp->pci_size_low = (uint_t)len; } rp->pci_phys_low += off; /* use "ranges" to translate relocated pci regspec into parent space */ if (rval = pcmu_xlate_reg(pcmu_p, rp, &p_regspec)) { goto done; } p_mapreq = *mp; /* dup the whole structure */ p_mapreq.map_type = DDI_MT_REGSPEC; p_mapreq.map_obj.rp = &p_regspec; rval = ddi_map(dip, &p_mapreq, 0, 0, addrp); done: if (mp->map_type == DDI_MT_RNUMBER) { kmem_free(rp - r_no, reglen); } return (rval); } #ifdef DEBUG int pcmu_peekfault_cnt = 0; int pcmu_pokefault_cnt = 0; #endif /* DEBUG */ static int pcmu_do_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args) { pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; int err = DDI_SUCCESS; on_trap_data_t otd; mutex_enter(&pcbm_p->pcbm_pokeflt_mutex); pcbm_p->pcbm_ontrap_data = &otd; /* Set up protected environment. */ if (!on_trap(&otd, OT_DATA_ACCESS)) { uintptr_t tramp = otd.ot_trampoline; otd.ot_trampoline = (uintptr_t)&poke_fault; err = do_poke(in_args->size, (void *)in_args->dev_addr, (void *)in_args->host_addr); otd.ot_trampoline = tramp; } else { err = DDI_FAILURE; } /* * Read the async fault register for the PBM to see it sees * a master-abort. */ pcmu_pbm_clear_error(pcbm_p); if (otd.ot_trap & OT_DATA_ACCESS) { err = DDI_FAILURE; } /* Take down protected environment. */ no_trap(); pcbm_p->pcbm_ontrap_data = NULL; mutex_exit(&pcbm_p->pcbm_pokeflt_mutex); #ifdef DEBUG if (err == DDI_FAILURE) pcmu_pokefault_cnt++; #endif return (err); } static int pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args) { return (pcmu_do_poke(pcmu_p, in_args)); } /* ARGSUSED */ static int pcmu_do_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args) { int err = DDI_SUCCESS; on_trap_data_t otd; if (!on_trap(&otd, OT_DATA_ACCESS)) { uintptr_t tramp = otd.ot_trampoline; otd.ot_trampoline = (uintptr_t)&peek_fault; err = do_peek(in_args->size, (void *)in_args->dev_addr, (void *)in_args->host_addr); otd.ot_trampoline = tramp; } else err = DDI_FAILURE; no_trap(); #ifdef DEBUG if (err == DDI_FAILURE) pcmu_peekfault_cnt++; #endif return (err); } static int pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args, void *result) { result = (void *)in_args->host_addr; return (pcmu_do_peek(pcmu_p, in_args)); } /* * control ops entry point: * * Requests handled completely: * DDI_CTLOPS_INITCHILD see pcmu_init_child() for details * DDI_CTLOPS_UNINITCHILD * DDI_CTLOPS_REPORTDEV see report_dev() for details * DDI_CTLOPS_XLATE_INTRS nothing to do * DDI_CTLOPS_IOMIN cache line size if streaming otherwise 1 * DDI_CTLOPS_REGSIZE * DDI_CTLOPS_NREGS * DDI_CTLOPS_NINTRS * DDI_CTLOPS_DVMAPAGESIZE * DDI_CTLOPS_POKE * DDI_CTLOPS_PEEK * DDI_CTLOPS_QUIESCE * DDI_CTLOPS_UNQUIESCE * * All others passed to parent. */ static int pcmu_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op, void *arg, void *result) { pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip)); switch (op) { case DDI_CTLOPS_INITCHILD: return (pcmu_init_child(pcmu_p, (dev_info_t *)arg)); case DDI_CTLOPS_UNINITCHILD: return (pcmu_uninit_child(pcmu_p, (dev_info_t *)arg)); case DDI_CTLOPS_REPORTDEV: return (pcmu_report_dev(rdip)); case DDI_CTLOPS_IOMIN: /* * If we are using the streaming cache, align at * least on a cache line boundary. Otherwise use * whatever alignment is passed in. */ return (DDI_SUCCESS); case DDI_CTLOPS_REGSIZE: *((off_t *)result) = pcmu_get_reg_set_size(rdip, *((int *)arg)); return (DDI_SUCCESS); case DDI_CTLOPS_NREGS: *((uint_t *)result) = pcmu_get_nreg_set(rdip); return (DDI_SUCCESS); case DDI_CTLOPS_DVMAPAGESIZE: *((ulong_t *)result) = 0; return (DDI_SUCCESS); case DDI_CTLOPS_POKE: return (pcmu_ctlops_poke(pcmu_p, (peekpoke_ctlops_t *)arg)); case DDI_CTLOPS_PEEK: return (pcmu_ctlops_peek(pcmu_p, (peekpoke_ctlops_t *)arg, result)); case DDI_CTLOPS_AFFINITY: break; case DDI_CTLOPS_QUIESCE: return (DDI_FAILURE); case DDI_CTLOPS_UNQUIESCE: return (DDI_FAILURE); default: break; } /* * Now pass the request up to our parent. */ PCMU_DBG2(PCMU_DBG_CTLOPS, dip, "passing request to parent: rdip=%s%d\n", ddi_driver_name(rdip), ddi_get_instance(rdip)); return (ddi_ctlops(dip, rdip, op, arg, result)); } /* ARGSUSED */ static int pcmu_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result) { pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip)); int ret = DDI_SUCCESS; switch (intr_op) { case DDI_INTROP_GETCAP: /* GetCap will always fail for all non PCI devices */ (void) pci_intx_get_cap(rdip, (int *)result); break; case DDI_INTROP_SETCAP: ret = DDI_ENOTSUP; break; case DDI_INTROP_ALLOC: *(int *)result = hdlp->ih_scratch1; break; case DDI_INTROP_FREE: break; case DDI_INTROP_GETPRI: *(int *)result = hdlp->ih_pri ? hdlp->ih_pri : 0; break; case DDI_INTROP_SETPRI: break; case DDI_INTROP_ADDISR: ret = pcmu_add_intr(dip, rdip, hdlp); break; case DDI_INTROP_REMISR: ret = pcmu_remove_intr(dip, rdip, hdlp); break; case DDI_INTROP_ENABLE: ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp, PCMU_INTR_STATE_ENABLE); break; case DDI_INTROP_DISABLE: ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp, PCMU_INTR_STATE_DISABLE); break; case DDI_INTROP_SETMASK: ret = pci_intx_set_mask(rdip); break; case DDI_INTROP_CLRMASK: ret = pci_intx_clr_mask(rdip); break; case DDI_INTROP_GETPENDING: ret = pci_intx_get_pending(rdip, (int *)result); break; case DDI_INTROP_NINTRS: case DDI_INTROP_NAVAIL: *(int *)result = i_ddi_get_intx_nintrs(rdip); break; case DDI_INTROP_SUPPORTED_TYPES: /* PCI nexus driver supports only fixed interrupts */ *(int *)result = i_ddi_get_intx_nintrs(rdip) ? DDI_INTR_TYPE_FIXED : 0; break; default: ret = DDI_ENOTSUP; break; } return (ret); } /* * CMU-CH specifics implementation: * interrupt mapping register * PBM configuration * ECC and PBM error handling */ /* called by pcmu_attach() DDI_ATTACH to initialize pci objects */ static int pcmu_obj_setup(pcmu_t *pcmu_p) { int ret; mutex_enter(&pcmu_global_mutex); pcmu_p->pcmu_rev = ddi_prop_get_int(DDI_DEV_T_ANY, pcmu_p->pcmu_dip, DDI_PROP_DONTPASS, "module-revision#", 0); pcmu_ib_create(pcmu_p); pcmu_cb_create(pcmu_p); pcmu_ecc_create(pcmu_p); pcmu_pbm_create(pcmu_p); pcmu_err_create(pcmu_p); if ((ret = pcmu_intr_setup(pcmu_p)) != DDI_SUCCESS) goto done; /* * Due to a hardware bug, do not create kstat for DC systems * with PCI hw revision less than 5. */ if ((strncmp(ddi_binding_name(pcmu_p->pcmu_dip), PCICMU_OPL_DC_BINDING_NAME, strlen(PCICMU_OPL_DC_BINDING_NAME)) != 0) || (pcmu_p->pcmu_rev > 4)) { pcmu_kstat_create(pcmu_p); } done: mutex_exit(&pcmu_global_mutex); if (ret != DDI_SUCCESS) { cmn_err(CE_NOTE, "Interrupt register failure, returning 0x%x\n", ret); } return (ret); } /* called by pcmu_detach() DDI_DETACH to destroy pci objects */ static void pcmu_obj_destroy(pcmu_t *pcmu_p) { mutex_enter(&pcmu_global_mutex); pcmu_kstat_destroy(pcmu_p); pcmu_pbm_destroy(pcmu_p); pcmu_err_destroy(pcmu_p); pcmu_ecc_destroy(pcmu_p); pcmu_cb_destroy(pcmu_p); pcmu_ib_destroy(pcmu_p); pcmu_intr_teardown(pcmu_p); mutex_exit(&pcmu_global_mutex); } /* called by pcmu_attach() DDI_RESUME to (re)initialize pci objects */ static void pcmu_obj_resume(pcmu_t *pcmu_p) { mutex_enter(&pcmu_global_mutex); pcmu_ib_configure(pcmu_p->pcmu_ib_p); pcmu_ecc_configure(pcmu_p); pcmu_ib_resume(pcmu_p->pcmu_ib_p); u2u_ittrans_resume((u2u_ittrans_data_t **) &(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie)); pcmu_pbm_configure(pcmu_p->pcmu_pcbm_p); pcmu_cb_resume(pcmu_p->pcmu_cb_p); pcmu_pbm_resume(pcmu_p->pcmu_pcbm_p); mutex_exit(&pcmu_global_mutex); } /* called by pcmu_detach() DDI_SUSPEND to suspend pci objects */ static void pcmu_obj_suspend(pcmu_t *pcmu_p) { mutex_enter(&pcmu_global_mutex); pcmu_pbm_suspend(pcmu_p->pcmu_pcbm_p); pcmu_ib_suspend(pcmu_p->pcmu_ib_p); pcmu_cb_suspend(pcmu_p->pcmu_cb_p); mutex_exit(&pcmu_global_mutex); } static int pcmu_intr_setup(pcmu_t *pcmu_p) { dev_info_t *dip = pcmu_p->pcmu_dip; pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p; int i, no_of_intrs; /* * Get the interrupts property. */ if (ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "interrupts", (caddr_t)&pcmu_p->pcmu_inos, &pcmu_p->pcmu_inos_len) != DDI_SUCCESS) { cmn_err(CE_PANIC, "%s%d: no interrupts property\n", ddi_driver_name(dip), ddi_get_instance(dip)); } /* * figure out number of interrupts in the "interrupts" property * and convert them all into ino. */ i = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1); i = CELLS_1275_TO_BYTES(i); no_of_intrs = pcmu_p->pcmu_inos_len / i; for (i = 0; i < no_of_intrs; i++) { pcmu_p->pcmu_inos[i] = PCMU_IB_MONDO_TO_INO(pcmu_p->pcmu_inos[i]); } pcb_p->pcb_no_of_inos = no_of_intrs; if (i = pcmu_ecc_register_intr(pcmu_p)) { goto teardown; } intr_dist_add(pcmu_cb_intr_dist, pcb_p); pcmu_ecc_enable_intr(pcmu_p); if (i = pcmu_pbm_register_intr(pcbm_p)) { intr_dist_rem(pcmu_cb_intr_dist, pcb_p); goto teardown; } intr_dist_add(pcmu_pbm_intr_dist, pcbm_p); pcmu_ib_intr_enable(pcmu_p, pcmu_p->pcmu_inos[CBNINTR_PBM]); intr_dist_add_weighted(pcmu_ib_intr_dist_all, pcmu_p->pcmu_ib_p); return (DDI_SUCCESS); teardown: pcmu_intr_teardown(pcmu_p); return (i); } /* * pcmu_fix_ranges - fixes the config space entry of the "ranges" * property on CMU-CH platforms */ void pcmu_fix_ranges(pcmu_ranges_t *rng_p, int rng_entries) { int i; for (i = 0; i < rng_entries; i++, rng_p++) { if ((rng_p->child_high & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG) rng_p->parent_low |= rng_p->child_high; } } /* * map_pcmu_registers * * This function is called from the attach routine to map the registers * accessed by this driver. * * used by: pcmu_attach() * * return value: DDI_FAILURE on failure */ static int map_pcmu_registers(pcmu_t *pcmu_p, dev_info_t *dip) { ddi_device_acc_attr_t attr; attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; if (ddi_regs_map_setup(dip, 0, &pcmu_p->pcmu_address[0], 0, 0, &attr, &pcmu_p->pcmu_ac[0]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 0\n", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } /* * We still use pcmu_address[2] */ if (ddi_regs_map_setup(dip, 2, &pcmu_p->pcmu_address[2], 0, 0, &attr, &pcmu_p->pcmu_ac[2]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 2\n", ddi_driver_name(dip), ddi_get_instance(dip)); ddi_regs_map_free(&pcmu_p->pcmu_ac[0]); return (DDI_FAILURE); } /* * The second register set contains the bridge's configuration * header. This header is at the very beginning of the bridge's * configuration space. This space has litte-endian byte order. */ attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; if (ddi_regs_map_setup(dip, 1, &pcmu_p->pcmu_address[1], 0, PCI_CONF_HDR_SIZE, &attr, &pcmu_p->pcmu_ac[1]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 1\n", ddi_driver_name(dip), ddi_get_instance(dip)); ddi_regs_map_free(&pcmu_p->pcmu_ac[0]); return (DDI_FAILURE); } PCMU_DBG2(PCMU_DBG_ATTACH, dip, "address (%p,%p)\n", pcmu_p->pcmu_address[0], pcmu_p->pcmu_address[1]); return (DDI_SUCCESS); } /* * unmap_pcmu_registers: * * This routine unmap the registers mapped by map_pcmu_registers. * * used by: pcmu_detach() * * return value: none */ static void unmap_pcmu_registers(pcmu_t *pcmu_p) { ddi_regs_map_free(&pcmu_p->pcmu_ac[0]); ddi_regs_map_free(&pcmu_p->pcmu_ac[1]); ddi_regs_map_free(&pcmu_p->pcmu_ac[2]); } /* * These convenience wrappers relies on map_pcmu_registers() to setup * pcmu_address[0-2] correctly at first. */ static uintptr_t get_reg_base(pcmu_t *pcmu_p) { return ((uintptr_t)pcmu_p->pcmu_address[2]); } /* The CMU-CH config reg base is always the 2nd reg entry */ static uintptr_t get_config_reg_base(pcmu_t *pcmu_p) { return ((uintptr_t)(pcmu_p->pcmu_address[1])); } uint64_t ib_get_map_reg(pcmu_ib_mondo_t mondo, uint32_t cpu_id) { return ((mondo) | (cpu_id << PCMU_INTR_MAP_REG_TID_SHIFT) | PCMU_INTR_MAP_REG_VALID); } uint32_t ib_map_reg_get_cpu(volatile uint64_t reg) { return ((reg & PCMU_INTR_MAP_REG_TID) >> PCMU_INTR_MAP_REG_TID_SHIFT); } uint64_t * ib_intr_map_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino) { uint64_t *addr; ASSERT(ino & 0x20); addr = (uint64_t *)(pib_p->pib_obio_intr_map_regs + (((uint_t)ino & 0x1f) << 3)); return (addr); } uint64_t * ib_clear_intr_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino) { uint64_t *addr; ASSERT(ino & 0x20); addr = (uint64_t *)(pib_p->pib_obio_clear_intr_regs + (((uint_t)ino & 0x1f) << 3)); return (addr); } uintptr_t pcmu_ib_setup(pcmu_ib_t *pib_p) { pcmu_t *pcmu_p = pib_p->pib_pcmu_p; uintptr_t a = get_reg_base(pcmu_p); pib_p->pib_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id); pib_p->pib_max_ino = PCMU_MAX_INO; pib_p->pib_obio_intr_map_regs = a + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET; pib_p->pib_obio_clear_intr_regs = a + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET; return (a); } /* * Return the cpuid to to be used for an ino. * * On multi-function pci devices, functions have separate devinfo nodes and * interrupts. * * This function determines if there is already an established slot-oriented * interrupt-to-cpu binding established, if there is then it returns that * cpu. Otherwise a new cpu is selected by intr_dist_cpuid(). * * The devinfo node we are trying to associate a cpu with is * ino_p->pino_ih_head->ih_dip. */ uint32_t pcmu_intr_dist_cpuid(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p) { dev_info_t *rdip = ino_p->pino_ih_head->ih_dip; dev_info_t *prdip = ddi_get_parent(rdip); pcmu_ib_ino_info_t *sino_p; dev_info_t *sdip; dev_info_t *psdip; char *buf1 = NULL, *buf2 = NULL; char *s1, *s2, *s3; int l2; int cpu_id; /* must be CMU-CH driver parent (not ebus) */ if (strcmp(ddi_driver_name(prdip), "pcicmu") != 0) goto newcpu; /* * From PCI 1275 binding: 2.2.1.3 Unit Address representation: * Since the "unit-number" is the address that appears in on Open * Firmware 'device path', it follows that only the DD and DD,FF * forms of the text representation can appear in a 'device path'. * * The rdip unit address is of the form "DD[,FF]". Define two * unit address strings that represent same-slot use: "DD" and "DD,". * The first compare uses strcmp, the second uses strncmp. */ s1 = ddi_get_name_addr(rdip); if (s1 == NULL) { goto newcpu; } buf1 = kmem_alloc(MAXNAMELEN, KM_SLEEP); /* strcmp */ buf2 = kmem_alloc(MAXNAMELEN, KM_SLEEP); /* strncmp */ s1 = strcpy(buf1, s1); s2 = strcpy(buf2, s1); s1 = strrchr(s1, ','); if (s1) { *s1 = '\0'; /* have "DD,FF" */ s1 = buf1; /* search via strcmp "DD" */ s2 = strrchr(s2, ','); *(s2 + 1) = '\0'; s2 = buf2; l2 = strlen(s2); /* search via strncmp "DD," */ } else { (void) strcat(s2, ","); /* have "DD" */ l2 = strlen(s2); /* search via strncmp "DD," */ } /* * Search the established ino list for devinfo nodes bound * to an ino that matches one of the slot use strings. */ ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); for (sino_p = pib_p->pib_ino_lst; sino_p; sino_p = sino_p->pino_next) { /* skip self and non-established */ if ((sino_p == ino_p) || (sino_p->pino_established == 0)) continue; /* skip non-siblings */ sdip = sino_p->pino_ih_head->ih_dip; psdip = ddi_get_parent(sdip); if (psdip != prdip) continue; /* must be CMU-CH driver parent (not ebus) */ if (strcmp(ddi_driver_name(psdip), "pcicmu") != 0) continue; s3 = ddi_get_name_addr(sdip); if ((s1 && (strcmp(s1, s3) == 0)) || (strncmp(s2, s3, l2) == 0)) { extern int intr_dist_debug; if (intr_dist_debug) { cmn_err(CE_CONT, "intr_dist: " "pcicmu`pcmu_intr_dist_cpuid " "%s#%d %s: cpu %d established " "by %s#%d %s\n", ddi_driver_name(rdip), ddi_get_instance(rdip), ddi_deviname(rdip, buf1), sino_p->pino_cpuid, ddi_driver_name(sdip), ddi_get_instance(sdip), ddi_deviname(sdip, buf2)); } break; } } /* If a slot use match is found then use established cpu */ if (sino_p) { cpu_id = sino_p->pino_cpuid; /* target established cpu */ goto out; } newcpu: cpu_id = intr_dist_cpuid(); /* target new cpu */ out: if (buf1) kmem_free(buf1, MAXNAMELEN); if (buf2) kmem_free(buf2, MAXNAMELEN); return (cpu_id); } void pcmu_cb_teardown(pcmu_t *pcmu_p) { pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p; u2u_ittrans_uninit((u2u_ittrans_data_t *)pcb_p->pcb_ittrans_cookie); } int pcmu_ecc_add_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p) { uint32_t mondo; mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) | pcmu_p->pcmu_inos[inum]); VERIFY(add_ivintr(mondo, pcmu_pil[inum], (intrfunc)pcmu_ecc_intr, (caddr_t)eii_p, NULL, NULL) == 0); return (PCMU_ATTACH_RETCODE(PCMU_ECC_OBJ, PCMU_OBJ_INTR_ADD, DDI_SUCCESS)); } /* ARGSUSED */ void pcmu_ecc_rem_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p) { uint32_t mondo; mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) | pcmu_p->pcmu_inos[inum]); VERIFY(rem_ivintr(mondo, pcmu_pil[inum]) == 0); } void pcmu_pbm_configure(pcmu_pbm_t *pcbm_p) { pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p; dev_info_t *dip = pcmu_p->pcmu_dip; #define pbm_err ((PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_PE_SHIFT) | \ (PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_SE_SHIFT)) #define csr_err (PCI_STAT_PERROR | PCI_STAT_S_PERROR | \ PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB | \ PCI_STAT_S_TARG_AB | PCI_STAT_S_PERROR) /* * Clear any PBM errors. */ *pcbm_p->pcbm_async_flt_status_reg = pbm_err; /* * Clear error bits in configuration status register. */ PCMU_DBG1(PCMU_DBG_ATTACH, dip, "pcmu_pbm_configure: conf status reg=%x\n", csr_err); pcbm_p->pcbm_config_header->ch_status_reg = csr_err; PCMU_DBG1(PCMU_DBG_ATTACH, dip, "pcmu_pbm_configure: conf status reg==%x\n", pcbm_p->pcbm_config_header->ch_status_reg); (void) ndi_prop_update_int(DDI_DEV_T_ANY, dip, "latency-timer", (int)pcbm_p->pcbm_config_header->ch_latency_timer_reg); #undef pbm_err #undef csr_err } uint_t pcmu_pbm_disable_errors(pcmu_pbm_t *pcbm_p) { pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p; pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; /* * Disable error and streaming byte hole interrupts via the * PBM control register. */ *pcbm_p->pcbm_ctrl_reg &= ~PCMU_PCI_CTRL_ERR_INT_EN; /* * Disable error interrupts via the interrupt mapping register. */ pcmu_ib_intr_disable(pib_p, pcmu_p->pcmu_inos[CBNINTR_PBM], PCMU_IB_INTR_NOWAIT); return (BF_NONE); } void pcmu_cb_setup(pcmu_t *pcmu_p) { uint64_t csr, csr_pa, pa; pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p; pcb_p->pcb_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id); pa = (uint64_t)hat_getpfnum(kas.a_hat, pcmu_p->pcmu_address[0]); pcb_p->pcb_base_pa = pa = pa >> (32 - MMU_PAGESHIFT) << 32; pcb_p->pcb_map_pa = pa + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET; pcb_p->pcb_clr_pa = pa + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET; pcb_p->pcb_obsta_pa = pa + PCMU_IB_OBIO_INTR_STATE_DIAG_REG; csr_pa = pa + PCMU_CB_CONTROL_STATUS_REG_OFFSET; csr = lddphysio(csr_pa); /* * Clear any pending address parity errors. */ if (csr & PCMU_CB_CONTROL_STATUS_APERR) { csr |= PCMU_CB_CONTROL_STATUS_APERR; cmn_err(CE_WARN, "clearing UPA address parity error\n"); } csr |= PCMU_CB_CONTROL_STATUS_APCKEN; csr &= ~PCMU_CB_CONTROL_STATUS_IAP; stdphysio(csr_pa, csr); u2u_ittrans_init(pcmu_p, (u2u_ittrans_data_t **)&pcb_p->pcb_ittrans_cookie); } void pcmu_ecc_setup(pcmu_ecc_t *pecc_p) { pecc_p->pecc_ue.pecc_errpndg_mask = 0; pecc_p->pecc_ue.pecc_offset_mask = PCMU_ECC_UE_AFSR_DW_OFFSET; pecc_p->pecc_ue.pecc_offset_shift = PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT; pecc_p->pecc_ue.pecc_size_log2 = 3; } static uintptr_t get_pbm_reg_base(pcmu_t *pcmu_p) { return ((uintptr_t)(pcmu_p->pcmu_address[0])); } void pcmu_pbm_setup(pcmu_pbm_t *pcbm_p) { pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p; /* * Get the base virtual address for the PBM control block. */ uintptr_t a = get_pbm_reg_base(pcmu_p); /* * Get the virtual address of the PCI configuration header. * This should be mapped little-endian. */ pcbm_p->pcbm_config_header = (config_header_t *)get_config_reg_base(pcmu_p); /* * Get the virtual addresses for control, error and diag * registers. */ pcbm_p->pcbm_ctrl_reg = (uint64_t *)(a + PCMU_PCI_CTRL_REG_OFFSET); pcbm_p->pcbm_diag_reg = (uint64_t *)(a + PCMU_PCI_DIAG_REG_OFFSET); pcbm_p->pcbm_async_flt_status_reg = (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_STATUS_REG_OFFSET); pcbm_p->pcbm_async_flt_addr_reg = (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_ADDR_REG_OFFSET); } /*ARGSUSED*/ void pcmu_pbm_teardown(pcmu_pbm_t *pcbm_p) { } int pcmu_get_numproxy(dev_info_t *dip) { return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1)); } int pcmu_get_portid(dev_info_t *dip) { return (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "portid", -1)); } /* * CMU-CH Performance Events. */ static pcmu_kev_mask_t pcicmu_pcmu_events[] = { {"pio_cycles_b", 0xf}, {"interrupts", 0x11}, {"upa_inter_nack", 0x12}, {"pio_reads", 0x13}, {"pio_writes", 0x14}, {"clear_pic", 0x1f} }; /* * Create the picN kstat's. */ void pcmu_kstat_init() { pcmu_name_kstat = (pcmu_ksinfo_t *)kmem_alloc(sizeof (pcmu_ksinfo_t), KM_NOSLEEP); if (pcmu_name_kstat == NULL) { cmn_err(CE_WARN, "pcicmu : no space for kstat\n"); } else { pcmu_name_kstat->pic_no_evs = sizeof (pcicmu_pcmu_events) / sizeof (pcmu_kev_mask_t); pcmu_name_kstat->pic_shift[0] = PCMU_SHIFT_PIC0; pcmu_name_kstat->pic_shift[1] = PCMU_SHIFT_PIC1; pcmu_create_name_kstat("pcmup", pcmu_name_kstat, pcicmu_pcmu_events); } } /* * Called from _fini() */ void pcmu_kstat_fini() { if (pcmu_name_kstat != NULL) { pcmu_delete_name_kstat(pcmu_name_kstat); kmem_free(pcmu_name_kstat, sizeof (pcmu_ksinfo_t)); pcmu_name_kstat = NULL; } } /* * Create the performance 'counters' kstat. */ void pcmu_add_upstream_kstat(pcmu_t *pcmu_p) { pcmu_cntr_pa_t *cntr_pa_p = &pcmu_p->pcmu_uks_pa; uint64_t regbase = va_to_pa((void *)get_reg_base(pcmu_p)); cntr_pa_p->pcr_pa = regbase + PCMU_PERF_PCR_OFFSET; cntr_pa_p->pic_pa = regbase + PCMU_PERF_PIC_OFFSET; pcmu_p->pcmu_uksp = pcmu_create_cntr_kstat(pcmu_p, "pcmup", NUM_OF_PICS, pcmu_cntr_kstat_pa_update, cntr_pa_p); } /* * u2u_ittrans_init() is caled from in pci.c's pcmu_cb_setup() per CMU. * Second argument "ittrans_cookie" is address of pcb_ittrans_cookie in * pcb_p member. allocated interrupt block is returned in it. */ static void u2u_ittrans_init(pcmu_t *pcmu_p, u2u_ittrans_data_t **ittrans_cookie) { u2u_ittrans_data_t *u2u_trans_p; ddi_device_acc_attr_t attr; int ret; int board; /* * Allocate the data structure to support U2U's * interrupt target translations. */ u2u_trans_p = (u2u_ittrans_data_t *) kmem_zalloc(sizeof (u2u_ittrans_data_t), KM_SLEEP); /* * Get other properties, "board#" */ board = ddi_getprop(DDI_DEV_T_ANY, pcmu_p->pcmu_dip, DDI_PROP_DONTPASS, "board#", -1); u2u_trans_p->u2u_board = board; if (board == -1) { /* this cannot happen on production systems */ cmn_err(CE_PANIC, "u2u:Invalid property;board = %d", board); } /* * Initialize interrupt target translations mutex. */ mutex_init(&(u2u_trans_p->u2u_ittrans_lock), "u2u_ittrans_lock", MUTEX_DEFAULT, NULL); /* * Get U2U's registers space by ddi_regs_map_setup(9F) */ attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; ret = ddi_regs_map_setup(pcmu_p->pcmu_dip, REGS_INDEX_OF_U2U, (caddr_t *)(&(u2u_trans_p->u2u_regs_base)), 0, 0, &attr, &(u2u_trans_p->u2u_acc)); /* * check result of ddi_regs_map_setup(). */ if (ret != DDI_SUCCESS) { cmn_err(CE_PANIC, "u2u%d: registers map setup failed", board); } /* * Read Port-id(1 byte) in u2u */ u2u_trans_p->u2u_port_id = *(volatile int32_t *) (u2u_trans_p->u2u_regs_base + U2U_PID_REGISTER_OFFSET); if (pcmu_p->pcmu_id != u2u_trans_p->u2u_port_id) { cmn_err(CE_PANIC, "u2u%d: Invalid Port-ID", board); } *ittrans_cookie = u2u_trans_p; } /* * u2u_ittras_resume() is called from pcmu_obj_resume() at DDI_RESUME entry. */ static void u2u_ittrans_resume(u2u_ittrans_data_t **ittrans_cookie) { u2u_ittrans_data_t *u2u_trans_p; u2u_ittrans_id_t *ittrans_id_p; uintptr_t data_reg_addr; int ix; u2u_trans_p = *ittrans_cookie; /* * Set U2U Data Register */ for (ix = 0; ix < U2U_DATA_NUM; ix++) { ittrans_id_p = &(u2u_trans_p->u2u_ittrans_id[ix]); data_reg_addr = u2u_trans_p->u2u_regs_base + U2U_DATA_REGISTER_OFFSET + (ix * sizeof (uint64_t)); if (ittrans_id_p->u2u_ino_map_reg == NULL) { /* This index was not set */ continue; } *(volatile uint32_t *) (data_reg_addr) = (uint32_t)ittrans_id_p->u2u_tgt_cpu_id; } } /* * u2u_ittras_uninit() is called from ib_destroy() at detach, * or occuring error in attach. */ static void u2u_ittrans_uninit(u2u_ittrans_data_t *ittrans_cookie) { if (ittrans_cookie == NULL) { return; /* not support */ } if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) { return; /* illeagal case */ } ddi_regs_map_free(&(ittrans_cookie->u2u_acc)); mutex_destroy(&(ittrans_cookie->u2u_ittrans_lock)); kmem_free((void *)ittrans_cookie, sizeof (u2u_ittrans_data_t)); } /* * This routine,u2u_translate_tgtid(, , cpu_id, pino_map_reg), * searches index having same value of pino_map_reg, or empty. * Then, stores cpu_id in a U2U Data Register as this index, * and return this index. */ int u2u_translate_tgtid(pcmu_t *pcmu_p, uint_t cpu_id, volatile uint64_t *pino_map_reg) { int index = -1; int ix; int err_level; /* severity level for cmn_err */ u2u_ittrans_id_t *ittrans_id_p; uintptr_t data_reg_addr; u2u_ittrans_data_t *ittrans_cookie; ittrans_cookie = (u2u_ittrans_data_t *)(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie); if (ittrans_cookie == NULL) { return (cpu_id); } if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) { return (-1); /* illeagal case */ } mutex_enter(&(ittrans_cookie->u2u_ittrans_lock)); /* * Decide index No. of U2U Data registers in either * already used by same pino_map_reg, or empty. */ for (ix = 0; ix < U2U_DATA_NUM; ix++) { ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]); if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) { /* already used this pino_map_reg */ index = ix; break; } if (index == -1 && ittrans_id_p->u2u_ino_map_reg == NULL) { index = ix; } } if (index == -1) { if (panicstr) { err_level = CE_WARN; } else { err_level = CE_PANIC; } cmn_err(err_level, "u2u%d:No more U2U-Data regs!!", ittrans_cookie->u2u_board); return (cpu_id); } /* * For U2U * set cpu_id into u2u_data_reg by index. * ((uint64_t)(u2u_regs_base * + U2U_DATA_REGISTER_OFFSET))[index] = cpu_id; */ data_reg_addr = ittrans_cookie->u2u_regs_base + U2U_DATA_REGISTER_OFFSET + (index * sizeof (uint64_t)); /* * Set cpu_id into U2U Data register[index] */ *(volatile uint32_t *) (data_reg_addr) = (uint32_t)cpu_id; /* * Setup for software, excepting at panicing. * and rebooting, etc...? */ if (!panicstr) { ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[index]); ittrans_id_p->u2u_tgt_cpu_id = cpu_id; ittrans_id_p->u2u_ino_map_reg = pino_map_reg; } mutex_exit(&(ittrans_cookie->u2u_ittrans_lock)); return (index); } /* * u2u_ittrans_cleanup() is called from common_pcmu_ib_intr_disable() * after called intr_rem_cpu(mondo). */ void u2u_ittrans_cleanup(u2u_ittrans_data_t *ittrans_cookie, volatile uint64_t *pino_map_reg) { int ix; u2u_ittrans_id_t *ittrans_id_p; if (ittrans_cookie == NULL) { return; } if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) { return; /* illeagal case */ } mutex_enter(&(ittrans_cookie->u2u_ittrans_lock)); for (ix = 0; ix < U2U_DATA_NUM; ix++) { ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]); if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) { ittrans_id_p->u2u_ino_map_reg = NULL; break; } } mutex_exit(&(ittrans_cookie->u2u_ittrans_lock)); } /* * pcmu_ecc_classify, called by ecc_handler to classify ecc errors * and determine if we should panic or not. */ void pcmu_ecc_classify(uint64_t err, pcmu_ecc_errstate_t *ecc_err_p) { struct async_flt *ecc = &ecc_err_p->ecc_aflt; /* LINTED */ pcmu_t *pcmu_p = ecc_err_p->ecc_ii_p.pecc_p->pecc_pcmu_p; ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex)); ecc_err_p->ecc_bridge_type = PCI_OPLCMU; /* RAGS */ /* * Get the parent bus id that caused the error. */ ecc_err_p->ecc_dev_id = (ecc_err_p->ecc_afsr & PCMU_ECC_UE_AFSR_ID) >> PCMU_ECC_UE_AFSR_ID_SHIFT; /* * Determine the doubleword offset of the error. */ ecc_err_p->ecc_dw_offset = (ecc_err_p->ecc_afsr & PCMU_ECC_UE_AFSR_DW_OFFSET) >> PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT; /* * Determine the primary error type. */ switch (err) { case PCMU_ECC_UE_AFSR_E_PIO: if (ecc_err_p->pecc_pri) { ecc->flt_erpt_class = PCI_ECC_PIO_UE; } else { ecc->flt_erpt_class = PCI_ECC_SEC_PIO_UE; } /* For CMU-CH, a UE is always fatal. */ ecc->flt_panic = 1; break; default: return; } } /* * pcmu_pbm_classify, called by pcmu_pbm_afsr_report to classify piow afsr. */ int pcmu_pbm_classify(pcmu_pbm_errstate_t *pbm_err_p) { uint32_t e; int nerr = 0; char **tmp_class; if (pbm_err_p->pcbm_pri) { tmp_class = &pbm_err_p->pcbm_pci.pcmu_err_class; e = PBM_AFSR_TO_PRIERR(pbm_err_p->pbm_afsr); pbm_err_p->pbm_log = FM_LOG_PCI; } else { tmp_class = &pbm_err_p->pbm_err_class; e = PBM_AFSR_TO_SECERR(pbm_err_p->pbm_afsr); pbm_err_p->pbm_log = FM_LOG_PBM; } if (e & PCMU_PCI_AFSR_E_MA) { *tmp_class = pbm_err_p->pcbm_pri ? PCI_MA : PCI_SEC_MA; nerr++; } return (nerr); } /* * Function used to clear PBM/PCI/IOMMU error state after error handling * is complete. Only clearing error bits which have been logged. Called by * pcmu_pbm_err_handler and pcmu_bus_exit. */ static void pcmu_clear_error(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p) { pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; ASSERT(MUTEX_HELD(&pcbm_p->pcbm_pcmu_p->pcmu_err_mutex)); *pcbm_p->pcbm_ctrl_reg = pbm_err_p->pbm_ctl_stat; *pcbm_p->pcbm_async_flt_status_reg = pbm_err_p->pbm_afsr; pcbm_p->pcbm_config_header->ch_status_reg = pbm_err_p->pcbm_pci.pcmu_cfg_stat; } /*ARGSUSED*/ int pcmu_pbm_err_handler(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data, int caller) { int fatal = 0; int nonfatal = 0; int unknown = 0; uint32_t prierr, secerr; pcmu_pbm_errstate_t pbm_err; pcmu_t *pcmu_p = (pcmu_t *)impl_data; int ret = 0; ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex)); pcmu_pbm_errstate_get(pcmu_p, &pbm_err); derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0, FM_ENA_FMT1); prierr = PBM_AFSR_TO_PRIERR(pbm_err.pbm_afsr); secerr = PBM_AFSR_TO_SECERR(pbm_err.pbm_afsr); if (derr->fme_flag == DDI_FM_ERR_PEEK) { /* * For ddi_peek treat all events as nonfatal. We only * really call this function so that pcmu_clear_error() * and ndi_fm_handler_dispatch() will get called. */ nonfatal++; goto done; } else if (derr->fme_flag == DDI_FM_ERR_POKE) { /* * For ddi_poke we can treat as nonfatal if the * following conditions are met : * 1. Make sure only primary error is MA/TA * 2. Make sure no secondary error * 3. check pci config header stat reg to see MA/TA is * logged. We cannot verify only MA/TA is recorded * since it gets much more complicated when a * PCI-to-PCI bridge is present. */ if ((prierr == PCMU_PCI_AFSR_E_MA) && !secerr && (pbm_err.pcbm_pci.pcmu_cfg_stat & PCI_STAT_R_MAST_AB)) { nonfatal++; goto done; } } if (prierr || secerr) { ret = pcmu_pbm_afsr_report(dip, derr->fme_ena, &pbm_err); if (ret == DDI_FM_FATAL) { fatal++; } else { nonfatal++; } } ret = pcmu_cfg_report(dip, derr, &pbm_err.pcbm_pci, caller, prierr); if (ret == DDI_FM_FATAL) { fatal++; } else if (ret == DDI_FM_NONFATAL) { nonfatal++; } done: if (ret == DDI_FM_FATAL) { fatal++; } else if (ret == DDI_FM_NONFATAL) { nonfatal++; } else if (ret == DDI_FM_UNKNOWN) { unknown++; } /* Cleanup and reset error bits */ pcmu_clear_error(pcmu_p, &pbm_err); return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL : (unknown ? DDI_FM_UNKNOWN : DDI_FM_OK))); } int pcmu_check_error(pcmu_t *pcmu_p) { pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; uint16_t pcmu_cfg_stat; uint64_t pbm_afsr; ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex)); pcmu_cfg_stat = pcbm_p->pcbm_config_header->ch_status_reg; pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg; if ((pcmu_cfg_stat & (PCI_STAT_S_PERROR | PCI_STAT_S_TARG_AB | PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR | PCI_STAT_PERROR)) || (PBM_AFSR_TO_PRIERR(pbm_afsr))) { return (1); } return (0); } /* * Function used to gather PBM/PCI error state for the * pcmu_pbm_err_handler. This function must be called while pcmu_err_mutex * is held. */ static void pcmu_pbm_errstate_get(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p) { pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex)); bzero(pbm_err_p, sizeof (pcmu_pbm_errstate_t)); /* * Capture all pbm error state for later logging */ pbm_err_p->pbm_bridge_type = PCI_OPLCMU; /* RAGS */ pbm_err_p->pcbm_pci.pcmu_cfg_stat = pcbm_p->pcbm_config_header->ch_status_reg; pbm_err_p->pbm_ctl_stat = *pcbm_p->pcbm_ctrl_reg; pbm_err_p->pcbm_pci.pcmu_cfg_comm = pcbm_p->pcbm_config_header->ch_command_reg; pbm_err_p->pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg; pbm_err_p->pbm_afar = *pcbm_p->pcbm_async_flt_addr_reg; pbm_err_p->pcbm_pci.pcmu_pa = *pcbm_p->pcbm_async_flt_addr_reg; } static void pcmu_pbm_clear_error(pcmu_pbm_t *pcbm_p) { uint64_t pbm_afsr; /* * for poke() support - called from POKE_FLUSH. Spin waiting * for MA, TA or SERR to be cleared by a pcmu_pbm_error_intr(). * We have to wait for SERR too in case the device is beyond * a pci-pci bridge. */ pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg; while (((pbm_afsr >> PCMU_PCI_AFSR_PE_SHIFT) & (PCMU_PCI_AFSR_E_MA | PCMU_PCI_AFSR_E_TA))) { pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg; } } void pcmu_err_create(pcmu_t *pcmu_p) { /* * PCI detected ECC errorq, to schedule async handling * of ECC errors and logging. * The errorq is created here but destroyed when _fini is called * for the pci module. */ if (pcmu_ecc_queue == NULL) { pcmu_ecc_queue = errorq_create("pcmu_ecc_queue", (errorq_func_t)pcmu_ecc_err_drain, (void *)NULL, ECC_MAX_ERRS, sizeof (pcmu_ecc_errstate_t), PIL_2, ERRORQ_VITAL); if (pcmu_ecc_queue == NULL) panic("failed to create required system error queue"); } /* * Initialize error handling mutex. */ mutex_init(&pcmu_p->pcmu_err_mutex, NULL, MUTEX_DRIVER, (void *)pcmu_p->pcmu_fm_ibc); } void pcmu_err_destroy(pcmu_t *pcmu_p) { mutex_destroy(&pcmu_p->pcmu_err_mutex); } /* * Function used to post PCI block module specific ereports. */ void pcmu_pbm_ereport_post(dev_info_t *dip, uint64_t ena, pcmu_pbm_errstate_t *pbm_err) { char *aux_msg; uint32_t prierr, secerr; pcmu_t *pcmu_p; int instance = ddi_get_instance(dip); ena = ena ? ena : fm_ena_generate(0, FM_ENA_FMT1); pcmu_p = get_pcmu_soft_state(instance); prierr = PBM_AFSR_TO_PRIERR(pbm_err->pbm_afsr); secerr = PBM_AFSR_TO_SECERR(pbm_err->pbm_afsr); if (prierr) aux_msg = "PCI primary error: Master Abort"; else if (secerr) aux_msg = "PCI secondary error: Master Abort"; else aux_msg = ""; cmn_err(CE_WARN, "%s %s: %s %s=0x%lx, %s=0x%lx, %s=0x%lx %s=0x%x", (pcmu_p->pcmu_pcbm_p)->pcbm_nameinst_str, (pcmu_p->pcmu_pcbm_p)->pcbm_nameaddr_str, aux_msg, PCI_PBM_AFAR, pbm_err->pbm_afar, PCI_PBM_AFSR, pbm_err->pbm_afsr, PCI_PBM_CSR, pbm_err->pbm_ctl_stat, "portid", pcmu_p->pcmu_id); }