/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * sun4 specific DDI implementation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, ddi_intr_handle_impl_t *); #pragma weak get_intr_parent int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, ddi_intr_handle_impl_t *, void *); #pragma weak process_intr_ops void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, int32_t len); #pragma weak cells_1275_copy /* * Wrapper for ddi_prop_lookup_int_array(). * This is handy because it returns the prop length in * bytes which is what most of the callers require. */ static int get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) { int ret; if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { *plen = (*plen) * (uint_t)sizeof (int); } return (ret); } /* * SECTION: DDI Node Configuration */ /* * init_regspec_64: * * If the parent #size-cells is 2, convert the upa-style or * safari-style reg property from 2-size cells to 1 size cell * format, ignoring the size_hi, which must be zero for devices. * (It won't be zero in the memory list properties in the memory * nodes, but that doesn't matter here.) */ struct ddi_parent_private_data * init_regspec_64(dev_info_t *dip) { struct ddi_parent_private_data *pd; dev_info_t *parent; int size_cells; /* * If there are no "reg"s in the child node, return. */ pd = ddi_get_parent_data(dip); if ((pd == NULL) || (pd->par_nreg == 0)) { return (pd); } parent = ddi_get_parent(dip); size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, DDI_PROP_DONTPASS, "#size-cells", 1); if (size_cells != 1) { int n, j; struct regspec *irp; struct reg_64 { uint_t addr_hi, addr_lo, size_hi, size_lo; }; struct reg_64 *r64_rp; struct regspec *rp; uint_t len = 0; int *reg_prop; ASSERT(size_cells == 2); /* * We already looked the property up once before if * pd is non-NULL. */ (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); ASSERT(len != 0); n = sizeof (struct reg_64) / sizeof (int); n = len / n; /* * We're allocating a buffer the size of the PROM's property, * but we're only using a smaller portion when we assign it * to a regspec. We do this so that in the * impl_ddi_sunbus_removechild function, we will * always free the right amount of memory. */ irp = rp = (struct regspec *)reg_prop; r64_rp = (struct reg_64 *)pd->par_reg; for (j = 0; j < n; ++j, ++rp, ++r64_rp) { ASSERT(r64_rp->size_hi == 0); rp->regspec_bustype = r64_rp->addr_hi; rp->regspec_addr = r64_rp->addr_lo; rp->regspec_size = r64_rp->size_lo; } ddi_prop_free((void *)pd->par_reg); pd->par_nreg = n; pd->par_reg = irp; } return (pd); } /* * Create a ddi_parent_private_data structure from the ddi properties of * the dev_info node. * * The "reg" is required if the driver wishes to create mappings on behalf * of the device. The "reg" property is assumed to be a list of at least * one triplet * * *1 * * The "interrupt" property is no longer part of parent private data on * sun4u. The interrupt parent is may not be the device tree parent. * * The "ranges" property describes the mapping of child addresses to parent * addresses. * * N.B. struct rangespec is defined for the following default values: * parent child * #address-cells 2 2 * #size-cells 1 1 * This function doesn't deal with non-default cells and will not create * ranges in such cases. */ void make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) { struct ddi_parent_private_data *pdptr; int *reg_prop, *rng_prop; uint_t reg_len = 0, rng_len = 0; dev_info_t *parent; int parent_addr_cells, parent_size_cells; int child_addr_cells, child_size_cells; *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); /* * root node has no parent private data, so *ppd should * be initialized for naming to work properly. */ if ((parent = ddi_get_parent(child)) == NULL) return; /* * Set reg field of parent data from "reg" property */ if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) == DDI_PROP_SUCCESS) && (reg_len != 0)) { pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); pdptr->par_reg = (struct regspec *)reg_prop; } /* * "ranges" property ... * * This function does not handle cases where #address-cells != 2 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). * * Nexus drivers with such exceptions (e.g. pci ranges) * should either create a separate function for handling * ranges or not use parent private data to store ranges. */ /* root node has no ranges */ if ((parent = ddi_get_parent(child)) == NULL) return; child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "#address-cells", 2); child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "#size-cells", 1); parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, DDI_PROP_DONTPASS, "#address-cells", 2); parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, DDI_PROP_DONTPASS, "#size-cells", 1); if (child_addr_cells != 2 || parent_addr_cells != 2 || (child_size_cells != 1 && parent_size_cells != 1)) { NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " "#address-cells or #size-cells have non-default value")); return; } if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) == DDI_PROP_SUCCESS) { pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); pdptr->par_rng = (struct rangespec *)rng_prop; } } /* * Free ddi_parent_private_data structure */ void impl_free_ddi_ppd(dev_info_t *dip) { struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); if (pdptr == NULL) return; if (pdptr->par_nrng != 0) ddi_prop_free((void *)pdptr->par_rng); if (pdptr->par_nreg != 0) ddi_prop_free((void *)pdptr->par_reg); kmem_free(pdptr, sizeof (*pdptr)); ddi_set_parent_data(dip, NULL); } /* * Name a child of sun busses based on the reg spec. * Handles the following properties: * * Property value * Name type * * reg register spec * interrupts new (bus-oriented) interrupt spec * ranges range spec * * This may be called multiple times, independent of * initchild calls. */ static int impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) { struct ddi_parent_private_data *pdptr; struct regspec *rp; /* * Fill in parent-private data and this function returns to us * an indication if it used "registers" to fill in the data. */ if (ddi_get_parent_data(child) == NULL) { make_ddi_ppd(child, &pdptr); ddi_set_parent_data(child, pdptr); } /* * No reg property, return null string as address * (e.g. root node) */ name[0] = '\0'; if (sparc_pd_getnreg(child) == 0) { return (DDI_SUCCESS); } rp = sparc_pd_getreg(child, 0); (void) snprintf(name, namelen, "%x,%x", rp->regspec_bustype, rp->regspec_addr); return (DDI_SUCCESS); } /* * Called from the bus_ctl op of some drivers. * to implement the DDI_CTLOPS_INITCHILD operation. * * NEW drivers should NOT use this function, but should declare * there own initchild/uninitchild handlers. (This function assumes * the layout of the parent private data and the format of "reg", * "ranges", "interrupts" properties and that #address-cells and * #size-cells of the parent bus are defined to be default values.) */ int impl_ddi_sunbus_initchild(dev_info_t *child) { char name[MAXNAMELEN]; (void) impl_sunbus_name_child(child, name, MAXNAMELEN); ddi_set_name_addr(child, name); /* * Try to merge .conf node. If successful, return failure to * remove this child. */ if ((ndi_dev_is_persistent_node(child) == 0) && (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { impl_ddi_sunbus_removechild(child); return (DDI_FAILURE); } return (DDI_SUCCESS); } /* * A better name for this function would be impl_ddi_sunbus_uninitchild() * It does not remove the child, it uninitializes it, reclaiming the * resources taken by impl_ddi_sunbus_initchild. */ void impl_ddi_sunbus_removechild(dev_info_t *dip) { impl_free_ddi_ppd(dip); ddi_set_name_addr(dip, NULL); /* * Strip the node to properly convert it back to prototype form */ impl_rem_dev_props(dip); } /* * SECTION: DDI Interrupt */ void cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) { int i; for (i = 0; i < len; i++) *to = *from; } prop_1275_cell_t * cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) { prop_1275_cell_t *match_cell = 0; int32_t i; for (i = 0; i < len; i++) if (cell1[i] != cell2[i]) { match_cell = &cell1[i]; break; } return (match_cell); } /* * get_intr_parent() is a generic routine that process a 1275 interrupt * map (imap) property. This function returns a dev_info_t structure * which claims ownership of the interrupt domain. * It also returns the new interrupt translation within this new domain. * If an interrupt-parent or interrupt-map property are not found, * then we fallback to using the device tree's parent. * * imap entry format: * ,,, * reg - The register specification in the interrupts domain * interrupt - The interrupt specification * phandle - PROM handle of the device that owns the xlated interrupt domain * translated interrupt - interrupt specifier in the parents domain * note: , - The reg and interrupt can be combined to create * a unique entry called a unit interrupt specifier. * * Here's the processing steps: * step1 - If the interrupt-parent property exists, create the ispec and * return the dip of the interrupt parent. * step2 - Extract the interrupt-map property and the interrupt-map-mask * If these don't exist, just return the device tree parent. * step3 - build up the unit interrupt specifier to match against the * interrupt map property * step4 - Scan the interrupt-map property until a match is found * step4a - Extract the interrupt parent * step4b - Compare the unit interrupt specifier */ dev_info_t * get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) { prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, addr_cells, intr_cells, reg_len, i, j; int32_t match_found = 0; dev_info_t *intr_parent_dip = NULL; uint32_t *intr = &hdlp->ih_vector; uint32_t nodeid; #ifdef DEBUG static int debug = 0; #endif /* * step1 * If we have an interrupt-parent property, this property represents * the nodeid of our interrupt parent. */ if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "interrupt-parent", -1)) != -1) { intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); ASSERT(intr_parent_dip); /* * Attach the interrupt parent. * * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. * Also, interrupt parent isn't held. This needs * to be revisited if DR-capable platforms implement * interrupt redirection. */ if (i_ddi_attach_node_hierarchy(intr_parent_dip) != DDI_SUCCESS) { ndi_rele_devi(intr_parent_dip); return (NULL); } return (intr_parent_dip); } /* * step2 * Get interrupt map structure from PROM property */ if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, "interrupt-map", (caddr_t)&imap, &imap_sz) != DDI_PROP_SUCCESS) { /* * If we don't have an imap property, default to using the * device tree. */ ndi_hold_devi(pdip); return (pdip); } /* Get the interrupt mask property */ if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) != DDI_PROP_SUCCESS) { /* * If we don't find this property, we have to fail the request * because the 1275 imap property wasn't defined correctly. */ ASSERT(intr_parent_dip == NULL); goto exit2; } /* Get the address cell size */ addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, "#address-cells", 2); /* Get the interrupts cell size */ intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, "#interrupt-cells", 1); /* * step3 * Now lets build up the unit interrupt specifier e.g. reg,intr * and apply the imap mask. match_req will hold this when we're * through. */ if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", (caddr_t)®_p, ®_len) != DDI_SUCCESS) { ASSERT(intr_parent_dip == NULL); goto exit3; } match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); for (i = 0; i < addr_cells; i++) match_req[i] = (reg_p[i] & imap_mask[i]); for (j = 0; j < intr_cells; i++, j++) match_req[i] = (intr[j] & imap_mask[i]); /* Calculate the imap size in cells */ imap_cells = BYTES_TO_1275_CELLS(imap_sz); #ifdef DEBUG if (debug) prom_printf("reg cell size 0x%x, intr cell size 0x%x, " "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, match_req, imap); #endif /* * Scan the imap property looking for a match of the interrupt unit * specifier. This loop is rather complex since the data within the * imap property may vary in size. */ for (scan = imap, imap_scan_cells = i = 0; imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { int new_intr_cells; /* Set the index to the nodeid field */ i = addr_cells + intr_cells; /* * step4a * Translate the nodeid field to a dip */ ASSERT(intr_parent_dip == NULL); intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); ASSERT(intr_parent_dip != 0); #ifdef DEBUG if (debug) prom_printf("scan 0x%p\n", scan); #endif /* * The tmp_dip describes the new domain, get it's interrupt * cell size */ new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, "#interrupts-cells", 1); /* * step4b * See if we have a match on the interrupt unit specifier */ if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) == 0) { uint32_t *intr; match_found = 1; /* * If we have an imap parent whose not in our device * tree path, we need to hold and install that driver. */ if (i_ddi_attach_node_hierarchy(intr_parent_dip) != DDI_SUCCESS) { ndi_rele_devi(intr_parent_dip); intr_parent_dip = (dev_info_t *)NULL; goto exit4; } /* * We need to handcraft an ispec along with a bus * interrupt value, so we can dup it into our * standard ispec structure. */ /* Extract the translated interrupt information */ intr = kmem_alloc( CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); for (j = 0; j < new_intr_cells; j++, i++) intr[j] = scan[i]; cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); #ifdef DEBUG if (debug) prom_printf("dip 0x%p\n", intr_parent_dip); #endif break; } else { #ifdef DEBUG if (debug) prom_printf("dip 0x%p\n", intr_parent_dip); #endif ndi_rele_devi(intr_parent_dip); intr_parent_dip = NULL; i += new_intr_cells; } } /* * If we haven't found our interrupt parent at this point, fallback * to using the device tree. */ if (!match_found) { ndi_hold_devi(pdip); ASSERT(intr_parent_dip == NULL); intr_parent_dip = pdip; } ASSERT(intr_parent_dip != NULL); exit4: kmem_free(reg_p, reg_len); kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + CELLS_1275_TO_BYTES(intr_cells)); exit3: kmem_free(imap_mask, imap_mask_sz); exit2: kmem_free(imap, imap_sz); return (intr_parent_dip); } /* * process_intr_ops: * * Process the interrupt op via the interrupt parent. */ int process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, ddi_intr_handle_impl_t *hdlp, void *result) { int ret = DDI_FAILURE; if (NEXUS_HAS_INTR_OP(pdip)) { ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> bus_intr_op)) (pdip, rdip, op, hdlp, result); } else { cmn_err(CE_WARN, "Failed to process interrupt " "for %s%d due to down-rev nexus driver %s%d", ddi_get_name(rdip), ddi_get_instance(rdip), ddi_get_name(pdip), ddi_get_instance(pdip)); } return (ret); } /*ARGSUSED*/ uint_t softlevel1(caddr_t arg) { softint(); return (1); } /* * indirection table, to save us some large switch statements * NOTE: This must agree with "INTLEVEL_foo" constants in * */ struct autovec *const vectorlist[] = { 0 }; /* * This value is exported here for the functions in avintr.c */ const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); /* * Check for machine specific interrupt levels which cannot be reassigned by * settrap(), sun4u version. * * sun4u does not support V8 SPARC "fast trap" handlers. */ /*ARGSUSED*/ int exclude_settrap(int lvl) { return (1); } /* * Check for machine specific interrupt levels which cannot have interrupt * handlers added. We allow levels 1 through 15; level 0 is nonsense. */ /*ARGSUSED*/ int exclude_level(int lvl) { return ((lvl < 1) || (lvl > 15)); } /* * Wrapper functions used by New DDI interrupt framework. */ /* * i_ddi_intr_ops: */ int i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, ddi_intr_handle_impl_t *hdlp, void *result) { dev_info_t *pdip = ddi_get_parent(dip); int ret = DDI_FAILURE; /* * The following check is required to address * one of the test case of ADDI test suite. */ if (pdip == NULL) return (DDI_FAILURE); if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) return (process_intr_ops(pdip, rdip, op, hdlp, result)); if (hdlp->ih_vector == 0) hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); if (hdlp->ih_pri == 0) hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); switch (op) { case DDI_INTROP_ADDISR: case DDI_INTROP_REMISR: case DDI_INTROP_ENABLE: case DDI_INTROP_DISABLE: case DDI_INTROP_BLOCKENABLE: case DDI_INTROP_BLOCKDISABLE: /* * Try and determine our parent and possibly an interrupt * translation. intr parent dip returned held */ if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) goto done; } ret = process_intr_ops(pdip, rdip, op, hdlp, result); done: switch (op) { case DDI_INTROP_ADDISR: case DDI_INTROP_REMISR: case DDI_INTROP_ENABLE: case DDI_INTROP_DISABLE: case DDI_INTROP_BLOCKENABLE: case DDI_INTROP_BLOCKDISABLE: /* Release hold acquired in get_intr_parent() */ if (pdip) ndi_rele_devi(pdip); } hdlp->ih_vector = 0; return (ret); } /* * i_ddi_add_ivintr: */ /*ARGSUSED*/ int i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) { /* Sanity check the entry we're about to add */ if (GET_IVINTR(hdlp->ih_vector)) { cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector); return (DDI_FAILURE); } /* * If the PIL was set and is valid use it, otherwise * default it to 1 */ if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) hdlp->ih_pri = 1; VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0); return (DDI_SUCCESS); } /* * i_ddi_rem_ivintr: */ /*ARGSUSED*/ void i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) { rem_ivintr(hdlp->ih_vector, NULL); } /* * i_ddi_get_inum - Get the interrupt number property from the * specified device. Note that this function is called only for * the FIXED interrupt type. */ uint32_t i_ddi_get_inum(dev_info_t *dip, uint_t inumber) { int32_t intrlen, intr_cells, max_intrs; prop_1275_cell_t *ip, intr_sz; uint32_t intr = 0; if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1); /* adjust for number of bytes */ intr_sz = CELLS_1275_TO_BYTES(intr_cells); /* Calculate the number of interrupts */ max_intrs = intrlen / intr_sz; if (inumber < max_intrs) { prop_1275_cell_t *intrp = ip; /* Index into interrupt property */ intrp += (inumber * intr_cells); cells_1275_copy(intrp, &intr, intr_cells); } kmem_free(ip, intrlen); } return (intr); } /* * i_ddi_get_intr_pri - Get the interrupt-priorities property from * the specified device. Note that this function is called only for * the FIXED interrupt type. */ uint32_t i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) { uint32_t *intr_prio_p; uint32_t pri = 0; int32_t i; /* * Use the "interrupt-priorities" property to determine the * the pil/ipl for the interrupt handler. */ if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "interrupt-priorities", (caddr_t)&intr_prio_p, &i) == DDI_SUCCESS) { if (inumber < (i / sizeof (int32_t))) pri = intr_prio_p[inumber]; kmem_free(intr_prio_p, i); } return (pri); } int i_ddi_get_intx_nintrs(dev_info_t *dip) { int32_t intrlen; prop_1275_cell_t intr_sz; prop_1275_cell_t *ip; int32_t ret = 0; if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1); /* adjust for number of bytes */ intr_sz = CELLS_1275_TO_BYTES(intr_sz); ret = intrlen / intr_sz; kmem_free(ip, intrlen); } return (ret); } /* * i_ddi_add_softint - allocate and add a soft interrupt to the system */ int i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) { uint_t rval; if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func, hdlp->ih_cb_arg1)) == 0) { return (DDI_FAILURE); } /* use uintptr_t to suppress the gcc warning */ hdlp->ih_private = (void *)(uintptr_t)rval; return (DDI_SUCCESS); } void i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) { uint_t intr_id; /* disable */ ASSERT(hdlp->ih_private != NULL); /* use uintptr_t to suppress the gcc warning */ intr_id = (uint_t)(uintptr_t)hdlp->ih_private; rem_softintr(intr_id); hdlp->ih_private = NULL; } int i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) { uint_t intr_id; int ret; ASSERT(hdlp != NULL); ASSERT(hdlp->ih_private != NULL); /* use uintptr_t to suppress the gcc warning */ intr_id = (uint_t)(uintptr_t)hdlp->ih_private; /* update the vector table for the 2nd arg */ ret = update_softint_arg2(intr_id, arg2); if (ret == DDI_SUCCESS) setsoftint(intr_id); return (ret); } /* ARGSUSED */ int i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) { uint_t intr_id; int ret; ASSERT(hdlp != NULL); ASSERT(hdlp->ih_private != NULL); /* use uintptr_t to suppress the gcc warning */ intr_id = (uint_t)(uintptr_t)hdlp->ih_private; /* update the vector table for the new priority */ ret = update_softint_pri(intr_id, hdlp->ih_pri); return (ret); } /*ARGSUSED*/ void i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) { } /*ARGSUSED*/ void i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) { } /* * SECTION: DDI Memory/DMA */ /* set HAT endianess attributes from ddi_device_acc_attr */ void i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) { if (devaccp != NULL) { if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { *hataccp &= ~HAT_ENDIAN_MASK; *hataccp |= HAT_STRUCTURE_LE; } } } /* * Check if the specified cache attribute is supported on the platform. * This function must be called before i_ddi_cacheattr_to_hatacc(). */ boolean_t i_ddi_check_cache_attr(uint_t flags) { /* * The cache attributes are mutually exclusive. Any combination of * the attributes leads to a failure. */ uint_t cache_attr = IOMEM_CACHE_ATTR(flags); if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) return (B_FALSE); /* * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, * but others lead to a failure. */ if (cache_attr & IOMEM_DATA_CACHED) return (B_TRUE); else return (B_FALSE); } /* set HAT cache attributes from the cache attributes */ void i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) { uint_t cache_attr = IOMEM_CACHE_ATTR(flags); static char *fname = "i_ddi_cacheattr_to_hatacc"; #if defined(lint) *hataccp = *hataccp; #endif /* * set HAT attrs according to the cache attrs. */ switch (cache_attr) { /* * The cache coherency is always maintained on SPARC, and * nothing is required. */ case IOMEM_DATA_CACHED: break; /* * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are * not supported on SPARC -- this case must not occur because the * cache attribute is scrutinized before this function is called. */ case IOMEM_DATA_UNCACHED: case IOMEM_DATA_UC_WR_COMBINE: default: cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", fname, cache_attr); } } static vmem_t *little_endian_arena; static vmem_t *big_endian_arena; static void * segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) { return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, segkmem_page_create, NULL)); } static void * segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) { return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, segkmem_page_create, NULL)); } void ka_init(void) { little_endian_arena = vmem_create("little_endian", NULL, 0, 1, segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); big_endian_arena = vmem_create("big_endian", NULL, 0, 1, segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); } /* * Allocate from the system, aligned on a specific boundary. * The alignment, if non-zero, must be a power of 2. */ static void * kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) { size_t *addr, *raddr, rsize; size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ align = MAX(align, hdrsize); ASSERT((align & (align - 1)) == 0); /* * We need to allocate * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) * bytes to be sure we have enough freedom to satisfy the request. * Since the buffer alignment depends on the request size, this is * not straightforward to use directly. * * kmem guarantees that any allocation of a 64-byte multiple will be * 64-byte aligned. Since rounding up the request could add more * than we save, we compute the size with and without alignment, and * use the smaller of the two. */ rsize = size + hdrsize + align; if (endian_flags == DDI_STRUCTURE_LE_ACC) { raddr = vmem_alloc(little_endian_arena, rsize, cansleep ? VM_SLEEP : VM_NOSLEEP); } else { raddr = vmem_alloc(big_endian_arena, rsize, cansleep ? VM_SLEEP : VM_NOSLEEP); } if (raddr == NULL) return (NULL); addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); addr[-3] = (size_t)endian_flags; addr[-2] = (size_t)raddr; addr[-1] = rsize; return (addr); } static void kfreea(void *addr) { size_t *saddr = addr; if (saddr[-3] == DDI_STRUCTURE_LE_ACC) vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); else vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); } int i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, size_t length, int cansleep, int flags, ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) { caddr_t a; int iomin, align, streaming; uint_t endian_flags = DDI_NEVERSWAP_ACC; #if defined(lint) *handlep = *handlep; #endif /* * Check legality of arguments */ if (length == 0 || kaddrp == NULL || attr == NULL) { return (DDI_FAILURE); } if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || (attr->dma_attr_align & (attr->dma_attr_align - 1)) || (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { return (DDI_FAILURE); } /* * check if a streaming sequential xfer is requested. */ streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; /* * Drivers for 64-bit capable SBus devices will encode * the burtsizes for 64-bit xfers in the upper 16-bits. * For DMA alignment, we use the most restrictive * alignment of 32-bit and 64-bit xfers. */ iomin = (attr->dma_attr_burstsizes & 0xffff) | ((attr->dma_attr_burstsizes >> 16) & 0xffff); /* * If a driver set burtsizes to 0, we give him byte alignment. * Otherwise align at the burtsizes boundary. */ if (iomin == 0) iomin = 1; else iomin = 1 << (ddi_fls(iomin) - 1); iomin = maxbit(iomin, attr->dma_attr_minxfer); iomin = maxbit(iomin, attr->dma_attr_align); iomin = ddi_iomin(dip, iomin, streaming); if (iomin == 0) return (DDI_FAILURE); ASSERT((iomin & (iomin - 1)) == 0); ASSERT(iomin >= attr->dma_attr_minxfer); ASSERT(iomin >= attr->dma_attr_align); length = P2ROUNDUP(length, iomin); align = iomin; if (accattrp != NULL) endian_flags = accattrp->devacc_attr_endian_flags; a = kalloca(length, align, cansleep, endian_flags); if ((*kaddrp = a) == 0) { return (DDI_FAILURE); } else { if (real_length) { *real_length = length; } if (handlep) { /* * assign handle information */ impl_acc_hdl_init(handlep); } return (DDI_SUCCESS); } } /* * covert old DMA limits structure to DMA attribute structure * and continue */ int i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, size_t length, int cansleep, int streaming, ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, uint_t *real_length, ddi_acc_hdl_t *ap) { ddi_dma_attr_t dma_attr, *attrp; size_t rlen; int ret; ASSERT(limits); attrp = &dma_attr; attrp->dma_attr_version = DMA_ATTR_V0; attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; attrp->dma_attr_count_max = (uint64_t)-1; attrp->dma_attr_align = 1; attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; attrp->dma_attr_maxxfer = (uint64_t)-1; attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; attrp->dma_attr_sgllen = 1; attrp->dma_attr_granular = 1; attrp->dma_attr_flags = 0; ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, accattrp, kaddrp, &rlen, ap); if (ret == DDI_SUCCESS) { if (real_length) *real_length = (uint_t)rlen; } return (ret); } /* ARGSUSED */ void i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) { kfreea(kaddr); } /* * SECTION: DDI Data Access */ static uintptr_t impl_acc_hdl_id = 0; /* * access handle allocator */ ddi_acc_hdl_t * impl_acc_hdl_get(ddi_acc_handle_t hdl) { /* * Extract the access handle address from the DDI implemented * access handle */ return (&((ddi_acc_impl_t *)hdl)->ahi_common); } ddi_acc_handle_t impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) { ddi_acc_impl_t *hp; on_trap_data_t *otp; int sleepflag; sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); /* * Allocate and initialize the data access handle and error status. */ if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) goto fail; if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( sizeof (ndi_err_t), sleepflag)) == NULL) { kmem_free(hp, sizeof (ddi_acc_impl_t)); goto fail; } if ((otp = (on_trap_data_t *)kmem_zalloc( sizeof (on_trap_data_t), sleepflag)) == NULL) { kmem_free(hp->ahi_err, sizeof (ndi_err_t)); kmem_free(hp, sizeof (ddi_acc_impl_t)); goto fail; } hp->ahi_err->err_ontrap = otp; hp->ahi_common.ah_platform_private = (void *)hp; return ((ddi_acc_handle_t)hp); fail: if ((waitfp != (int (*)())KM_SLEEP) && (waitfp != (int (*)())KM_NOSLEEP)) ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); return (NULL); } void impl_acc_hdl_free(ddi_acc_handle_t handle) { ddi_acc_impl_t *hp; /* * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), * because that's what we allocated in impl_acc_hdl_alloc() above. */ hp = (ddi_acc_impl_t *)handle; if (hp) { kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); kmem_free(hp->ahi_err, sizeof (ndi_err_t)); kmem_free(hp, sizeof (ddi_acc_impl_t)); if (impl_acc_hdl_id) ddi_run_callback(&impl_acc_hdl_id); } } #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) /* * Function called after a dma fault occurred to find out whether the * fault address is associated with a driver that is able to handle faults * and recover from faults. */ /* ARGSUSED */ int impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, const void *not_used) { ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); pfn_t comp_pfn; /* * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. */ int page; ASSERT(mp); for (page = 0; page < mp->dmai_ndvmapages; page++) { comp_pfn = PCI_GET_MP_PFN(mp, page); if (fault_pfn == comp_pfn) return (DDI_FM_NONFATAL); } return (DDI_FM_UNKNOWN); } /* * Function used to check if a given access handle owns the failing address. * Called by ndi_fmc_error, when we detect a PIO error. */ /* ARGSUSED */ static int impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, const void *not_used) { pfn_t pfn, fault_pfn; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); ASSERT(hp); if (addr != NULL) { pfn = hp->ah_pfn; fault_pfn = mmu_btop(*(uint64_t *)addr); if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) return (DDI_FM_NONFATAL); } return (DDI_FM_UNKNOWN); } void impl_acc_err_init(ddi_acc_hdl_t *handlep) { int fmcap; ndi_err_t *errp; on_trap_data_t *otp; ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; fmcap = ddi_fm_capable(handlep->ah_dip); if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || !DDI_FM_ACC_ERR_CAP(fmcap)) { handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, NULL, DDI_NOSLEEP); } else { errp = hp->ahi_err; otp = (on_trap_data_t *)errp->err_ontrap; otp->ot_handle = (void *)(hp); otp->ot_prot = OT_DATA_ACCESS; if (handlep->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) otp->ot_trampoline = (uintptr_t)&i_ddi_caut_trampoline; else otp->ot_trampoline = (uintptr_t)&i_ddi_prot_trampoline; errp->err_status = DDI_FM_OK; errp->err_expected = DDI_FM_ERR_UNEXPECTED; errp->err_cf = impl_acc_check; } } } void impl_acc_hdl_init(ddi_acc_hdl_t *handlep) { ddi_acc_impl_t *hp; ASSERT(handlep); hp = (ddi_acc_impl_t *)handlep; /* * check for SW byte-swapping */ hp->ahi_get8 = i_ddi_get8; hp->ahi_put8 = i_ddi_put8; hp->ahi_rep_get8 = i_ddi_rep_get8; hp->ahi_rep_put8 = i_ddi_rep_put8; if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { hp->ahi_get16 = i_ddi_swap_get16; hp->ahi_get32 = i_ddi_swap_get32; hp->ahi_get64 = i_ddi_swap_get64; hp->ahi_put16 = i_ddi_swap_put16; hp->ahi_put32 = i_ddi_swap_put32; hp->ahi_put64 = i_ddi_swap_put64; hp->ahi_rep_get16 = i_ddi_swap_rep_get16; hp->ahi_rep_get32 = i_ddi_swap_rep_get32; hp->ahi_rep_get64 = i_ddi_swap_rep_get64; hp->ahi_rep_put16 = i_ddi_swap_rep_put16; hp->ahi_rep_put32 = i_ddi_swap_rep_put32; hp->ahi_rep_put64 = i_ddi_swap_rep_put64; } else { hp->ahi_get16 = i_ddi_get16; hp->ahi_get32 = i_ddi_get32; hp->ahi_get64 = i_ddi_get64; hp->ahi_put16 = i_ddi_put16; hp->ahi_put32 = i_ddi_put32; hp->ahi_put64 = i_ddi_put64; hp->ahi_rep_get16 = i_ddi_rep_get16; hp->ahi_rep_get32 = i_ddi_rep_get32; hp->ahi_rep_get64 = i_ddi_rep_get64; hp->ahi_rep_put16 = i_ddi_rep_put16; hp->ahi_rep_put32 = i_ddi_rep_put32; hp->ahi_rep_put64 = i_ddi_rep_put64; } /* Legacy fault flags and support */ hp->ahi_fault_check = i_ddi_acc_fault_check; hp->ahi_fault_notify = i_ddi_acc_fault_notify; hp->ahi_fault = 0; impl_acc_err_init(handlep); } void i_ddi_acc_set_fault(ddi_acc_handle_t handle) { ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; if (!hp->ahi_fault) { hp->ahi_fault = 1; (*hp->ahi_fault_notify)(hp); } } void i_ddi_acc_clr_fault(ddi_acc_handle_t handle) { ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; if (hp->ahi_fault) { hp->ahi_fault = 0; (*hp->ahi_fault_notify)(hp); } } /* ARGSUSED */ void i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) { /* Default version, does nothing */ } /* * SECTION: Misc functions */ /* * instance wrappers */ /*ARGSUSED*/ uint_t impl_assign_instance(dev_info_t *dip) { return ((uint_t)-1); } /*ARGSUSED*/ int impl_keep_instance(dev_info_t *dip) { return (DDI_FAILURE); } /*ARGSUSED*/ int impl_free_instance(dev_info_t *dip) { return (DDI_FAILURE); } /*ARGSUSED*/ int impl_check_cpu(dev_info_t *devi) { return (DDI_SUCCESS); } static const char *nocopydevs[] = { "SUNW,ffb", "SUNW,afb", NULL }; /* * Perform a copy from a memory mapped device (whose devinfo pointer is devi) * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. */ /*ARGSUSED*/ int e_ddi_copyfromdev(dev_info_t *devi, off_t off, const void *devaddr, void *kaddr, size_t len) { const char **argv; for (argv = nocopydevs; *argv; argv++) if (strcmp(ddi_binding_name(devi), *argv) == 0) { bzero(kaddr, len); return (0); } bcopy(devaddr, kaddr, len); return (0); } /* * Perform a copy to a memory mapped device (whose devinfo pointer is devi) * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. */ /*ARGSUSED*/ int e_ddi_copytodev(dev_info_t *devi, off_t off, const void *kaddr, void *devaddr, size_t len) { const char **argv; for (argv = nocopydevs; *argv; argv++) if (strcmp(ddi_binding_name(devi), *argv) == 0) return (1); bcopy(kaddr, devaddr, len); return (0); } /* * Boot Configuration */ idprom_t idprom; /* * Configure the hardware on the system. * Called before the rootfs is mounted */ void configure(void) { extern void i_ddi_init_root(); /* We better have released boot by this time! */ ASSERT(!bootops); /* * Determine whether or not to use the fpu, V9 SPARC cpus * always have one. Could check for existence of a fp queue, * Ultra I, II and IIa do not have a fp queue. */ if (fpu_exists) fpu_probe(); else cmn_err(CE_CONT, "FPU not in use\n"); #if 0 /* XXXQ - not necessary for sun4u */ /* * This following line fixes bugid 1041296; we need to do a * prom_nextnode(0) because this call ALSO patches the DMA+ * bug in Campus-B and Phoenix. The prom uncaches the traptable * page as a side-effect of devr_next(0) (which prom_nextnode calls), * so this *must* be executed early on. (XXX This is untrue for sun4u) */ (void) prom_nextnode((pnode_t)0); #endif /* * Initialize devices on the machine. * Uses configuration tree built by the PROMs to determine what * is present, and builds a tree of prototype dev_info nodes * corresponding to the hardware which identified itself. */ i_ddi_init_root(); #ifdef DDI_PROP_DEBUG (void) ddi_prop_debug(1); /* Enable property debugging */ #endif /* DDI_PROP_DEBUG */ } /* * The "status" property indicates the operational status of a device. * If this property is present, the value is a string indicating the * status of the device as follows: * * "okay" operational. * "disabled" not operational, but might become operational. * "fail" not operational because a fault has been detected, * and it is unlikely that the device will become * operational without repair. no additional details * are available. * "fail-xxx" not operational because a fault has been detected, * and it is unlikely that the device will become * operational without repair. "xxx" is additional * human-readable information about the particular * fault condition that was detected. * * The absence of this property means that the operational status is * unknown or okay. * * This routine checks the status property of the specified device node * and returns 0 if the operational status indicates failure, and 1 otherwise. * * The property may exist on plug-in cards the existed before IEEE 1275-1994. * And, in that case, the property may not even be a string. So we carefully * check for the value "fail", in the beginning of the string, noting * the property length. */ int status_okay(int id, char *buf, int buflen) { char status_buf[OBP_MAXPROPNAME]; char *bufp = buf; int len = buflen; int proplen; static const char *status = "status"; static const char *fail = "fail"; size_t fail_len = strlen(fail); /* * Get the proplen ... if it's smaller than "fail", * or doesn't exist ... then we don't care, since * the value can't begin with the char string "fail". * * NB: proplen, if it's a string, includes the NULL in the * the size of the property, and fail_len does not. */ proplen = prom_getproplen((pnode_t)id, (caddr_t)status); if (proplen <= fail_len) /* nonexistent or uninteresting len */ return (1); /* * if a buffer was provided, use it */ if ((buf == (char *)NULL) || (buflen <= 0)) { bufp = status_buf; len = sizeof (status_buf); } *bufp = (char)0; /* * Get the property into the buffer, to the extent of the buffer, * and in case the buffer is smaller than the property size, * NULL terminate the buffer. (This handles the case where * a buffer was passed in and the caller wants to print the * value, but the buffer was too small). */ (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, (caddr_t)bufp, len); *(bufp + len - 1) = (char)0; /* * If the value begins with the char string "fail", * then it means the node is failed. We don't care * about any other values. We assume the node is ok * although it might be 'disabled'. */ if (strncmp(bufp, fail, fail_len) == 0) return (0); return (1); } /* * We set the cpu type from the idprom, if we can. * Note that we just read out the contents of it, for the most part. */ void setcputype(void) { /* * We cache the idprom info early on so that we don't * rummage through the NVRAM unnecessarily later. */ (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); } /* * Here is where we actually infer meanings to the members of idprom_t */ void parse_idprom(void) { if (idprom.id_format == IDFORM_1) { uint_t i; (void) localetheraddr((struct ether_addr *)idprom.id_ether, (struct ether_addr *)NULL); i = idprom.id_machine << 24; i = i + idprom.id_serial; numtos((ulong_t)i, hw_serial); } else prom_printf("Invalid format code in IDprom.\n"); } /* * Allow for implementation specific correction of PROM property values. */ /*ARGSUSED*/ void impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, caddr_t buffer) { /* * There are no adjustments needed in this implementation. */ } /* * The following functions ready a cautious request to go up to the nexus * driver. It is up to the nexus driver to decide how to process the request. * It may choose to call i_ddi_do_caut_get/put in this file, or do it * differently. */ static void i_ddi_caut_getput_ctlops( ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) { peekpoke_ctlops_t cautacc_ctlops_arg; cautacc_ctlops_arg.size = size; cautacc_ctlops_arg.dev_addr = dev_addr; cautacc_ctlops_arg.host_addr = host_addr; cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; cautacc_ctlops_arg.repcount = repcount; cautacc_ctlops_arg.flags = flags; (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, &cautacc_ctlops_arg, NULL); } uint8_t i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) { uint8_t value; i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); return (value); } uint16_t i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) { uint16_t value; i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); return (value); } uint32_t i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) { uint32_t value; i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); return (value); } uint64_t i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) { uint64_t value; i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); return (value); } void i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) { i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); } void i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) { i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); } void i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) { i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); } void i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) { i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); } void i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); } void i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); } void i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); } void i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); } void i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); } void i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); } void i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); } void i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags) { i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); } /* * This is called only to process peek/poke when the DIP is NULL. * Assume that this is for memory, as nexi take care of device safe accesses. */ int peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) { int err = DDI_SUCCESS; on_trap_data_t otd; /* Set up protected environment. */ if (!on_trap(&otd, OT_DATA_ACCESS)) { uintptr_t tramp = otd.ot_trampoline; if (cmd == DDI_CTLOPS_POKE) { otd.ot_trampoline = (uintptr_t)&poke_fault; err = do_poke(in_args->size, (void *)in_args->dev_addr, (void *)in_args->host_addr); } else { otd.ot_trampoline = (uintptr_t)&peek_fault; err = do_peek(in_args->size, (void *)in_args->dev_addr, (void *)in_args->host_addr); } otd.ot_trampoline = tramp; } else err = DDI_FAILURE; /* Take down protected environment. */ no_trap(); return (err); } /* * Platform independent DR routines */ static int ndi2errno(int n) { int err = 0; switch (n) { case NDI_NOMEM: err = ENOMEM; break; case NDI_BUSY: err = EBUSY; break; case NDI_FAULT: err = EFAULT; break; case NDI_FAILURE: err = EIO; break; case NDI_SUCCESS: break; case NDI_BADHANDLE: default: err = EINVAL; break; } return (err); } /* * Prom tree node list */ struct ptnode { pnode_t nodeid; struct ptnode *next; }; /* * Prom tree walk arg */ struct pta { dev_info_t *pdip; devi_branch_t *bp; uint_t flags; dev_info_t *fdip; struct ptnode *head; }; static void visit_node(pnode_t nodeid, struct pta *ap) { struct ptnode **nextp; int (*select)(pnode_t, void *, uint_t); ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE); select = ap->bp->create.prom_branch_select; ASSERT(select); if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) { for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next) ; *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP); (*nextp)->nodeid = nodeid; } if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD) return; nodeid = prom_childnode(nodeid); while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { visit_node(nodeid, ap); nodeid = prom_nextnode(nodeid); } } /*ARGSUSED*/ static int set_dip_offline(dev_info_t *dip, void *arg) { ASSERT(dip); mutex_enter(&(DEVI(dip)->devi_lock)); if (!DEVI_IS_DEVICE_OFFLINE(dip)) DEVI_SET_DEVICE_OFFLINE(dip); mutex_exit(&(DEVI(dip)->devi_lock)); return (DDI_WALK_CONTINUE); } /*ARGSUSED*/ static int create_prom_branch(void *arg, int has_changed) { int circ, c; int exists, rv; pnode_t nodeid; struct ptnode *tnp; dev_info_t *dip; struct pta *ap = arg; devi_branch_t *bp; ASSERT(ap); ASSERT(ap->fdip == NULL); ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip)); bp = ap->bp; nodeid = ddi_get_nodeid(ap->pdip); if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) { cmn_err(CE_WARN, "create_prom_branch: invalid " "nodeid: 0x%x", nodeid); return (EINVAL); } ap->head = NULL; nodeid = prom_childnode(nodeid); while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { visit_node(nodeid, ap); nodeid = prom_nextnode(nodeid); } if (ap->head == NULL) return (ENODEV); rv = 0; while ((tnp = ap->head) != NULL) { ap->head = tnp->next; ndi_devi_enter(ap->pdip, &circ); /* * Check if the branch already exists. */ exists = 0; dip = e_ddi_nodeid_to_dip(tnp->nodeid); if (dip != NULL) { exists = 1; /* Parent is held busy, so release hold */ ndi_rele_devi(dip); #ifdef DEBUG cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists" " for nodeid 0x%x", (void *)dip, tnp->nodeid); #endif } else { dip = i_ddi_create_branch(ap->pdip, tnp->nodeid); } kmem_free(tnp, sizeof (struct ptnode)); if (dip == NULL) { ndi_devi_exit(ap->pdip, circ); rv = EIO; continue; } ASSERT(ddi_get_parent(dip) == ap->pdip); /* * Hold the branch if it is not already held */ if (!exists) e_ddi_branch_hold(dip); ASSERT(e_ddi_branch_held(dip)); /* * Set all dips in the branch offline so that * only a "configure" operation can attach * the branch */ (void) set_dip_offline(dip, NULL); ndi_devi_enter(dip, &c); ddi_walk_devs(ddi_get_child(dip), set_dip_offline, NULL); ndi_devi_exit(dip, c); ndi_devi_exit(ap->pdip, circ); if (ap->flags & DEVI_BRANCH_CONFIGURE) { int error = e_ddi_branch_configure(dip, &ap->fdip, 0); if (error && rv == 0) rv = error; } /* * Invoke devi_branch_callback() (if it exists) only for * newly created branches */ if (bp->devi_branch_callback && !exists) bp->devi_branch_callback(dip, bp->arg, 0); } return (rv); } static int sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp) { int rv, circ, len; int i, flags; dev_info_t *dip; char *nbuf; static const char *noname = ""; ASSERT(pdip); ASSERT(DEVI_BUSY_OWNED(pdip)); flags = 0; /* * Creating the root of a branch ? */ if (rdipp) { *rdipp = NULL; flags = DEVI_BRANCH_ROOT; } ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip); rv = bp->create.sid_branch_create(dip, bp->arg, flags); nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP); if (rv == DDI_WALK_ERROR) { cmn_err(CE_WARN, "e_ddi_branch_create: Error setting" " properties on devinfo node %p", (void *)dip); goto fail; } len = OBP_MAXDRVNAME; if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has" "no name property", (void *)dip); goto fail; } ASSERT(i_ddi_node_state(dip) == DS_PROTO); if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) { cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)" " for devinfo node %p", nbuf, (void *)dip); goto fail; } kmem_free(nbuf, OBP_MAXDRVNAME); /* * Ignore bind failures just like boot does */ (void) ndi_devi_bind_driver(dip, 0); switch (rv) { case DDI_WALK_CONTINUE: case DDI_WALK_PRUNESIB: ndi_devi_enter(dip, &circ); i = DDI_WALK_CONTINUE; for (; i == DDI_WALK_CONTINUE; ) { i = sid_node_create(dip, bp, NULL); } ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB); if (i == DDI_WALK_ERROR) rv = i; /* * If PRUNESIB stop creating siblings * of dip's child. Subsequent walk behavior * is determined by rv returned by dip. */ ndi_devi_exit(dip, circ); break; case DDI_WALK_TERMINATE: /* * Don't create children and ask our parent * to not create siblings either. */ rv = DDI_WALK_PRUNESIB; break; case DDI_WALK_PRUNECHILD: /* * Don't create children, but ask parent to continue * with siblings. */ rv = DDI_WALK_CONTINUE; break; default: ASSERT(0); break; } if (rdipp) *rdipp = dip; /* * Set device offline - only the "configure" op should cause an attach */ (void) set_dip_offline(dip, NULL); return (rv); fail: (void) ndi_devi_free(dip); kmem_free(nbuf, OBP_MAXDRVNAME); return (DDI_WALK_ERROR); } static int create_sid_branch( dev_info_t *pdip, devi_branch_t *bp, dev_info_t **dipp, uint_t flags) { int rv = 0, state = DDI_WALK_CONTINUE; dev_info_t *rdip; while (state == DDI_WALK_CONTINUE) { int circ; ndi_devi_enter(pdip, &circ); state = sid_node_create(pdip, bp, &rdip); if (rdip == NULL) { ndi_devi_exit(pdip, circ); ASSERT(state == DDI_WALK_ERROR); break; } e_ddi_branch_hold(rdip); ndi_devi_exit(pdip, circ); if (flags & DEVI_BRANCH_CONFIGURE) { int error = e_ddi_branch_configure(rdip, dipp, 0); if (error && rv == 0) rv = error; } /* * devi_branch_callback() is optional */ if (bp->devi_branch_callback) bp->devi_branch_callback(rdip, bp->arg, 0); } ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB); return (state == DDI_WALK_ERROR ? EIO : rv); } int e_ddi_branch_create( dev_info_t *pdip, devi_branch_t *bp, dev_info_t **dipp, uint_t flags) { int prom_devi, sid_devi, error; if (pdip == NULL || bp == NULL || bp->type == 0) return (EINVAL); prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0; sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0; if (prom_devi && bp->create.prom_branch_select == NULL) return (EINVAL); else if (sid_devi && bp->create.sid_branch_create == NULL) return (EINVAL); else if (!prom_devi && !sid_devi) return (EINVAL); if (flags & DEVI_BRANCH_EVENT) return (EINVAL); if (prom_devi) { struct pta pta = {0}; pta.pdip = pdip; pta.bp = bp; pta.flags = flags; error = prom_tree_access(create_prom_branch, &pta, NULL); if (dipp) *dipp = pta.fdip; else if (pta.fdip) ndi_rele_devi(pta.fdip); } else { error = create_sid_branch(pdip, bp, dipp, flags); } return (error); } int e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags) { int circ, rv; char *devnm; dev_info_t *pdip; if (dipp) *dipp = NULL; if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT)) return (EINVAL); pdip = ddi_get_parent(rdip); ndi_devi_enter(pdip, &circ); if (!e_ddi_branch_held(rdip)) { ndi_devi_exit(pdip, circ); cmn_err(CE_WARN, "e_ddi_branch_configure: " "dip(%p) not held", (void *)rdip); return (EINVAL); } if (i_ddi_node_state(rdip) < DS_INITIALIZED) { /* * First attempt to bind a driver. If we fail, return * success (On some platforms, dips for some device * types (CPUs) may not have a driver) */ if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) { ndi_devi_exit(pdip, circ); return (0); } if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) { rv = NDI_FAILURE; goto out; } } ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED); devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); (void) ddi_deviname(rdip, devnm); if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip, NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) { /* release hold from ndi_devi_config_one() */ ndi_rele_devi(rdip); } kmem_free(devnm, MAXNAMELEN + 1); out: if (rv != NDI_SUCCESS && dipp) { ndi_hold_devi(rdip); *dipp = rdip; } ndi_devi_exit(pdip, circ); return (ndi2errno(rv)); } void e_ddi_branch_hold(dev_info_t *rdip) { if (e_ddi_branch_held(rdip)) { cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held"); return; } mutex_enter(&DEVI(rdip)->devi_lock); if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) { DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD; DEVI(rdip)->devi_ref++; } ASSERT(DEVI(rdip)->devi_ref > 0); mutex_exit(&DEVI(rdip)->devi_lock); } int e_ddi_branch_held(dev_info_t *rdip) { int rv = 0; mutex_enter(&DEVI(rdip)->devi_lock); if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) && DEVI(rdip)->devi_ref > 0) { rv = 1; } mutex_exit(&DEVI(rdip)->devi_lock); return (rv); } void e_ddi_branch_rele(dev_info_t *rdip) { mutex_enter(&DEVI(rdip)->devi_lock); DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD; DEVI(rdip)->devi_ref--; mutex_exit(&DEVI(rdip)->devi_lock); } int e_ddi_branch_unconfigure( dev_info_t *rdip, dev_info_t **dipp, uint_t flags) { int circ, rv; int destroy; char *devnm; uint_t nflags; dev_info_t *pdip; if (dipp) *dipp = NULL; if (rdip == NULL) return (EINVAL); pdip = ddi_get_parent(rdip); ASSERT(pdip); /* * Check if caller holds pdip busy - can cause deadlocks during * devfs_clean() */ if (DEVI_BUSY_OWNED(pdip)) { cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent" " devinfo node(%p) is busy held", (void *)pdip); return (EINVAL); } destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0; devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); ndi_devi_enter(pdip, &circ); (void) ddi_deviname(rdip, devnm); ndi_devi_exit(pdip, circ); /* * ddi_deviname() returns a component name with / prepended. */ rv = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); if (rv) { kmem_free(devnm, MAXNAMELEN + 1); return (rv); } ndi_devi_enter(pdip, &circ); /* * Recreate device name as it may have changed state (init/uninit) * when parent busy lock was dropped for devfs_clean() */ (void) ddi_deviname(rdip, devnm); if (!e_ddi_branch_held(rdip)) { kmem_free(devnm, MAXNAMELEN + 1); ndi_devi_exit(pdip, circ); cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held", destroy ? "destroy" : "unconfigure", (void *)rdip); return (EINVAL); } /* * Release hold on the branch. This is ok since we are holding the * parent busy. If rdip is not removed, we must do a hold on the * branch before returning. */ e_ddi_branch_rele(rdip); nflags = NDI_DEVI_OFFLINE; if (destroy || (flags & DEVI_BRANCH_DESTROY)) { nflags |= NDI_DEVI_REMOVE; destroy = 1; } else { nflags |= NDI_UNCONFIG; /* uninit but don't remove */ } if (flags & DEVI_BRANCH_EVENT) nflags |= NDI_POST_EVENT; if (i_ddi_devi_attached(pdip) && (i_ddi_node_state(rdip) >= DS_INITIALIZED)) { rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags); } else { rv = e_ddi_devi_unconfig(rdip, dipp, nflags); if (rv == NDI_SUCCESS) { ASSERT(!destroy || ddi_get_child(rdip) == NULL); rv = ndi_devi_offline(rdip, nflags); } } if (!destroy || rv != NDI_SUCCESS) { /* The dip still exists, so do a hold */ e_ddi_branch_hold(rdip); } out: kmem_free(devnm, MAXNAMELEN + 1); ndi_devi_exit(pdip, circ); return (ndi2errno(rv)); } int e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag) { return (e_ddi_branch_unconfigure(rdip, dipp, flag|DEVI_BRANCH_DESTROY)); } /* * Number of chains for hash table */ #define NUMCHAINS 17 /* * Devinfo busy arg */ struct devi_busy { int dv_total; int s_total; mod_hash_t *dv_hash; mod_hash_t *s_hash; int (*callback)(dev_info_t *, void *, uint_t); void *arg; }; static int visit_dip(dev_info_t *dip, void *arg) { uintptr_t sbusy, dvbusy, ref; struct devi_busy *bsp = arg; ASSERT(bsp->callback); /* * A dip cannot be busy if its reference count is 0 */ if ((ref = e_ddi_devi_holdcnt(dip)) == 0) { return (bsp->callback(dip, bsp->arg, 0)); } if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy)) dvbusy = 0; /* * To catch device opens currently maintained on specfs common snodes. */ if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) sbusy = 0; #ifdef DEBUG if (ref < sbusy || ref < dvbusy) { cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu " "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref); } #endif dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy; return (bsp->callback(dip, bsp->arg, dvbusy)); } static int visit_snode(struct snode *sp, void *arg) { uintptr_t sbusy; dev_info_t *dip; int count; struct devi_busy *bsp = arg; ASSERT(sp); /* * The stable lock is held. This prevents * the snode and its associated dip from * going away. */ dip = NULL; count = spec_devi_open_count(sp, &dip); if (count <= 0) return (DDI_WALK_CONTINUE); ASSERT(dip); if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) sbusy = count; else sbusy += count; if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) { cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, " "sbusy = %lu", "e_ddi_branch_referenced", (void *)dip, sbusy); } bsp->s_total += count; return (DDI_WALK_CONTINUE); } static void visit_dvnode(struct dv_node *dv, void *arg) { uintptr_t dvbusy; uint_t count; struct vnode *vp; struct devi_busy *bsp = arg; ASSERT(dv && dv->dv_devi); vp = DVTOV(dv); mutex_enter(&vp->v_lock); count = vp->v_count; mutex_exit(&vp->v_lock); if (!count) return; if (mod_hash_remove(bsp->dv_hash, dv->dv_devi, (mod_hash_val_t *)&dvbusy)) dvbusy = count; else dvbusy += count; if (mod_hash_insert(bsp->dv_hash, dv->dv_devi, (mod_hash_val_t)dvbusy)) { cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, " "dvbusy=%lu", "e_ddi_branch_referenced", (void *)dv->dv_devi, dvbusy); } bsp->dv_total += count; } /* * Returns reference count on success or -1 on failure. */ int e_ddi_branch_referenced( dev_info_t *rdip, int (*callback)(dev_info_t *dip, void *arg, uint_t ref), void *arg) { int circ; char *path; dev_info_t *pdip; struct devi_busy bsa = {0}; ASSERT(rdip); path = kmem_alloc(MAXPATHLEN, KM_SLEEP); ndi_hold_devi(rdip); pdip = ddi_get_parent(rdip); ASSERT(pdip); /* * Check if caller holds pdip busy - can cause deadlocks during * devfs_walk() */ if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) { cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: " "devinfo branch(%p) not held or parent busy held", (void *)rdip); ndi_rele_devi(rdip); kmem_free(path, MAXPATHLEN); return (-1); } ndi_devi_enter(pdip, &circ); (void) ddi_pathname(rdip, path); ndi_devi_exit(pdip, circ); bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS, mod_hash_null_valdtor, sizeof (struct dev_info)); bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS, mod_hash_null_valdtor, sizeof (struct snode)); if (devfs_walk(path, visit_dvnode, &bsa)) { cmn_err(CE_WARN, "e_ddi_branch_referenced: " "devfs walk failed for: %s", path); kmem_free(path, MAXPATHLEN); bsa.s_total = bsa.dv_total = -1; goto out; } kmem_free(path, MAXPATHLEN); /* * Walk the snode table to detect device opens, which are currently * maintained on specfs common snodes. */ spec_snode_walk(visit_snode, &bsa); if (callback == NULL) goto out; bsa.callback = callback; bsa.arg = arg; if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) { ndi_devi_enter(rdip, &circ); ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa); ndi_devi_exit(rdip, circ); } out: ndi_rele_devi(rdip); mod_hash_destroy_ptrhash(bsa.s_hash); mod_hash_destroy_ptrhash(bsa.dv_hash); return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total); }