/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int maxphys = MMU_PAGESIZE * 16; /* 128k */ int klustsize = MMU_PAGESIZE * 16; /* 128k */ /* * Initialize kernel thread's stack. */ caddr_t thread_stk_init(caddr_t stk) { kfpu_t *fp; ulong_t align; /* allocate extra space for floating point state */ stk -= SA(sizeof (kfpu_t) + GSR_SIZE); align = (uintptr_t)stk & 0x3f; stk -= align; /* force v9_fpu to be 16 byte aligned */ fp = (kfpu_t *)stk; fp->fpu_fprs = 0; stk -= SA(MINFRAME); return (stk); } #define WIN32_SIZE (MAXWIN * sizeof (struct rwindow32)) #define WIN64_SIZE (MAXWIN * sizeof (struct rwindow64)) kmem_cache_t *wbuf32_cache; kmem_cache_t *wbuf64_cache; void lwp_stk_cache_init(void) { /* * Window buffers are allocated from the static arena * because they are accessed at TL>0. We also must use * KMC_NOHASH to prevent them from straddling page * boundaries as they are accessed by physical address. */ wbuf32_cache = kmem_cache_create("wbuf32_cache", WIN32_SIZE, 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); wbuf64_cache = kmem_cache_create("wbuf64_cache", WIN64_SIZE, 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); } /* * Initialize lwp's kernel stack. * Note that now that the floating point register save area (kfpu_t) * has been broken out from machpcb and aligned on a 64 byte boundary so that * we can do block load/stores to/from it, there are a couple of potential * optimizations to save stack space. 1. The floating point register save * area could be aligned on a 16 byte boundary, and the floating point code * changed to (a) check the alignment and (b) use different save/restore * macros depending upon the alignment. 2. The lwp_stk_init code below * could be changed to calculate if less space would be wasted if machpcb * was first instead of second. However there is a REGOFF macro used in * locore, syscall_trap, machdep and mlsetup that assumes that the saved * register area is a fixed distance from the %sp, and would have to be * changed to a pointer or something...JJ said later. */ caddr_t lwp_stk_init(klwp_t *lwp, caddr_t stk) { struct machpcb *mpcb; kfpu_t *fp; uintptr_t aln; stk -= SA(sizeof (kfpu_t) + GSR_SIZE); aln = (uintptr_t)stk & 0x3F; stk -= aln; fp = (kfpu_t *)stk; stk -= SA(sizeof (struct machpcb)); mpcb = (struct machpcb *)stk; bzero(mpcb, sizeof (struct machpcb)); bzero(fp, sizeof (kfpu_t) + GSR_SIZE); lwp->lwp_regs = (void *)&mpcb->mpcb_regs; lwp->lwp_fpu = (void *)fp; mpcb->mpcb_fpu = fp; mpcb->mpcb_fpu->fpu_q = mpcb->mpcb_fpu_q; mpcb->mpcb_thread = lwp->lwp_thread; mpcb->mpcb_wbcnt = 0; if (lwp->lwp_procp->p_model == DATAMODEL_ILP32) { mpcb->mpcb_wstate = WSTATE_USER32; mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); } else { mpcb->mpcb_wstate = WSTATE_USER64; mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); } ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0); mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); mpcb->mpcb_pa = va_to_pa(mpcb); return (stk); } void lwp_stk_fini(klwp_t *lwp) { struct machpcb *mpcb = lwptompcb(lwp); /* * there might be windows still in the wbuf due to unmapped * stack, misaligned stack pointer, etc. We just free it. */ mpcb->mpcb_wbcnt = 0; if (mpcb->mpcb_wstate == WSTATE_USER32) kmem_cache_free(wbuf32_cache, mpcb->mpcb_wbuf); else kmem_cache_free(wbuf64_cache, mpcb->mpcb_wbuf); mpcb->mpcb_wbuf = NULL; mpcb->mpcb_wbuf_pa = -1; } /* * Copy regs from parent to child. */ void lwp_forkregs(klwp_t *lwp, klwp_t *clwp) { kthread_t *t, *pt = lwptot(lwp); struct machpcb *mpcb = lwptompcb(clwp); struct machpcb *pmpcb = lwptompcb(lwp); kfpu_t *fp, *pfp = lwptofpu(lwp); caddr_t wbuf; uint_t wstate; t = mpcb->mpcb_thread; /* * remember child's fp and wbuf since they will get erased during * the bcopy. */ fp = mpcb->mpcb_fpu; wbuf = mpcb->mpcb_wbuf; wstate = mpcb->mpcb_wstate; /* * Don't copy mpcb_frame since we hand-crafted it * in thread_load(). */ bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct machpcb) - REGOFF); mpcb->mpcb_thread = t; mpcb->mpcb_fpu = fp; fp->fpu_q = mpcb->mpcb_fpu_q; /* * It is theoretically possibly for the lwp's wstate to * be different from its value assigned in lwp_stk_init, * since lwp_stk_init assumed the data model of the process. * Here, we took on the data model of the cloned lwp. */ if (mpcb->mpcb_wstate != wstate) { if (wstate == WSTATE_USER32) { kmem_cache_free(wbuf32_cache, wbuf); wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); wstate = WSTATE_USER64; } else { kmem_cache_free(wbuf64_cache, wbuf); wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); wstate = WSTATE_USER32; } } mpcb->mpcb_pa = va_to_pa(mpcb); mpcb->mpcb_wbuf = wbuf; mpcb->mpcb_wbuf_pa = va_to_pa(wbuf); ASSERT(mpcb->mpcb_wstate == wstate); if (mpcb->mpcb_wbcnt != 0) { bcopy(pmpcb->mpcb_wbuf, mpcb->mpcb_wbuf, mpcb->mpcb_wbcnt * ((mpcb->mpcb_wstate == WSTATE_USER32) ? sizeof (struct rwindow32) : sizeof (struct rwindow64))); } if (pt == curthread) pfp->fpu_fprs = _fp_read_fprs(); if ((pfp->fpu_en) || (pfp->fpu_fprs & FPRS_FEF)) { if (pt == curthread && fpu_exists) { save_gsr(clwp->lwp_fpu); } else { uint64_t gsr; gsr = get_gsr(lwp->lwp_fpu); set_gsr(gsr, clwp->lwp_fpu); } fp_fork(lwp, clwp); } } /* * Free lwp fpu regs. */ void lwp_freeregs(klwp_t *lwp, int isexec) { kfpu_t *fp = lwptofpu(lwp); if (lwptot(lwp) == curthread) fp->fpu_fprs = _fp_read_fprs(); if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) fp_free(fp, isexec); } /* * This function is currently unused on sparc. */ /*ARGSUSED*/ void lwp_attach_brand_hdlrs(klwp_t *lwp) {} /* * fill in the extra register state area specified with the * specified lwp's platform-dependent non-floating-point extra * register state information */ /* ARGSUSED */ void xregs_getgfiller(klwp_id_t lwp, caddr_t xrp) { /* for sun4u nothing to do here, added for symmetry */ } /* * fill in the extra register state area specified with the specified lwp's * platform-dependent floating-point extra register state information. * NOTE: 'lwp' might not correspond to 'curthread' since this is * called from code in /proc to get the registers of another lwp. */ void xregs_getfpfiller(klwp_id_t lwp, caddr_t xrp) { prxregset_t *xregs = (prxregset_t *)xrp; kfpu_t *fp = lwptofpu(lwp); uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); uint64_t gsr; /* * fp_fksave() does not flush the GSR register into * the lwp area, so do it now */ kpreempt_disable(); if (ttolwp(curthread) == lwp && fpu_exists) { fp->fpu_fprs = _fp_read_fprs(); if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { _fp_write_fprs(fprs); fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; } save_gsr(fp); } gsr = get_gsr(fp); kpreempt_enable(); PRXREG_GSR(xregs) = gsr; } /* * set the specified lwp's platform-dependent non-floating-point * extra register state based on the specified input */ /* ARGSUSED */ void xregs_setgfiller(klwp_id_t lwp, caddr_t xrp) { /* for sun4u nothing to do here, added for symmetry */ } /* * set the specified lwp's platform-dependent floating-point * extra register state based on the specified input */ void xregs_setfpfiller(klwp_id_t lwp, caddr_t xrp) { prxregset_t *xregs = (prxregset_t *)xrp; kfpu_t *fp = lwptofpu(lwp); uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); uint64_t gsr = PRXREG_GSR(xregs); kpreempt_disable(); set_gsr(gsr, lwptofpu(lwp)); if ((lwp == ttolwp(curthread)) && fpu_exists) { fp->fpu_fprs = _fp_read_fprs(); if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { _fp_write_fprs(fprs); fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; } restore_gsr(lwptofpu(lwp)); } kpreempt_enable(); } /* * fill in the sun4u asrs, ie, the lwp's platform-dependent * non-floating-point extra register state information */ /* ARGSUSED */ void getasrs(klwp_t *lwp, asrset_t asr) { /* for sun4u nothing to do here, added for symmetry */ } /* * fill in the sun4u asrs, ie, the lwp's platform-dependent * floating-point extra register state information */ void getfpasrs(klwp_t *lwp, asrset_t asr) { kfpu_t *fp = lwptofpu(lwp); uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); kpreempt_disable(); if (ttolwp(curthread) == lwp) fp->fpu_fprs = _fp_read_fprs(); if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { if (fpu_exists && ttolwp(curthread) == lwp) { if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { _fp_write_fprs(fprs); fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; } save_gsr(fp); } asr[ASR_GSR] = (int64_t)get_gsr(fp); } kpreempt_enable(); } /* * set the sun4u asrs, ie, the lwp's platform-dependent * non-floating-point extra register state information */ /* ARGSUSED */ void setasrs(klwp_t *lwp, asrset_t asr) { /* for sun4u nothing to do here, added for symmetry */ } void setfpasrs(klwp_t *lwp, asrset_t asr) { kfpu_t *fp = lwptofpu(lwp); uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); kpreempt_disable(); if (ttolwp(curthread) == lwp) fp->fpu_fprs = _fp_read_fprs(); if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { set_gsr(asr[ASR_GSR], fp); if (fpu_exists && ttolwp(curthread) == lwp) { if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { _fp_write_fprs(fprs); fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; } restore_gsr(fp); } } kpreempt_enable(); } /* * Create interrupt kstats for this CPU. */ void cpu_create_intrstat(cpu_t *cp) { int i; kstat_t *intr_ksp; kstat_named_t *knp; char name[KSTAT_STRLEN]; zoneid_t zoneid; ASSERT(MUTEX_HELD(&cpu_lock)); if (pool_pset_enabled()) zoneid = GLOBAL_ZONEID; else zoneid = ALL_ZONES; intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); /* * Initialize each PIL's named kstat */ if (intr_ksp != NULL) { intr_ksp->ks_update = cpu_kstat_intrstat_update; knp = (kstat_named_t *)intr_ksp->ks_data; intr_ksp->ks_private = cp; for (i = 0; i < PIL_MAX; i++) { (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", i + 1); kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", i + 1); kstat_named_init(&knp[(i * 2) + 1], name, KSTAT_DATA_UINT64); } kstat_install(intr_ksp); } } /* * Delete interrupt kstats for this CPU. */ void cpu_delete_intrstat(cpu_t *cp) { kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); } /* * Convert interrupt statistics from CPU ticks to nanoseconds and * update kstat. */ int cpu_kstat_intrstat_update(kstat_t *ksp, int rw) { kstat_named_t *knp = ksp->ks_data; cpu_t *cpup = (cpu_t *)ksp->ks_private; int i; if (rw == KSTAT_WRITE) return (EACCES); /* * We use separate passes to copy and convert the statistics to * nanoseconds. This assures that the snapshot of the data is as * self-consistent as possible. */ for (i = 0; i < PIL_MAX; i++) { knp[i * 2].value.ui64 = cpup->cpu_m.intrstat[i + 1][0]; knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; } for (i = 0; i < PIL_MAX; i++) { knp[i * 2].value.ui64 = (uint64_t)tick2ns((hrtime_t)knp[i * 2].value.ui64, cpup->cpu_id); } return (0); } /* * Called by common/os/cpu.c for psrinfo(1m) kstats */ char * cpu_fru_fmri(cpu_t *cp) { return (cpunodes[cp->cpu_id].fru_fmri); } /* * An interrupt thread is ending a time slice, so compute the interval it * ran for and update the statistic for its PIL. */ void cpu_intr_swtch_enter(kthread_id_t t) { uint64_t interval; uint64_t start; cpu_t *cpu; ASSERT((t->t_flag & T_INTR_THREAD) != 0); ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); /* * We could be here with a zero timestamp. This could happen if: * an interrupt thread which no longer has a pinned thread underneath * it (i.e. it blocked at some point in its past) has finished running * its handler. intr_thread() updated the interrupt statistic for its * PIL and zeroed its timestamp. Since there was no pinned thread to * return to, swtch() gets called and we end up here. * * It can also happen if an interrupt thread in intr_thread() calls * preempt. It will have already taken care of updating stats. In * this event, the interrupt thread will be runnable. */ if (t->t_intr_start) { do { start = t->t_intr_start; interval = gettick_counter() - start; } while (cas64(&t->t_intr_start, start, 0) != start); cpu = CPU; if (cpu->cpu_m.divisor > 1) interval *= cpu->cpu_m.divisor; cpu->cpu_m.intrstat[t->t_pil][0] += interval; atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], interval); } else ASSERT(t->t_intr == NULL || t->t_state == TS_RUN); } /* * An interrupt thread is returning from swtch(). Place a starting timestamp * in its thread structure. */ void cpu_intr_swtch_exit(kthread_id_t t) { uint64_t ts; ASSERT((t->t_flag & T_INTR_THREAD) != 0); ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); do { ts = t->t_intr_start; } while (cas64(&t->t_intr_start, ts, gettick_counter()) != ts); } int blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) { if (&plat_blacklist) return (plat_blacklist(cmd, scheme, fmri, class)); return (ENOTSUP); } int kdi_pread(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) { extern void kdi_flush_caches(void); size_t nread = 0; uint32_t word; int slop, i; kdi_flush_caches(); membar_enter(); /* We might not begin on a word boundary. */ if ((slop = addr & 3) != 0) { word = ldphys(addr & ~3); for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nread++) *buf++ = ((uchar_t *)&word)[i]; addr = roundup(addr, 4); } while (nbytes > 0) { word = ldphys(addr); for (i = 0; i < 4 && nbytes > 0; i++, nbytes--, nread++, addr++) *buf++ = ((uchar_t *)&word)[i]; } kdi_flush_caches(); *ncopiedp = nread; return (0); } int kdi_pwrite(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) { extern void kdi_flush_caches(void); size_t nwritten = 0; uint32_t word; int slop, i; kdi_flush_caches(); /* We might not begin on a word boundary. */ if ((slop = addr & 3) != 0) { word = ldphys(addr & ~3); for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nwritten++) ((uchar_t *)&word)[i] = *buf++; stphys(addr & ~3, word); addr = roundup(addr, 4); } while (nbytes > 3) { for (word = 0, i = 0; i < 4; i++, nbytes--, nwritten++) ((uchar_t *)&word)[i] = *buf++; stphys(addr, word); addr += 4; } /* We might not end with a whole word. */ if (nbytes > 0) { word = ldphys(addr); for (i = 0; nbytes > 0; i++, nbytes--, nwritten++) ((uchar_t *)&word)[i] = *buf++; stphys(addr, word); } membar_enter(); kdi_flush_caches(); *ncopiedp = nwritten; return (0); } static void kdi_kernpanic(struct regs *regs, uint_t tt) { sync_reg_buf = *regs; sync_tt = tt; sync_handler(); } static void kdi_plat_call(void (*platfn)(void)) { if (platfn != NULL) { prom_suspend_prepost(); platfn(); prom_resume_prepost(); } } void mach_kdi_init(kdi_t *kdi) { kdi->kdi_plat_call = kdi_plat_call; kdi->mkdi_cpu_index = kdi_cpu_index; kdi->mkdi_trap_vatotte = kdi_trap_vatotte; kdi->mkdi_kernpanic = kdi_kernpanic; } /* * get_cpu_mstate() is passed an array of timestamps, NCMSTATES * long, and it fills in the array with the time spent on cpu in * each of the mstates, where time is returned in nsec. * * No guarantee is made that the returned values in times[] will * monotonically increase on sequential calls, although this will * be true in the long run. Any such guarantee must be handled by * the caller, if needed. This can happen if we fail to account * for elapsed time due to a generation counter conflict, yet we * did account for it on a prior call (see below). * * The complication is that the cpu in question may be updating * its microstate at the same time that we are reading it. * Because the microstate is only updated when the CPU's state * changes, the values in cpu_intracct[] can be indefinitely out * of date. To determine true current values, it is necessary to * compare the current time with cpu_mstate_start, and add the * difference to times[cpu_mstate]. * * This can be a problem if those values are changing out from * under us. Because the code path in new_cpu_mstate() is * performance critical, we have not added a lock to it. Instead, * we have added a generation counter. Before beginning * modifications, the counter is set to 0. After modifications, * it is set to the old value plus one. * * get_cpu_mstate() will not consider the values of cpu_mstate * and cpu_mstate_start to be usable unless the value of * cpu_mstate_gen is both non-zero and unchanged, both before and * after reading the mstate information. Note that we must * protect against out-of-order loads around accesses to the * generation counter. Also, this is a best effort approach in * that we do not retry should the counter be found to have * changed. * * cpu_intracct[] is used to identify time spent in each CPU * mstate while handling interrupts. Such time should be reported * against system time, and so is subtracted out from its * corresponding cpu_acct[] time and added to * cpu_acct[CMS_SYSTEM]. Additionally, intracct time is stored in * %ticks, but acct time may be stored as %sticks, thus requiring * different conversions before they can be compared. */ void get_cpu_mstate(cpu_t *cpu, hrtime_t *times) { int i; hrtime_t now, start; uint16_t gen; uint16_t state; hrtime_t intracct[NCMSTATES]; /* * Load all volatile state under the protection of membar. * cpu_acct[cpu_mstate] must be loaded to avoid double counting * of (now - cpu_mstate_start) by a change in CPU mstate that * arrives after we make our last check of cpu_mstate_gen. */ now = gethrtime_unscaled(); gen = cpu->cpu_mstate_gen; membar_consumer(); /* guarantee load ordering */ start = cpu->cpu_mstate_start; state = cpu->cpu_mstate; for (i = 0; i < NCMSTATES; i++) { intracct[i] = cpu->cpu_intracct[i]; times[i] = cpu->cpu_acct[i]; } membar_consumer(); /* guarantee load ordering */ if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) times[state] += now - start; for (i = 0; i < NCMSTATES; i++) { scalehrtime(×[i]); intracct[i] = tick2ns((hrtime_t)intracct[i], cpu->cpu_id); } for (i = 0; i < NCMSTATES; i++) { if (i == CMS_SYSTEM) continue; times[i] -= intracct[i]; if (times[i] < 0) { intracct[i] += times[i]; times[i] = 0; } times[CMS_SYSTEM] += intracct[i]; } }