/* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. */ /* * Copyright 2019 Joyent, Inc. * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. */ #include #include #include #include #include #include #include #include #include #include #include #include struct hma_reg { const char *hr_name; list_node_t hr_node; }; static kmutex_t hma_lock; static list_t hma_registrations; static boolean_t hma_exclusive = B_FALSE; int hma_disable = 0; static boolean_t hma_vmx_ready = B_FALSE; static const char *hma_vmx_error = NULL; static id_space_t *hma_vmx_vpid; /* * The bulk of HMA state (VMX & SVM) is protected by cpu_lock, rather than a * mutex specific to the module. It (cpu_lock) is already required for the * state needed to perform setup on all CPUs, so it was a natural fit to * protect this data too. */ typedef enum hma_cpu_state { HCS_UNINITIALIZED = 0, HCS_READY, HCS_ERROR } hma_cpu_state_t; static hma_cpu_state_t hma_cpu_status[NCPU]; /* HMA-internal tracking of optional VMX capabilities */ typedef enum { HVC_EPT = (1 << 0), HVC_VPID = (1 << 1), HVC_INVEPT_ONE = (1 << 2), HVC_INVEPT_ALL = (1 << 3), } hma_vmx_capab_t; static void *hma_vmx_vmxon_page[NCPU]; static uintptr_t hma_vmx_vmxon_pa[NCPU]; static uint32_t hma_vmx_revision; static hma_vmx_capab_t hma_vmx_capabs = 0; static boolean_t hma_svm_ready = B_FALSE; static const char *hma_svm_error = NULL; static uint32_t hma_svm_features; static uint32_t hma_svm_max_asid; static void *hma_svm_hsave_page[NCPU]; static uintptr_t hma_svm_hsave_pa[NCPU]; static hma_svm_asid_t hma_svm_cpu_asid[NCPU]; static int hma_vmx_init(void); static int hma_svm_init(void); /* Helpers from ml/hma_asm.s */ int hma_vmx_do_invept(int, uintptr_t); int hma_vmx_vmxon(uintptr_t); void hma_init(void) { mutex_init(&hma_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&hma_registrations, sizeof (struct hma_reg), offsetof(struct hma_reg, hr_node)); if (hma_disable != 0) { cmn_err(CE_CONT, "?hma_init: disabled"); return; } switch (cpuid_getvendor(CPU)) { case X86_VENDOR_Intel: (void) hma_vmx_init(); break; case X86_VENDOR_AMD: case X86_VENDOR_HYGON: (void) hma_svm_init(); break; default: break; } } static hma_reg_t * hma_register_backend(const char *name) { struct hma_reg *reg; boolean_t is_ready; ASSERT(MUTEX_HELD(&hma_lock)); switch (cpuid_getvendor(CPU)) { case X86_VENDOR_Intel: is_ready = hma_vmx_ready; break; case X86_VENDOR_AMD: case X86_VENDOR_HYGON: is_ready = hma_svm_ready; break; default: is_ready = B_FALSE; break; } if (!is_ready) return (NULL); reg = kmem_zalloc(sizeof (*reg), KM_SLEEP); reg->hr_name = name; list_insert_tail(&hma_registrations, reg); return (reg); } hma_reg_t * hma_register(const char *name) { struct hma_reg *reg = NULL; VERIFY(name != NULL); mutex_enter(&hma_lock); if (!hma_exclusive) reg = hma_register_backend(name); mutex_exit(&hma_lock); return (reg); } hma_reg_t * hma_register_exclusive(const char *name) { struct hma_reg *reg = NULL; VERIFY(name != NULL); mutex_enter(&hma_lock); if (list_is_empty(&hma_registrations)) { reg = hma_register_backend(name); if (reg != NULL) hma_exclusive = B_TRUE; } mutex_exit(&hma_lock); return (reg); } void hma_unregister(hma_reg_t *reg) { VERIFY(reg != NULL); VERIFY(!list_is_empty(&hma_registrations)); mutex_enter(&hma_lock); list_remove(&hma_registrations, reg); if (hma_exclusive && list_is_empty(&hma_registrations)) hma_exclusive = B_FALSE; mutex_exit(&hma_lock); kmem_free(reg, sizeof (*reg)); } /* * VPID 0 is reserved for instances where VPID is disabled. Some hypervisors * (read: bhyve) reserve lower-order VPIDs for use in fallback behavior if * unique VPIDs could not be allocated for all the vCPUs belonging to a VM. */ #define HMA_VPID_RESERVED NCPU uint16_t hma_vmx_vpid_alloc(void) { id_t res; /* Do not bother if the CPU lacks support */ if ((hma_vmx_capabs & HVC_VPID) == 0) { return (0); } res = id_alloc_nosleep(hma_vmx_vpid); if (res == -1) { return (0); } else { ASSERT(res > HMA_VPID_RESERVED && res <= UINT16_MAX); return (res); } } void hma_vmx_vpid_free(uint16_t vpid) { VERIFY(vpid > HMA_VPID_RESERVED); id_free(hma_vmx_vpid, (id_t)vpid); } #define INVEPT_SINGLE_CONTEXT 1 #define INVEPT_ALL_CONTEXTS 2 static int hma_vmx_invept_xcall(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3 __unused) { int flag = (int)arg1; uintptr_t eptp = (uintptr_t)arg2; ASSERT(flag == INVEPT_SINGLE_CONTEXT || flag == INVEPT_ALL_CONTEXTS); VERIFY0(hma_vmx_do_invept(flag, eptp)); return (0); } void hma_vmx_invept_allcpus(uintptr_t eptp) { int flag = -1; cpuset_t set; if ((hma_vmx_capabs & HVC_INVEPT_ONE) != 0) { flag = INVEPT_SINGLE_CONTEXT; } else if ((hma_vmx_capabs & HVC_INVEPT_ALL) != 0) { flag = INVEPT_ALL_CONTEXTS; eptp = 0; } else { return; } cpuset_zero(&set); mutex_enter(&cpu_lock); cpuset_or(&set, &cpu_active_set); xc_call((xc_arg_t)flag, (xc_arg_t)eptp, 0, CPUSET2BV(set), hma_vmx_invept_xcall); mutex_exit(&cpu_lock); } static int hma_vmx_cpu_vmxon(xc_arg_t arg1 __unused, xc_arg_t arg2 __unused, xc_arg_t arg3 __unused) { uint64_t fctrl; processorid_t id = CPU->cpu_seqid; void *vmxon_region = hma_vmx_vmxon_page[id]; uintptr_t vmxon_pa = hma_vmx_vmxon_pa[id]; VERIFY(vmxon_region != NULL && vmxon_pa != 0); /* * Ensure that the VMX support and lock bits are enabled in the * feature-control MSR. */ fctrl = rdmsr(MSR_IA32_FEAT_CTRL); if ((fctrl & IA32_FEAT_CTRL_LOCK) == 0 || (fctrl & IA32_FEAT_CTRL_VMX_EN) == 0) { fctrl = fctrl | IA32_FEAT_CTRL_VMX_EN | IA32_FEAT_CTRL_LOCK; wrmsr(MSR_IA32_FEAT_CTRL, fctrl); } setcr4(getcr4() | CR4_VMXE); if (hma_vmx_vmxon(vmxon_pa) == 0) { hma_cpu_status[id] = HCS_READY; } else { hma_cpu_status[id] = HCS_ERROR; /* * If VMX has already been marked active and available for the * system, then failure to perform VMXON on a newly-onlined CPU * represents a fatal problem. Continuing on would mean * failure for any hypervisor thread which landed here. */ if (hma_vmx_ready) { panic("VMXON failure after VMX marked ready"); } } return (0); } static int hma_vmx_cpu_setup(cpu_setup_t what, int id, void *arg __unused) { hma_cpu_state_t state; ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(id >= 0 && id < NCPU); if (what != CPU_ON) { /* * For the purposes of VMX setup, only the CPU_ON event is of * interest. Letting VMX state linger on an offline CPU should * not cause any harm. * * This logic assumes that any offlining activity is strictly * administrative in nature and will not alter any existing * configuration (such as %cr4 bits previously set). */ return (0); } state = hma_cpu_status[id]; if (state == HCS_ERROR) { return (-1); } /* Allocate the VMXON page for this CPU, if not already done */ if (hma_vmx_vmxon_page[id] == NULL) { caddr_t va; pfn_t pfn; va = kmem_alloc(PAGESIZE, KM_SLEEP); VERIFY0((uintptr_t)va & PAGEOFFSET); hma_vmx_vmxon_page[id] = va; /* Initialize the VMX revision field as expected */ bcopy(&hma_vmx_revision, va, sizeof (hma_vmx_revision)); /* * Cache the physical address of the VMXON page rather than * looking it up later when the potential blocking of * hat_getpfnum would be less acceptable. */ pfn = hat_getpfnum(kas.a_hat, va); hma_vmx_vmxon_pa[id] = (pfn << PAGESHIFT); } else { VERIFY(hma_vmx_vmxon_pa[id] != 0); } if (state == HCS_UNINITIALIZED) { cpuset_t set; /* Activate VMX on this CPU */ cpuset_zero(&set); cpuset_add(&set, id); xc_call(0, 0, 0, CPUSET2BV(set), hma_vmx_cpu_vmxon); } else { VERIFY3U(state, ==, HCS_READY); /* * If an already-initialized CPU is going back online, perform * an all-contexts invept to eliminate the possibility of * cached EPT state causing issues. */ if ((hma_vmx_capabs & HVC_INVEPT_ALL) != 0) { cpuset_t set; cpuset_zero(&set); cpuset_add(&set, id); xc_call((xc_arg_t)INVEPT_ALL_CONTEXTS, 0, 0, CPUSET2BV(set), hma_vmx_invept_xcall); } } return (hma_cpu_status[id] != HCS_READY); } /* * Determining the availability of VM execution controls is somewhat different * from conventional means, where one simply checks for asserted bits in the * MSR value. Instead, these execution control MSRs are split into two halves: * the lower 32-bits indicating capabilities which can be zeroed in the VMCS * field and the upper 32-bits indicating capabilities which can be set to one. * * It is described in detail in Appendix A.3 of SDM volume 3. */ #define VMX_CTL_ONE_SETTING(val, flag) \ (((val) & ((uint64_t)(flag) << 32)) != 0) static const char * hma_vmx_query_details(void) { boolean_t query_true_ctl = B_FALSE; uint64_t msr; /* The basic INS/OUTS functionality is cited as a necessary prereq */ msr = rdmsr(MSR_IA32_VMX_BASIC); if ((msr & IA32_VMX_BASIC_INS_OUTS) == 0) { return ("VMX does not support INS/OUTS"); } /* Record the VMX revision for later VMXON usage */ hma_vmx_revision = (uint32_t)msr; /* * Bit 55 in the VMX_BASIC MSR determines how VMX control information * can be queried. */ query_true_ctl = (msr & IA32_VMX_BASIC_TRUE_CTRLS) != 0; /* Check for EPT and VPID support */ msr = rdmsr(query_true_ctl ? MSR_IA32_VMX_TRUE_PROCBASED_CTLS : MSR_IA32_VMX_PROCBASED_CTLS); if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED_2ND_CTLS)) { msr = rdmsr(MSR_IA32_VMX_PROCBASED2_CTLS); if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED2_EPT)) { hma_vmx_capabs |= HVC_EPT; } if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED2_VPID)) { hma_vmx_capabs |= HVC_VPID; } } /* Check for INVEPT support */ if ((hma_vmx_capabs & HVC_EPT) != 0) { msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); if ((msr & IA32_VMX_EPT_VPID_INVEPT) != 0) { if ((msr & IA32_VMX_EPT_VPID_INVEPT_SINGLE) != 0) { hma_vmx_capabs |= HVC_INVEPT_ONE; } if ((msr & IA32_VMX_EPT_VPID_INVEPT_ALL) != 0) { hma_vmx_capabs |= HVC_INVEPT_ALL; } } } return (NULL); } static int hma_vmx_init(void) { cpu_t *cp; uint64_t msr; int err = 0; const char *msg = NULL; if (!is_x86_feature(x86_featureset, X86FSET_VMX)) { msg = "CPU does not support VMX"; goto bail; } /* Has the BIOS set the feature-control lock bit without VMX enabled? */ msr = rdmsr(MSR_IA32_FEAT_CTRL); if ((msr & IA32_FEAT_CTRL_LOCK) != 0 && (msr & IA32_FEAT_CTRL_VMX_EN) == 0) { msg = "VMX support disabled by BIOS"; goto bail; } msg = hma_vmx_query_details(); if (msg != NULL) { goto bail; } mutex_enter(&cpu_lock); /* Perform VMX configuration for already-online CPUs. */ cp = cpu_active; do { err = hma_vmx_cpu_setup(CPU_ON, cp->cpu_seqid, NULL); if (err != 0) { msg = "failure during VMXON setup"; mutex_exit(&cpu_lock); goto bail; } } while ((cp = cp->cpu_next_onln) != cpu_active); /* * Register callback for later-onlined CPUs and perform other remaining * resource allocation. */ register_cpu_setup_func(hma_vmx_cpu_setup, NULL); mutex_exit(&cpu_lock); hma_vmx_vpid = id_space_create("hma_vmx_vpid", HMA_VPID_RESERVED + 1, UINT16_MAX); hma_vmx_ready = B_TRUE; return (0); bail: hma_vmx_error = msg; cmn_err(CE_NOTE, "hma_vmx_init: %s", msg); return (-1); } #define VMCB_FLUSH_NOTHING 0x0 #define VMCB_FLUSH_ALL 0x1 #define VMCB_FLUSH_ASID 0x3 void hma_svm_asid_init(hma_svm_asid_t *vcp) { /* * Initialize the generation to 0, forcing an ASID allocation on first * entry. Leave the ASID at 0, so if the host forgoes the call to * hma_svm_asid_update(), SVM will bail on the invalid vcpu state. */ vcp->hsa_gen = 0; vcp->hsa_asid = 0; } uint8_t hma_svm_asid_update(hma_svm_asid_t *vcp, boolean_t flush_by_asid, boolean_t npt_flush) { hma_svm_asid_t *hcp; ulong_t iflag; uint8_t res = VMCB_FLUSH_NOTHING; /* * If NPT changes dictate a TLB flush and by-ASID flushing is not * supported/used, force a fresh ASID allocation. */ if (npt_flush && !flush_by_asid) { vcp->hsa_gen = 0; } /* * It is expected that ASID resource updates will commonly be done * inside a VMM critical section where the GIF is already cleared, * preventing any possibility of interruption. Since that cannot be * checked (there is no easy way to read the GIF), %rflags.IF is also * cleared for edge cases where an ASID update is performed outside of * such a GIF-safe critical section. */ iflag = intr_clear(); hcp = &hma_svm_cpu_asid[CPU->cpu_seqid]; if (vcp->hsa_gen != hcp->hsa_gen) { hcp->hsa_asid++; if (hcp->hsa_asid >= hma_svm_max_asid) { /* Keep the ASID properly constrained */ hcp->hsa_asid = 1; hcp->hsa_gen++; if (hcp->hsa_gen == 0) { /* * Stay clear of the '0' sentinel value for * generation, if wrapping around. */ hcp->hsa_gen = 1; } } vcp->hsa_gen = hcp->hsa_gen; vcp->hsa_asid = hcp->hsa_asid; ASSERT(vcp->hsa_asid != 0); ASSERT3U(vcp->hsa_asid, <, hma_svm_max_asid); if (flush_by_asid) { res = VMCB_FLUSH_ASID; } else { res = VMCB_FLUSH_ALL; } } else if (npt_flush) { ASSERT(flush_by_asid); res = VMCB_FLUSH_ASID; } intr_restore(iflag); return (res); } static int hma_svm_cpu_activate(xc_arg_t arg1 __unused, xc_arg_t arg2 __unused, xc_arg_t arg3 __unused) { const processorid_t id = CPU->cpu_seqid; const uintptr_t hsave_pa = hma_svm_hsave_pa[id]; uint64_t efer; VERIFY(hsave_pa != 0); /* Enable SVM via EFER */ efer = rdmsr(MSR_AMD_EFER); efer |= AMD_EFER_SVME; wrmsr(MSR_AMD_EFER, efer); /* Setup hsave area */ wrmsr(MSR_AMD_VM_HSAVE_PA, hsave_pa); hma_cpu_status[id] = HCS_READY; return (0); } static int hma_svm_cpu_setup(cpu_setup_t what, int id, void *arg __unused) { ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(id >= 0 && id < NCPU); switch (what) { case CPU_CONFIG: case CPU_ON: case CPU_INIT: break; default: /* * Other events, such as CPU offlining, are of no interest. * Letting the SVM state linger should not cause any harm. * * This logic assumes that any offlining activity is strictly * administrative in nature and will not alter any existing * configuration (such as EFER bits previously set). */ return (0); } /* Perform initialization if it has not been previously attempted. */ if (hma_cpu_status[id] != HCS_UNINITIALIZED) { return ((hma_cpu_status[id] == HCS_READY) ? 0 : -1); } /* Allocate the hsave page for this CPU */ if (hma_svm_hsave_page[id] == NULL) { caddr_t va; pfn_t pfn; va = kmem_alloc(PAGESIZE, KM_SLEEP); VERIFY0((uintptr_t)va & PAGEOFFSET); hma_svm_hsave_page[id] = va; /* * Cache the physical address of the hsave page rather than * looking it up later when the potential blocking of * hat_getpfnum would be less acceptable. */ pfn = hat_getpfnum(kas.a_hat, va); hma_svm_hsave_pa[id] = (pfn << PAGESHIFT); } else { VERIFY(hma_svm_hsave_pa[id] != 0); } kpreempt_disable(); if (CPU->cpu_seqid == id) { /* Perform svm setup directly if this CPU is the target */ (void) hma_svm_cpu_activate(0, 0, 0); kpreempt_enable(); } else { cpuset_t set; /* Use a cross-call if a remote CPU is the target */ kpreempt_enable(); cpuset_zero(&set); cpuset_add(&set, id); xc_call(0, 0, 0, CPUSET2BV(set), hma_svm_cpu_activate); } return (hma_cpu_status[id] != HCS_READY); } static int hma_svm_init(void) { uint64_t msr; const char *msg = NULL; struct cpuid_regs regs; cpu_t *cp; if (!is_x86_feature(x86_featureset, X86FSET_SVM)) { msg = "CPU does not support SVM"; goto bail; } msr = rdmsr(MSR_AMD_VM_CR); if ((msr & AMD_VM_CR_SVMDIS) != 0) { msg = "SVM disabled by BIOS"; goto bail; } regs.cp_eax = 0x8000000a; (void) cpuid_insn(NULL, ®s); const uint32_t nasid = regs.cp_ebx; const uint32_t feat = regs.cp_edx; if (nasid == 0) { msg = "Not enough ASIDs for guests"; goto bail; } if ((feat & CPUID_AMD_EDX_NESTED_PAGING) == 0) { msg = "CPU does not support nested paging"; goto bail; } if ((feat & CPUID_AMD_EDX_NRIPS) == 0) { msg = "CPU does not support NRIP save"; goto bail; } hma_svm_features = feat; hma_svm_max_asid = nasid; mutex_enter(&cpu_lock); /* Perform SVM configuration for already-online CPUs. */ cp = cpu_active; do { int err = hma_svm_cpu_setup(CPU_ON, cp->cpu_seqid, NULL); if (err != 0) { msg = "failure during SVM setup"; mutex_exit(&cpu_lock); goto bail; } } while ((cp = cp->cpu_next_onln) != cpu_active); /* * Register callback for later-onlined CPUs and perform other remaining * resource allocation. */ register_cpu_setup_func(hma_svm_cpu_setup, NULL); mutex_exit(&cpu_lock); /* Initialize per-CPU ASID state. */ for (uint_t i = 0; i < NCPU; i++) { /* * Skip past sentinel 0 value for generation. Doing so for * ASID is unneeded, since it will be incremented during the * first allocation. */ hma_svm_cpu_asid[i].hsa_gen = 1; hma_svm_cpu_asid[i].hsa_asid = 0; } hma_svm_ready = B_TRUE; return (0); bail: hma_svm_error = msg; cmn_err(CE_NOTE, "hma_svm_init: %s", msg); return (-1); }