/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * This file contains preset event names from the Performance Application * Programming Interface v3.5 which included the following notice: * * Copyright (c) 2005,6 * Innovative Computing Labs * Computer Science Department, * University of Tennessee, * Knoxville, TN. * All Rights Reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the University of Tennessee nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * * This open source software license conforms to the BSD License template. */ /* * Portions Copyright 2009 Advanced Micro Devices, Inc. * Copyright 2019 Joyent, Inc. */ /* * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opteron_pcbe_table.h" #include static int opt_pcbe_init(void); static uint_t opt_pcbe_ncounters(void); static const char *opt_pcbe_impl_name(void); static const char *opt_pcbe_cpuref(void); static char *opt_pcbe_list_events(uint_t picnum); static char *opt_pcbe_list_attrs(void); static uint64_t opt_pcbe_event_coverage(char *event); static uint64_t opt_pcbe_overflow_bitmap(void); static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token); static void opt_pcbe_program(void *token); static void opt_pcbe_allstop(void); static void opt_pcbe_sample(void *token); static void opt_pcbe_free(void *config); static pcbe_ops_t opt_pcbe_ops = { PCBE_VER_1, CPC_CAP_OVERFLOW_INTERRUPT, opt_pcbe_ncounters, opt_pcbe_impl_name, opt_pcbe_cpuref, opt_pcbe_list_events, opt_pcbe_list_attrs, opt_pcbe_event_coverage, opt_pcbe_overflow_bitmap, opt_pcbe_configure, opt_pcbe_program, opt_pcbe_allstop, opt_pcbe_sample, opt_pcbe_free }; /* * Base MSR addresses for the PerfEvtSel registers and the counters themselves. * Add counter number to base address to get corresponding MSR address. */ #define PES_BASE_ADDR 0xC0010000 #define PIC_BASE_ADDR 0xC0010004 /* * Base MSR addresses for the PerfEvtSel registers and counters. The counter and * event select registers are interleaved, so one needs to multiply the counter * number by two to determine what they should be set to. */ #define PES_EXT_BASE_ADDR 0xC0010200 #define PIC_EXT_BASE_ADDR 0xC0010201 /* * The number of counters present depends on which CPU features are present. */ #define OPT_PCBE_DEF_NCOUNTERS 4 #define OPT_PCBE_EXT_NCOUNTERS 6 /* * Define offsets and masks for the fields in the Performance * Event-Select (PES) registers. */ #define OPT_PES_HOST_SHIFT 41 #define OPT_PES_GUEST_SHIFT 40 #define OPT_PES_EVSELHI_SHIFT 32 #define OPT_PES_CMASK_SHIFT 24 #define OPT_PES_CMASK_MASK 0xFF #define OPT_PES_INV_SHIFT 23 #define OPT_PES_ENABLE_SHIFT 22 #define OPT_PES_INT_SHIFT 20 #define OPT_PES_PC_SHIFT 19 #define OPT_PES_EDGE_SHIFT 18 #define OPT_PES_OS_SHIFT 17 #define OPT_PES_USR_SHIFT 16 #define OPT_PES_UMASK_SHIFT 8 #define OPT_PES_UMASK_MASK 0xFF #define OPT_PES_INV (1ULL << OPT_PES_INV_SHIFT) #define OPT_PES_ENABLE (1ULL << OPT_PES_ENABLE_SHIFT) #define OPT_PES_INT (1ULL << OPT_PES_INT_SHIFT) #define OPT_PES_PC (1ULL << OPT_PES_PC_SHIFT) #define OPT_PES_EDGE (1ULL << OPT_PES_EDGE_SHIFT) #define OPT_PES_OS (1ULL << OPT_PES_OS_SHIFT) #define OPT_PES_USR (1ULL << OPT_PES_USR_SHIFT) #define OPT_PES_HOST (1ULL << OPT_PES_HOST_SHIFT) #define OPT_PES_GUEST (1ULL << OPT_PES_GUEST_SHIFT) typedef struct _opt_pcbe_config { uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */ uint64_t opt_evsel; /* Event Selection register */ uint64_t opt_rawpic; /* Raw counter value */ } opt_pcbe_config_t; opt_pcbe_config_t nullcfgs[OPT_PCBE_EXT_NCOUNTERS] = { { 0, 0, 0 }, { 1, 0, 0 }, { 2, 0, 0 }, { 3, 0, 0 }, { 4, 0, 0 }, { 5, 0, 0 }, }; typedef uint64_t (*opt_pcbe_addr_f)(uint_t); typedef struct opt_pcbe_data { uint_t opd_ncounters; uint_t opd_cmask; opt_pcbe_addr_f opd_pesf; opt_pcbe_addr_f opd_picf; } opt_pcbe_data_t; opt_pcbe_data_t opd; #define MASK48 0xFFFFFFFFFFFF #define EV_END {NULL, 0} #define GEN_EV_END {NULL, NULL, 0 } /* * The following Macros are used to define tables of events that are used by * various families and some generic classes of events. * * When programming a performance counter there are two different values that we * need to set: * * o Event - Determines the general class of event that is being used. * o Unit - A further breakdown that gives more specific value. * * Prior to the introduction of family 17h support, all family specific events * were programmed based on their event. The generic events, which tried to * provide PAPI mappings to events specified an additional unit mask. * * Starting with Family 17h, CPU performance counters default to using both the * unit mask and the event select. Generic events are always aliases to a * specific event/unit pair, hence why the units for them are always zero. In * addition, the naming of events in family 17h has been changed to reflect * AMD's guide. While this is a departure from what people are used to, it is * believed that matching the more detailed literature that folks are told to * reference is more valuable. */ #define AMD_cmn_events \ { "FP_dispatched_fpu_ops", 0x0 }, \ { "FP_cycles_no_fpu_ops_retired", 0x1 }, \ { "FP_dispatched_fpu_ops_ff", 0x2 }, \ { "LS_seg_reg_load", 0x20 }, \ { "LS_uarch_resync_self_modify", 0x21 }, \ { "LS_uarch_resync_snoop", 0x22 }, \ { "LS_buffer_2_full", 0x23 }, \ { "LS_locked_operation", 0x24 }, \ { "LS_retired_cflush", 0x26 }, \ { "LS_retired_cpuid", 0x27 }, \ { "DC_access", 0x40 }, \ { "DC_miss", 0x41 }, \ { "DC_refill_from_L2", 0x42 }, \ { "DC_refill_from_system", 0x43 }, \ { "DC_copyback", 0x44 }, \ { "DC_dtlb_L1_miss_L2_hit", 0x45 }, \ { "DC_dtlb_L1_miss_L2_miss", 0x46 }, \ { "DC_misaligned_data_ref", 0x47 }, \ { "DC_uarch_late_cancel_access", 0x48 }, \ { "DC_uarch_early_cancel_access", 0x49 }, \ { "DC_1bit_ecc_error_found", 0x4A }, \ { "DC_dispatched_prefetch_instr", 0x4B }, \ { "DC_dcache_accesses_by_locks", 0x4C }, \ { "BU_memory_requests", 0x65 }, \ { "BU_data_prefetch", 0x67 }, \ { "BU_system_read_responses", 0x6C }, \ { "BU_cpu_clk_unhalted", 0x76 }, \ { "BU_internal_L2_req", 0x7D }, \ { "BU_fill_req_missed_L2", 0x7E }, \ { "BU_fill_into_L2", 0x7F }, \ { "IC_fetch", 0x80 }, \ { "IC_miss", 0x81 }, \ { "IC_refill_from_L2", 0x82 }, \ { "IC_refill_from_system", 0x83 }, \ { "IC_itlb_L1_miss_L2_hit", 0x84 }, \ { "IC_itlb_L1_miss_L2_miss", 0x85 }, \ { "IC_uarch_resync_snoop", 0x86 }, \ { "IC_instr_fetch_stall", 0x87 }, \ { "IC_return_stack_hit", 0x88 }, \ { "IC_return_stack_overflow", 0x89 }, \ { "FR_retired_x86_instr_w_excp_intr", 0xC0 }, \ { "FR_retired_uops", 0xC1 }, \ { "FR_retired_branches_w_excp_intr", 0xC2 }, \ { "FR_retired_branches_mispred", 0xC3 }, \ { "FR_retired_taken_branches", 0xC4 }, \ { "FR_retired_taken_branches_mispred", 0xC5 }, \ { "FR_retired_far_ctl_transfer", 0xC6 }, \ { "FR_retired_resyncs", 0xC7 }, \ { "FR_retired_near_rets", 0xC8 }, \ { "FR_retired_near_rets_mispred", 0xC9 }, \ { "FR_retired_taken_branches_mispred_addr_miscomp", 0xCA },\ { "FR_retired_fastpath_double_op_instr", 0xCC }, \ { "FR_intr_masked_cycles", 0xCD }, \ { "FR_intr_masked_while_pending_cycles", 0xCE }, \ { "FR_taken_hardware_intrs", 0xCF }, \ { "FR_nothing_to_dispatch", 0xD0 }, \ { "FR_dispatch_stalls", 0xD1 }, \ { "FR_dispatch_stall_branch_abort_to_retire", 0xD2 }, \ { "FR_dispatch_stall_serialization", 0xD3 }, \ { "FR_dispatch_stall_segment_load", 0xD4 }, \ { "FR_dispatch_stall_reorder_buffer_full", 0xD5 }, \ { "FR_dispatch_stall_resv_stations_full", 0xD6 }, \ { "FR_dispatch_stall_fpu_full", 0xD7 }, \ { "FR_dispatch_stall_ls_full", 0xD8 }, \ { "FR_dispatch_stall_waiting_all_quiet", 0xD9 }, \ { "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend", 0xDA },\ { "FR_fpu_exception", 0xDB }, \ { "FR_num_brkpts_dr0", 0xDC }, \ { "FR_num_brkpts_dr1", 0xDD }, \ { "FR_num_brkpts_dr2", 0xDE }, \ { "FR_num_brkpts_dr3", 0xDF }, \ { "NB_mem_ctrlr_page_access", 0xE0 }, \ { "NB_mem_ctrlr_turnaround", 0xE3 }, \ { "NB_mem_ctrlr_bypass_counter_saturation", 0xE4 }, \ { "NB_cpu_io_to_mem_io", 0xE9 }, \ { "NB_cache_block_commands", 0xEA }, \ { "NB_sized_commands", 0xEB }, \ { "NB_ht_bus0_bandwidth", 0xF6 } #define AMD_FAMILY_f_events \ { "BU_quadwords_written_to_system", 0x6D }, \ { "FR_retired_fpu_instr", 0xCB }, \ { "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \ { "NB_sized_blocks", 0xE5 }, \ { "NB_ECC_errors", 0xE8 }, \ { "NB_probe_result", 0xEC }, \ { "NB_gart_events", 0xEE }, \ { "NB_ht_bus1_bandwidth", 0xF7 }, \ { "NB_ht_bus2_bandwidth", 0xF8 } #define AMD_FAMILY_10h_events \ { "FP_retired_sse_ops", 0x3 }, \ { "FP_retired_move_ops", 0x4 }, \ { "FP_retired_serialize_ops", 0x5 }, \ { "FP_serialize_ops_cycles", 0x6 }, \ { "LS_cancelled_store_to_load_fwd_ops", 0x2A }, \ { "LS_smi_received", 0x2B }, \ { "DC_dtlb_L1_hit", 0x4D }, \ { "LS_ineffective_prefetch", 0x52 }, \ { "LS_global_tlb_flush", 0x54 }, \ { "BU_octwords_written_to_system", 0x6D }, \ { "Page_size_mismatches", 0x165 }, \ { "IC_eviction", 0x8B }, \ { "IC_cache_lines_invalidate", 0x8C }, \ { "IC_itlb_reload", 0x99 }, \ { "IC_itlb_reload_aborted", 0x9A }, \ { "FR_retired_mmx_sse_fp_instr", 0xCB }, \ { "Retired_x87_fp_ops", 0x1C0 }, \ { "IBS_ops_tagged", 0x1CF }, \ { "LFENCE_inst_retired", 0x1D3 }, \ { "SFENCE_inst_retired", 0x1D4 }, \ { "MFENCE_inst_retired", 0x1D5 }, \ { "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \ { "NB_mem_ctrlr_dram_cmd_slots_missed", 0xE2 }, \ { "NB_thermal_status", 0xE8 }, \ { "NB_probe_results_upstream_req", 0xEC }, \ { "NB_gart_events", 0xEE }, \ { "NB_mem_ctrlr_req", 0x1F0 }, \ { "CB_cpu_to_dram_req_to_target", 0x1E0 }, \ { "CB_io_to_dram_req_to_target", 0x1E1 }, \ { "CB_cpu_read_cmd_latency_to_target_0_to_3", 0x1E2 }, \ { "CB_cpu_read_cmd_req_to_target_0_to_3", 0x1E3 }, \ { "CB_cpu_read_cmd_latency_to_target_4_to_7", 0x1E4 }, \ { "CB_cpu_read_cmd_req_to_target_4_to_7", 0x1E5 }, \ { "CB_cpu_cmd_latency_to_target_0_to_7", 0x1E6 }, \ { "CB_cpu_req_to_target_0_to_7", 0x1E7 }, \ { "NB_ht_bus1_bandwidth", 0xF7 }, \ { "NB_ht_bus2_bandwidth", 0xF8 }, \ { "NB_ht_bus3_bandwidth", 0x1F9 }, \ { "L3_read_req", 0x4E0 }, \ { "L3_miss", 0x4E1 }, \ { "L3_l2_eviction_l3_fill", 0x4E2 }, \ { "L3_eviction", 0x4E3 } #define AMD_FAMILY_11h_events \ { "BU_quadwords_written_to_system", 0x6D }, \ { "FR_retired_mmx_fp_instr", 0xCB }, \ { "NB_mem_ctrlr_page_table_events", 0xE1 }, \ { "NB_thermal_status", 0xE8 }, \ { "NB_probe_results_upstream_req", 0xEC }, \ { "NB_dev_events", 0xEE }, \ { "NB_mem_ctrlr_req", 0x1F0 } #define AMD_cmn_generic_events \ { "PAPI_br_ins", "FR_retired_branches_w_excp_intr", 0x0 },\ { "PAPI_br_msp", "FR_retired_branches_mispred", 0x0 }, \ { "PAPI_br_tkn", "FR_retired_taken_branches", 0x0 }, \ { "PAPI_fp_ops", "FP_dispatched_fpu_ops", 0x3 }, \ { "PAPI_fad_ins", "FP_dispatched_fpu_ops", 0x1 }, \ { "PAPI_fml_ins", "FP_dispatched_fpu_ops", 0x2 }, \ { "PAPI_fpu_idl", "FP_cycles_no_fpu_ops_retired", 0x0 }, \ { "PAPI_tot_cyc", "BU_cpu_clk_unhalted", 0x0 }, \ { "PAPI_tot_ins", "FR_retired_x86_instr_w_excp_intr", 0x0 }, \ { "PAPI_l1_dca", "DC_access", 0x0 }, \ { "PAPI_l1_dcm", "DC_miss", 0x0 }, \ { "PAPI_l1_ldm", "DC_refill_from_L2", 0xe }, \ { "PAPI_l1_stm", "DC_refill_from_L2", 0x10 }, \ { "PAPI_l1_ica", "IC_fetch", 0x0 }, \ { "PAPI_l1_icm", "IC_miss", 0x0 }, \ { "PAPI_l1_icr", "IC_fetch", 0x0 }, \ { "PAPI_l2_dch", "DC_refill_from_L2", 0x1e }, \ { "PAPI_l2_dcm", "DC_refill_from_system", 0x1e }, \ { "PAPI_l2_dcr", "DC_refill_from_L2", 0xe }, \ { "PAPI_l2_dcw", "DC_refill_from_L2", 0x10 }, \ { "PAPI_l2_ich", "IC_refill_from_L2", 0x0 }, \ { "PAPI_l2_icm", "IC_refill_from_system", 0x0 }, \ { "PAPI_l2_ldm", "DC_refill_from_system", 0xe }, \ { "PAPI_l2_stm", "DC_refill_from_system", 0x10 }, \ { "PAPI_res_stl", "FR_dispatch_stalls", 0x0 }, \ { "PAPI_stl_icy", "FR_nothing_to_dispatch", 0x0 }, \ { "PAPI_hw_int", "FR_taken_hardware_intrs", 0x0 } #define OPT_cmn_generic_events \ { "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x0 }, \ { "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x0 }, \ { "PAPI_fp_ins", "FR_retired_fpu_instr", 0xd }, \ { "PAPI_vec_ins", "FR_retired_fpu_instr", 0x4 } #define AMD_FAMILY_10h_generic_events \ { "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x7 }, \ { "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x3 }, \ { "PAPI_l3_dcr", "L3_read_req", 0xf1 }, \ { "PAPI_l3_icr", "L3_read_req", 0xf2 }, \ { "PAPI_l3_tcr", "L3_read_req", 0xf7 }, \ { "PAPI_l3_stm", "L3_miss", 0xf4 }, \ { "PAPI_l3_ldm", "L3_miss", 0xf3 }, \ { "PAPI_l3_tcm", "L3_miss", 0xf7 } static const amd_event_t family_f_events[] = { AMD_cmn_events, AMD_FAMILY_f_events, EV_END }; static const amd_event_t family_10h_events[] = { AMD_cmn_events, AMD_FAMILY_10h_events, EV_END }; static const amd_event_t family_11h_events[] = { AMD_cmn_events, AMD_FAMILY_11h_events, EV_END }; static const amd_generic_event_t opt_generic_events[] = { AMD_cmn_generic_events, OPT_cmn_generic_events, GEN_EV_END }; static const amd_generic_event_t family_10h_generic_events[] = { AMD_cmn_generic_events, AMD_FAMILY_10h_generic_events, GEN_EV_END }; /* * For Family 17h, the cpcgen utility generates all of our events including ones * that need specific unit codes, therefore we leave all unit codes out of * these. */ static const amd_generic_event_t family_17h_papi_events[] = { { "PAPI_br_cn", "ExRetCond" }, { "PAPI_br_ins", "ExRetBrnMis" }, { "PAPI_fpu_idl", "FpSchedEmpty" }, { "PAPI_tot_cyc", "LsNotHaltedCyc" }, { "PAPI_tot_ins", "ExRetInstr" }, { "PAPI_tlb_dm", "LsL1DTlbMiss" }, { "PAPI_tlb_im", "BpL1TlbMissL2Miss" }, { "PAPI_tot_cyc", "LsNotHaltedCyc" }, GEN_EV_END }; static char *evlist; static size_t evlist_sz; static const amd_event_t *amd_events = NULL; static uint_t amd_family, amd_model; static const amd_generic_event_t *amd_generic_events = NULL; static char amd_fam_f_rev_ae_bkdg[] = "See \"BIOS and Kernel Developer's " "Guide for AMD Athlon 64 and AMD Opteron Processors\" (AMD publication 26094)"; static char amd_fam_f_NPT_bkdg[] = "See \"BIOS and Kernel Developer's Guide " "for AMD NPT Family 0Fh Processors\" (AMD publication 32559)"; static char amd_fam_10h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " "(BKDG) For AMD Family 10h Processors\" (AMD publication 31116)"; static char amd_fam_11h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " "(BKDG) For AMD Family 11h Processors\" (AMD publication 41256)"; static char amd_fam_17h_reg[] = "See \"Open-Source Register Reference For " "AMD Family 17h Processors Models 00h-2Fh\" (AMD publication 56255) and " "amd_f17h_events(3CPC)"; static char amd_pcbe_impl_name[64]; static char *amd_pcbe_cpuref; #define BITS(v, u, l) \ (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1)) static uint64_t opt_pcbe_pes_addr(uint_t counter) { ASSERT3U(counter, <, opd.opd_ncounters); return (PES_BASE_ADDR + counter); } static uint64_t opt_pcbe_pes_ext_addr(uint_t counter) { ASSERT3U(counter, <, opd.opd_ncounters); return (PES_EXT_BASE_ADDR + 2 * counter); } static uint64_t opt_pcbe_pic_addr(uint_t counter) { ASSERT3U(counter, <, opd.opd_ncounters); return (PIC_BASE_ADDR + 2 * counter); } static uint64_t opt_pcbe_pic_ext_addr(uint_t counter) { ASSERT3U(counter, <, opd.opd_ncounters); return (PIC_EXT_BASE_ADDR + 2 * counter); } static int opt_pcbe_init(void) { const amd_event_t *evp; const amd_generic_event_t *gevp; amd_family = cpuid_getfamily(CPU); amd_model = cpuid_getmodel(CPU); /* * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel * loads this module based on its name in the module directory, but it * could have been renamed. */ if (cpuid_getvendor(CPU) != X86_VENDOR_AMD || amd_family < 0xf) return (-1); if (amd_family == 0xf) { /* Some tools expect this string for family 0fh */ (void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name), "AMD Opteron & Athlon64"); } else { (void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name), "AMD Family %02xh", amd_family); } /* * Determine whether or not the extended counter set is supported on * this processor. */ if (is_x86_feature(x86_featureset, X86FSET_AMD_PCEC)) { opd.opd_ncounters = OPT_PCBE_EXT_NCOUNTERS; opd.opd_pesf = opt_pcbe_pes_ext_addr; opd.opd_picf = opt_pcbe_pic_ext_addr; } else { opd.opd_ncounters = OPT_PCBE_DEF_NCOUNTERS; opd.opd_pesf = opt_pcbe_pes_addr; opd.opd_picf = opt_pcbe_pic_addr; } opd.opd_cmask = (1 << opd.opd_ncounters) - 1; /* * Figure out processor revision here and assign appropriate * event configuration. */ if (amd_family == 0xf) { uint32_t rev; rev = cpuid_getchiprev(CPU); if (X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_F)) amd_pcbe_cpuref = amd_fam_f_NPT_bkdg; else amd_pcbe_cpuref = amd_fam_f_rev_ae_bkdg; amd_events = family_f_events; amd_generic_events = opt_generic_events; } else if (amd_family == 0x10) { amd_pcbe_cpuref = amd_fam_10h_bkdg; amd_events = family_10h_events; amd_generic_events = family_10h_generic_events; } else if (amd_family == 0x11) { amd_pcbe_cpuref = amd_fam_11h_bkdg; amd_events = family_11h_events; amd_generic_events = opt_generic_events; } else if (amd_family == 0x17 && amd_model <= 0x2f) { amd_pcbe_cpuref = amd_fam_17h_reg; amd_events = opteron_pcbe_f17h_events; amd_generic_events = family_17h_papi_events; } else { /* * Different families have different meanings on events and even * worse (like family 15h), different constraints around * programming these values. */ return (-1); } /* * Construct event list. * * First pass: Calculate size needed. We'll need an additional byte * for the NULL pointer during the last strcat. * * Second pass: Copy strings. */ for (evp = amd_events; evp->name != NULL; evp++) evlist_sz += strlen(evp->name) + 1; for (gevp = amd_generic_events; gevp->name != NULL; gevp++) evlist_sz += strlen(gevp->name) + 1; evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP); evlist[0] = '\0'; for (evp = amd_events; evp->name != NULL; evp++) { (void) strcat(evlist, evp->name); (void) strcat(evlist, ","); } for (gevp = amd_generic_events; gevp->name != NULL; gevp++) { (void) strcat(evlist, gevp->name); (void) strcat(evlist, ","); } /* * Remove trailing comma. */ evlist[evlist_sz - 1] = '\0'; return (0); } static uint_t opt_pcbe_ncounters(void) { return (opd.opd_ncounters); } static const char * opt_pcbe_impl_name(void) { return (amd_pcbe_impl_name); } static const char * opt_pcbe_cpuref(void) { return (amd_pcbe_cpuref); } /*ARGSUSED*/ static char * opt_pcbe_list_events(uint_t picnum) { return (evlist); } static char * opt_pcbe_list_attrs(void) { return ("edge,pc,inv,cmask,umask"); } static const amd_generic_event_t * find_generic_event(char *name) { const amd_generic_event_t *gevp; for (gevp = amd_generic_events; gevp->name != NULL; gevp++) if (strcmp(name, gevp->name) == 0) return (gevp); return (NULL); } static const amd_event_t * find_event(char *name) { const amd_event_t *evp; for (evp = amd_events; evp->name != NULL; evp++) if (strcmp(name, evp->name) == 0) return (evp); return (NULL); } /*ARGSUSED*/ static uint64_t opt_pcbe_event_coverage(char *event) { /* * Check whether counter event is supported */ if (find_event(event) == NULL && find_generic_event(event) == NULL) return (0); /* * Fortunately, all counters can count all events. */ return (opd.opd_cmask); } static uint64_t opt_pcbe_overflow_bitmap(void) { /* * Unfortunately, this chip cannot detect which counter overflowed, so * we must act as if they all did. */ return (opd.opd_cmask); } /*ARGSUSED*/ static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token) { opt_pcbe_config_t *cfg; const amd_event_t *evp; amd_event_t ev_raw = { "raw", 0}; const amd_generic_event_t *gevp; int i; uint64_t evsel = 0, evsel_tmp = 0; /* * If we've been handed an existing configuration, we need only preset * the counter value. */ if (*data != NULL) { cfg = *data; cfg->opt_rawpic = preset & MASK48; return (0); } if (picnum >= opd.opd_ncounters) return (CPC_INVALID_PICNUM); if ((evp = find_event(event)) == NULL) { if ((gevp = find_generic_event(event)) != NULL) { evp = find_event(gevp->event); ASSERT(evp != NULL); if (nattrs > 0) return (CPC_ATTRIBUTE_OUT_OF_RANGE); evsel |= gevp->umask << OPT_PES_UMASK_SHIFT; } else { long tmp; /* * If ddi_strtol() likes this event, use it as a raw * event code. */ if (ddi_strtol(event, NULL, 0, &tmp) != 0) return (CPC_INVALID_EVENT); ev_raw.emask = tmp; evp = &ev_raw; } } /* * Configuration of EventSelect register. While on some families * certain bits might not be supported (e.g. Guest/Host on family * 11h), setting these bits is harmless */ /* Set GuestOnly bit to 0 and HostOnly bit to 1 */ evsel &= ~OPT_PES_HOST; evsel &= ~OPT_PES_GUEST; /* Set bits [35:32] for extended part of Event Select field */ evsel_tmp = evp->emask & 0x0f00; evsel |= evsel_tmp << OPT_PES_EVSELHI_SHIFT; evsel |= evp->emask & 0x00ff; evsel |= evp->unit << OPT_PES_UMASK_SHIFT; if (flags & CPC_COUNT_USER) evsel |= OPT_PES_USR; if (flags & CPC_COUNT_SYSTEM) evsel |= OPT_PES_OS; if (flags & CPC_OVF_NOTIFY_EMT) evsel |= OPT_PES_INT; for (i = 0; i < nattrs; i++) { if (strcmp(attrs[i].ka_name, "edge") == 0) { if (attrs[i].ka_val != 0) evsel |= OPT_PES_EDGE; } else if (strcmp(attrs[i].ka_name, "pc") == 0) { if (attrs[i].ka_val != 0) evsel |= OPT_PES_PC; } else if (strcmp(attrs[i].ka_name, "inv") == 0) { if (attrs[i].ka_val != 0) evsel |= OPT_PES_INV; } else if (strcmp(attrs[i].ka_name, "cmask") == 0) { if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) != OPT_PES_CMASK_MASK) return (CPC_ATTRIBUTE_OUT_OF_RANGE); evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT; } else if (strcmp(attrs[i].ka_name, "umask") == 0) { if ((attrs[i].ka_val | OPT_PES_UMASK_MASK) != OPT_PES_UMASK_MASK) return (CPC_ATTRIBUTE_OUT_OF_RANGE); evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT; } else return (CPC_INVALID_ATTRIBUTE); } cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP); cfg->opt_picno = picnum; cfg->opt_evsel = evsel; cfg->opt_rawpic = preset & MASK48; *data = cfg; return (0); } static void opt_pcbe_program(void *token) { opt_pcbe_config_t *cfgs[OPT_PCBE_EXT_NCOUNTERS] = { &nullcfgs[0], &nullcfgs[1], &nullcfgs[2], &nullcfgs[3], &nullcfgs[4], &nullcfgs[5] }; opt_pcbe_config_t *pcfg = NULL; int i; ulong_t curcr4 = getcr4(); /* * Allow nonprivileged code to read the performance counters if desired. */ if (kcpc_allow_nonpriv(token)) setcr4(curcr4 | CR4_PCE); else setcr4(curcr4 & ~CR4_PCE); /* * Query kernel for all configs which will be co-programmed. */ do { pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL); if (pcfg != NULL) { ASSERT(pcfg->opt_picno < opd.opd_ncounters); cfgs[pcfg->opt_picno] = pcfg; } } while (pcfg != NULL); /* * Program in two loops. The first configures and presets the counter, * and the second loop enables the counters. This ensures that the * counters are all enabled as closely together in time as possible. */ for (i = 0; i < opd.opd_ncounters; i++) { wrmsr(opd.opd_pesf(i), cfgs[i]->opt_evsel); wrmsr(opd.opd_picf(i), cfgs[i]->opt_rawpic); } for (i = 0; i < opd.opd_ncounters; i++) { wrmsr(opd.opd_pesf(i), cfgs[i]->opt_evsel | (uint64_t)(uintptr_t)OPT_PES_ENABLE); } } static void opt_pcbe_allstop(void) { int i; for (i = 0; i < opd.opd_ncounters; i++) wrmsr(opd.opd_pesf(i), 0ULL); /* * Disable non-privileged access to the counter registers. */ setcr4(getcr4() & ~CR4_PCE); } static void opt_pcbe_sample(void *token) { opt_pcbe_config_t *cfgs[OPT_PCBE_EXT_NCOUNTERS] = { NULL, NULL, NULL, NULL, NULL, NULL }; opt_pcbe_config_t *pcfg = NULL; int i; uint64_t curpic[OPT_PCBE_EXT_NCOUNTERS]; uint64_t *addrs[OPT_PCBE_EXT_NCOUNTERS]; uint64_t *tmp; int64_t diff; for (i = 0; i < opd.opd_ncounters; i++) curpic[i] = rdmsr(opd.opd_picf(i)); /* * Query kernel for all configs which are co-programmed. */ do { pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp); if (pcfg != NULL) { ASSERT3U(pcfg->opt_picno, <, opd.opd_ncounters); cfgs[pcfg->opt_picno] = pcfg; addrs[pcfg->opt_picno] = tmp; } } while (pcfg != NULL); for (i = 0; i < opd.opd_ncounters; i++) { if (cfgs[i] == NULL) continue; diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48; *addrs[i] += diff; DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i], uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic); cfgs[i]->opt_rawpic = *addrs[i] & MASK48; } } static void opt_pcbe_free(void *config) { kmem_free(config, sizeof (opt_pcbe_config_t)); } static struct modlpcbe modlpcbe = { &mod_pcbeops, "AMD Performance Counters", &opt_pcbe_ops }; static struct modlinkage modl = { MODREV_1, &modlpcbe, }; int _init(void) { int ret; if (opt_pcbe_init() != 0) return (ENOTSUP); if ((ret = mod_install(&modl)) != 0) kmem_free(evlist, evlist_sz + 1); return (ret); } int _fini(void) { int ret; if ((ret = mod_remove(&modl)) == 0) kmem_free(evlist, evlist_sz + 1); return (ret); } int _info(struct modinfo *mi) { return (mod_info(&modl, mi)); }