/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * tod driver module for TI BQ4802 part * * Note: The way to access the bq4802's RTC registers is different than * the previous RTC devices (m5823, m5819p, ds1287, etc) that we used. * The address returns from OBP is mapped directly to the bq4802's RTC * registers. To read/write the data from/to the bq4802 registers, one * just add the register offset to the base address. * To access the previous RTC devices, we write the register index to * the address port (v_rtc_addr_reg) then read/write the data from/to * the data port (v_rtc_data_reg). */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * tod_ops entry routines */ static timestruc_t todbq4802_get(void); static void todbq4802_set(timestruc_t); static uint_t todbq4802_set_watchdog_timer(uint_t); static uint_t todbq4802_clear_watchdog_timer(void); static void todbq4802_set_power_alarm(timestruc_t); static void todbq4802_clear_power_alarm(void); static uint64_t todbq4802_get_cpufrequency(void); extern uint64_t find_cpufrequency(volatile uint8_t *); /* * External variables */ extern int watchdog_enable; extern int watchdog_available; extern int boothowto; /* * Global variables */ int bq4802_debug_flags; uint_t bq4802_hrestime_count = 0; uint_t bq4802_uip_count = 0; /* * Module linkage information for the kernel. */ static struct modlmisc modlmisc = { &mod_miscops, "tod module for TI BQ4802" }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlmisc, NULL }; static void read_rtc(struct rtc_t *); static void write_rtc_time(struct rtc_t *); static void write_rtc_alarm(struct rtc_t *); int _init(void) { if (strcmp(tod_module_name, "todbq4802") == 0) { if (v_rtc_addr_reg == NULL) cmn_err(CE_PANIC, "addr not set, cannot read RTC\n"); BQ4802_DATA_REG(RTC_CNTRL) = (RTC_HM | RTC_STOP_N); /* Clear AF flag by reading reg Flags (D) */ (void) BQ4802_DATA_REG(RTC_FLAGS); tod_ops.tod_get = todbq4802_get; tod_ops.tod_set = todbq4802_set; tod_ops.tod_set_watchdog_timer = todbq4802_set_watchdog_timer; tod_ops.tod_clear_watchdog_timer = todbq4802_clear_watchdog_timer; tod_ops.tod_set_power_alarm = todbq4802_set_power_alarm; tod_ops.tod_clear_power_alarm = todbq4802_clear_power_alarm; tod_ops.tod_get_cpufrequency = todbq4802_get_cpufrequency; /* * check if hardware watchdog timer is available and user * enabled it. */ if (watchdog_enable) { if (!watchdog_available) { cmn_err(CE_WARN, "bq4802: Hardware watchdog " "unavailable"); } else if (boothowto & RB_DEBUG) { cmn_err(CE_WARN, "bq4802: Hardware watchdog" " disabled [debugger]"); } } } return (mod_install(&modlinkage)); } int _fini(void) { if (strcmp(tod_module_name, "todbq4802") == 0) return (EBUSY); return (mod_remove(&modlinkage)); } /* * The loadable-module _info(9E) entry point */ int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* * Read the current time from the clock chip and convert to UNIX form. * Assumes that the year in the clock chip is valid. * Must be called with tod_lock held. */ static timestruc_t todbq4802_get(void) { timestruc_t ts; todinfo_t tod; struct rtc_t rtc; ASSERT(MUTEX_HELD(&tod_lock)); read_rtc(&rtc); DPRINTF("todbq4802_get: century=%d year=%d dom=%d hrs=%d min=%d" " sec=%d\n", rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs, rtc.rtc_min, rtc.rtc_sec); /* * tod_year is base 1900 so this code needs to adjust the true * year retrieved from the rtc's century and year fields. */ tod.tod_year = rtc.rtc_year + (rtc.rtc_century * 100) - 1900; tod.tod_month = rtc.rtc_mon; tod.tod_day = rtc.rtc_dom; tod.tod_dow = rtc.rtc_dow; tod.tod_hour = rtc.rtc_hrs; tod.tod_min = rtc.rtc_min; tod.tod_sec = rtc.rtc_sec; ts.tv_sec = tod_to_utc(tod); ts.tv_nsec = 0; return (ts); } /* * Once every second, the user-accessible clock/calendar * locations are updated simultaneously from the internal * real-time counters. To prevent reading data in transition, * updates to the bq4802 clock registers should be halted. * Updating is halted by setting the Update Transfer Inhibit * (UTI) bit D3 of the control register E. As long as the * UTI bit is 1, updates to user-accessible clock locations are * inhibited. Once the frozen clock information is retrieved by * reading the appropriate clock memory locations, the UTI * bit should be reset to 0 in order to allow updates to occur * from the internal counters. Because the internal counters * are not halted by setting the UTI bit, reading the clock * locations has no effect on clock accuracy. Once the UTI bit * is reset to 0, the internal registers update within one * second the user-accessible registers with the correct time. * A halt command issued during a clock update allows the * update to occur before freezing the data. */ static void read_rtc(struct rtc_t *rtc) { uint8_t reg_cntrl; /* * Freeze */ reg_cntrl = BQ4802_DATA_REG(RTC_CNTRL); BQ4802_DATA_REG(RTC_CNTRL) = (reg_cntrl | RTC_UTI); rtc->rtc_sec = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_SEC)); rtc->rtc_asec = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_ASEC)); rtc->rtc_min = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_MIN)); rtc->rtc_amin = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_AMIN)); rtc->rtc_hrs = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_HRS)); rtc->rtc_ahrs = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_AHRS)); rtc->rtc_dom = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_DOM)); rtc->rtc_adom = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_ADOM)); rtc->rtc_dow = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_DOW)); rtc->rtc_mon = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_MON)); rtc->rtc_year = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_YEAR)); rtc->rtc_century = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_CENTURY)); /* * Unfreeze */ BQ4802_DATA_REG(RTC_CNTRL) = reg_cntrl; } /* * Write the specified time into the clock chip. * Must be called with tod_lock held. */ static void todbq4802_set(timestruc_t ts) { struct rtc_t rtc; todinfo_t tod = utc_to_tod(ts.tv_sec); int year; ASSERT(MUTEX_HELD(&tod_lock)); /* tod_year is base 1900 so this code needs to adjust */ year = 1900 + tod.tod_year; rtc.rtc_year = year % 100; rtc.rtc_century = year / 100; rtc.rtc_mon = (uint8_t)tod.tod_month; rtc.rtc_dom = (uint8_t)tod.tod_day; rtc.rtc_dow = (uint8_t)tod.tod_dow; rtc.rtc_hrs = (uint8_t)tod.tod_hour; rtc.rtc_min = (uint8_t)tod.tod_min; rtc.rtc_sec = (uint8_t)tod.tod_sec; DPRINTF("todbq4802_set: year=%d dom=%d hrs=%d min=%d sec=%d\n", rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs, rtc.rtc_min, rtc.rtc_sec); write_rtc_time(&rtc); } /* * The UTI bit must be used to set the bq4802 clock. * Once set, the locations can be written with the desired * information in BCD format. Resetting the UTI bit to 0 causes * the written values to be transferred to the internal clock * counters and allows updates to the user-accessible registers * to resume within one second. */ void write_rtc_time(struct rtc_t *rtc) { uint8_t reg_cntrl; /* * Freeze */ reg_cntrl = BQ4802_DATA_REG(RTC_CNTRL); BQ4802_DATA_REG(RTC_CNTRL) = (reg_cntrl | RTC_UTI); BQ4802_DATA_REG(RTC_SEC) = BYTE_TO_BCD(rtc->rtc_sec); BQ4802_DATA_REG(RTC_MIN) = BYTE_TO_BCD(rtc->rtc_min); BQ4802_DATA_REG(RTC_HRS) = BYTE_TO_BCD(rtc->rtc_hrs); BQ4802_DATA_REG(RTC_DOM) = BYTE_TO_BCD(rtc->rtc_dom); BQ4802_DATA_REG(RTC_DOW) = BYTE_TO_BCD(rtc->rtc_dow); BQ4802_DATA_REG(RTC_MON) = BYTE_TO_BCD(rtc->rtc_mon); BQ4802_DATA_REG(RTC_YEAR) = BYTE_TO_BCD(rtc->rtc_year); BQ4802_DATA_REG(RTC_CENTURY) = BYTE_TO_BCD(rtc->rtc_century); /* * Unfreeze */ BQ4802_DATA_REG(RTC_CNTRL) = reg_cntrl; } void write_rtc_alarm(struct rtc_t *rtc) { BQ4802_DATA_REG(RTC_ASEC) = BYTE_TO_BCD(rtc->rtc_asec); BQ4802_DATA_REG(RTC_AMIN) = BYTE_TO_BCD(rtc->rtc_amin); BQ4802_DATA_REG(RTC_AHRS) = BYTE_TO_BCD(rtc->rtc_ahrs); BQ4802_DATA_REG(RTC_ADOM) = BYTE_TO_BCD(rtc->rtc_adom); } /* * program the rtc registers for alarm to go off at the specified time */ static void todbq4802_set_power_alarm(timestruc_t ts) { todinfo_t tod; uint8_t regc; struct rtc_t rtc; ASSERT(MUTEX_HELD(&tod_lock)); tod = utc_to_tod(ts.tv_sec); /* * disable alarms and clear AF flag by reading reg Flags (D) */ regc = BQ4802_DATA_REG(RTC_ENABLES); BQ4802_DATA_REG(RTC_ENABLES) = regc & ~(RTC_AIE | RTC_ABE); (void) BQ4802_DATA_REG(RTC_FLAGS); rtc.rtc_asec = (uint8_t)tod.tod_sec; rtc.rtc_amin = (uint8_t)tod.tod_min; rtc.rtc_ahrs = (uint8_t)tod.tod_hour; rtc.rtc_adom = (uint8_t)tod.tod_day; DPRINTF("todbq4802_set_alarm: dom=%d hrs=%d min=%d sec=%d\n", rtc.rtc_adom, rtc.rtc_ahrs, rtc.rtc_amin, rtc.rtc_asec); /* * Write alarm values and enable alarm */ write_rtc_alarm(&rtc); BQ4802_DATA_REG(RTC_ENABLES) = regc | RTC_AIE | RTC_ABE; } /* * clear alarm interrupt */ static void todbq4802_clear_power_alarm(void) { uint8_t regc; ASSERT(MUTEX_HELD(&tod_lock)); regc = BQ4802_DATA_REG(RTC_ENABLES); BQ4802_DATA_REG(RTC_ENABLES) = regc & ~(RTC_AIE | RTC_ABE); } /* * Determine the cpu frequency by watching the TOD chip rollover twice. * Cpu clock rate is determined by computing the ticks added (in tick register) * during one second interval on TOD. */ uint64_t todbq4802_get_cpufrequency(void) { ASSERT(MUTEX_HELD(&tod_lock)); return (find_cpufrequency((volatile uint8_t *)v_rtc_addr_reg)); } /*ARGSUSED*/ static uint_t todbq4802_set_watchdog_timer(uint_t timeoutval) { ASSERT(MUTEX_HELD(&tod_lock)); return (0); } static uint_t todbq4802_clear_watchdog_timer(void) { ASSERT(MUTEX_HELD(&tod_lock)); return (0); }