/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include <sys/stat.h> #include <sys/file.h> #include <sys/uio.h> #include <sys/modctl.h> #include <sys/open.h> #include <sys/types.h> #include <sys/kmem.h> #include <sys/systm.h> #include <sys/ddi.h> #include <sys/sunddi.h> #include <sys/conf.h> #include <sys/mode.h> #include <sys/note.h> #include <sys/i2c/misc/i2c_svc.h> #include <sys/i2c/clients/tda8444_impl.h> /* * cb ops */ static int tda8444_open(dev_t *, int, int, cred_t *); static int tda8444_close(dev_t, int, int, cred_t *); static int tda8444_read(dev_t dev, struct uio *uiop, cred_t *cred_p); static int tda8444_write(dev_t dev, struct uio *uiop, cred_t *cred_p); static int tda8444_io(dev_t dev, struct uio *uiop, int rw); /* * dev ops */ static int tda8444_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); static int tda8444_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); static int tda8444_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); static struct cb_ops tda8444_cbops = { tda8444_open, /* open */ tda8444_close, /* close */ nodev, /* strategy */ nodev, /* print */ nodev, /* dump */ tda8444_read, /* read */ tda8444_write, /* write */ nodev, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* cb_prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */ CB_REV, /* rev */ nodev, /* int (*cb_aread)() */ nodev /* int (*cb_awrite)() */ }; static struct dev_ops tda8444_ops = { DEVO_REV, 0, tda8444_info, nulldev, nulldev, tda8444_attach, tda8444_detach, nodev, &tda8444_cbops, NULL, NULL, ddi_quiesce_not_supported, /* devo_quiesce */ }; static struct modldrv tda8444_modldrv = { &mod_driverops, /* type of module - driver */ "tda8444 device driver", &tda8444_ops, }; static struct modlinkage tda8444_modlinkage = { MODREV_1, &tda8444_modldrv, 0 }; static void *tda8444_soft_statep; static int tda8444_debug = 0; int _init(void) { int error; error = mod_install(&tda8444_modlinkage); if (error == 0) { (void) ddi_soft_state_init(&tda8444_soft_statep, sizeof (struct tda8444_unit), TDA8444_MAX_DACS); } return (error); } int _fini(void) { int error; error = mod_remove(&tda8444_modlinkage); if (error == 0) { ddi_soft_state_fini(&tda8444_soft_statep); } return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&tda8444_modlinkage, modinfop)); } /* ARGSUSED */ static int tda8444_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { dev_t dev; int instance; if (infocmd == DDI_INFO_DEVT2INSTANCE) { dev = (dev_t)arg; instance = TDA8444_MINOR_TO_DEVINST(dev); *result = (void *)(uintptr_t)instance; return (DDI_SUCCESS); } return (DDI_FAILURE); } static int tda8444_do_resume(dev_info_t *dip) { int instance = ddi_get_instance(dip); struct tda8444_unit *unitp; int channel; int ret = DDI_SUCCESS; unitp = (struct tda8444_unit *) ddi_get_soft_state(tda8444_soft_statep, instance); if (unitp == NULL) { return (ENXIO); } for (channel = 0; channel < TDA8444_CHANS; channel++) { unitp->tda8444_transfer->i2c_wbuf[0] = TDA8444_REGBASE | channel; unitp->tda8444_transfer->i2c_wbuf[1] = unitp->tda8444_output[channel]; DPRINTF(RESUME, ("tda8444_resume: setting channel %d to %d", channel, unitp->tda8444_output[channel])); if (i2c_transfer(unitp->tda8444_hdl, unitp->tda8444_transfer) != I2C_SUCCESS) { ret = DDI_FAILURE; } } mutex_enter(&unitp->tda8444_mutex); unitp->tda8444_flags = 0; cv_signal(&unitp->tda8444_cv); mutex_exit(&unitp->tda8444_mutex); return (ret); } static int tda8444_do_attach(dev_info_t *dip) { struct tda8444_unit *unitp; char name[MAXNAMELEN]; int instance; minor_t minor; int i; instance = ddi_get_instance(dip); if (ddi_soft_state_zalloc(tda8444_soft_statep, instance) != 0) { cmn_err(CE_WARN, "%s%d failed to zalloc softstate", ddi_get_name(dip), instance); return (DDI_FAILURE); } unitp = ddi_get_soft_state(tda8444_soft_statep, instance); if (unitp == NULL) { return (DDI_FAILURE); } (void) snprintf(unitp->tda8444_name, sizeof (unitp->tda8444_name), "%s%d", ddi_driver_name(dip), instance); for (i = 0; i < TDA8444_CHANS; i++) { (void) sprintf(name, "%d", i); minor = TDA8444_CHANNEL_TO_MINOR(i) | TDA8444_DEVINST_TO_MINOR(instance); if (ddi_create_minor_node(dip, name, S_IFCHR, minor, TDA8444_NODE_TYPE, 0) == DDI_FAILURE) { cmn_err(CE_WARN, "%s ddi_create_minor_node failed", unitp->tda8444_name); ddi_soft_state_free(tda8444_soft_statep, instance); ddi_remove_minor_node(dip, NULL); return (DDI_FAILURE); } unitp->tda8444_output[i] = TDA8444_UNKNOWN_OUT; } /* * preallocate a single buffer for all writes */ if (i2c_transfer_alloc(unitp->tda8444_hdl, &unitp->tda8444_transfer, 2, 0, I2C_SLEEP) != I2C_SUCCESS) { cmn_err(CE_WARN, "i2c_transfer_alloc failed"); ddi_remove_minor_node(dip, NULL); ddi_soft_state_free(tda8444_soft_statep, instance); return (DDI_FAILURE); } unitp->tda8444_transfer->i2c_flags = I2C_WR; unitp->tda8444_transfer->i2c_version = I2C_XFER_REV; if (i2c_client_register(dip, &unitp->tda8444_hdl) != I2C_SUCCESS) { ddi_remove_minor_node(dip, NULL); cmn_err(CE_WARN, "i2c_client_register failed"); ddi_soft_state_free(tda8444_soft_statep, instance); i2c_transfer_free(unitp->tda8444_hdl, unitp->tda8444_transfer); return (DDI_FAILURE); } mutex_init(&unitp->tda8444_mutex, NULL, MUTEX_DRIVER, NULL); cv_init(&unitp->tda8444_cv, NULL, CV_DRIVER, NULL); return (DDI_SUCCESS); } static int tda8444_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: return (tda8444_do_attach(dip)); case DDI_RESUME: return (tda8444_do_resume(dip)); default: return (DDI_FAILURE); } } static int tda8444_do_detach(dev_info_t *dip) { struct tda8444_unit *unitp; int instance; instance = ddi_get_instance(dip); unitp = ddi_get_soft_state(tda8444_soft_statep, instance); i2c_transfer_free(unitp->tda8444_hdl, unitp->tda8444_transfer); i2c_client_unregister(unitp->tda8444_hdl); ddi_remove_minor_node(dip, NULL); mutex_destroy(&unitp->tda8444_mutex); cv_destroy(&unitp->tda8444_cv); ddi_soft_state_free(tda8444_soft_statep, instance); return (DDI_SUCCESS); } static int tda8444_do_suspend(dev_info_t *dip) { struct tda8444_unit *unitp; int instance; instance = ddi_get_instance(dip); unitp = ddi_get_soft_state(tda8444_soft_statep, instance); /* * Set the busy flag so that future transactions block * until resume. */ mutex_enter(&unitp->tda8444_mutex); while (unitp->tda8444_flags == TDA8444_BUSY) { if (cv_wait_sig(&unitp->tda8444_cv, &unitp->tda8444_mutex) <= 0) { mutex_exit(&unitp->tda8444_mutex); return (DDI_FAILURE); } } unitp->tda8444_flags = TDA8444_SUSPENDED; mutex_exit(&unitp->tda8444_mutex); return (DDI_SUCCESS); } static int tda8444_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { switch (cmd) { case DDI_DETACH: return (tda8444_do_detach(dip)); case DDI_SUSPEND: return (tda8444_do_suspend(dip)); default: return (DDI_FAILURE); } } static int tda8444_open(dev_t *devp, int flags, int otyp, cred_t *credp) { _NOTE(ARGUNUSED(credp)) struct tda8444_unit *unitp; int err = 0; int instance = TDA8444_MINOR_TO_DEVINST(*devp); int channel = TDA8444_MINOR_TO_CHANNEL(*devp); if (instance < 0) { return (ENXIO); } unitp = (struct tda8444_unit *) ddi_get_soft_state(tda8444_soft_statep, instance); if (unitp == NULL) { return (ENXIO); } if (otyp != OTYP_CHR) { return (EINVAL); } mutex_enter(&unitp->tda8444_mutex); if (flags & FEXCL) { if (unitp->tda8444_oflag[channel] != 0) { err = EBUSY; } else { unitp->tda8444_oflag[channel] = FEXCL; } } else { if (unitp->tda8444_oflag[channel] == FEXCL) { err = EBUSY; } else { unitp->tda8444_oflag[channel] = (uint16_t)FOPEN; } } mutex_exit(&unitp->tda8444_mutex); return (err); } static int tda8444_close(dev_t dev, int flags, int otyp, cred_t *credp) { _NOTE(ARGUNUSED(flags, otyp, credp)) struct tda8444_unit *unitp; int instance = TDA8444_MINOR_TO_DEVINST(dev); int channel = TDA8444_MINOR_TO_CHANNEL(dev); if (instance < 0) { return (ENXIO); } unitp = (struct tda8444_unit *) ddi_get_soft_state(tda8444_soft_statep, instance); if (unitp == NULL) { return (ENXIO); } mutex_enter(&unitp->tda8444_mutex); unitp->tda8444_oflag[channel] = 0; mutex_exit(&unitp->tda8444_mutex); return (DDI_SUCCESS); } static int tda8444_read(dev_t dev, struct uio *uiop, cred_t *cred_p) { _NOTE(ARGUNUSED(cred_p)) return (tda8444_io(dev, uiop, B_READ)); } static int tda8444_write(dev_t dev, struct uio *uiop, cred_t *cred_p) { _NOTE(ARGUNUSED(cred_p)) return (tda8444_io(dev, uiop, B_WRITE)); } static int tda8444_io(dev_t dev, struct uio *uiop, int rw) { struct tda8444_unit *unitp; int instance = TDA8444_MINOR_TO_DEVINST(getminor(dev)); int channel = TDA8444_MINOR_TO_CHANNEL(getminor(dev)); int ret = 0; size_t len = uiop->uio_resid; int8_t out_value; if (instance < 0) { return (ENXIO); } if (len == 0) { return (0); } unitp = (struct tda8444_unit *) ddi_get_soft_state(tda8444_soft_statep, instance); if (unitp == NULL) { return (ENXIO); } if (rw == B_READ) { if (unitp->tda8444_output[channel] != TDA8444_UNKNOWN_OUT) { return (uiomove(&unitp->tda8444_output[channel], 1, UIO_READ, uiop)); } else { return (EIO); } } /* * rw == B_WRITE. Make sure each write to a device is single * threaded since we pre-allocate a single write buffer. This is not a * bottleneck since concurrent writes would serialize at the * transport level anyway. */ mutex_enter(&unitp->tda8444_mutex); if (unitp->tda8444_flags == TDA8444_SUSPENDED) { mutex_exit(&unitp->tda8444_mutex); return (EAGAIN); } while (unitp->tda8444_flags == TDA8444_BUSY) { if (cv_wait_sig(&unitp->tda8444_cv, &unitp->tda8444_mutex) <= 0) { mutex_exit(&unitp->tda8444_mutex); return (EINTR); } } unitp->tda8444_flags = TDA8444_BUSY; mutex_exit(&unitp->tda8444_mutex); unitp->tda8444_transfer->i2c_wbuf[0] = (TDA8444_REGBASE | channel); if ((ret = uiomove(&out_value, sizeof (out_value), UIO_WRITE, uiop)) == 0) { /* * Check bounds */ if ((out_value > TDA8444_MAX_OUT) || (out_value < TDA8444_MIN_OUT)) { ret = EINVAL; } else { unitp->tda8444_transfer->i2c_wbuf[1] = (uchar_t)out_value; DPRINTF(IO, ("setting channel %d to %d", channel, unitp->tda8444_transfer->i2c_wbuf[1])); if (i2c_transfer(unitp->tda8444_hdl, unitp->tda8444_transfer) != I2C_SUCCESS) { ret = EIO; } else { unitp->tda8444_output[channel] = out_value; } } } else { ret = EFAULT; } mutex_enter(&unitp->tda8444_mutex); unitp->tda8444_flags = 0; cv_signal(&unitp->tda8444_cv); mutex_exit(&unitp->tda8444_mutex); return (ret); }