/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. * * Copyright 2015 Pluribus Networks Inc. * Copyright 2018 Joyent, Inc. * Copyright 2024 Oxide Computer Company * Copyright 2021 OmniOS Community Edition (OmniOSce) Association. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_ioport.h" #include "vmm_host.h" #include "vmm_util.h" #include "vatpic.h" #include "vatpit.h" #include "vhpet.h" #include "vioapic.h" #include "vlapic.h" #include "vpmtmr.h" #include "vrtc.h" #include "vmm_stat.h" #include "vmm_lapic.h" #include "io/ppt.h" #include "io/iommu.h" struct vlapic; /* Flags for vtc_status */ #define VTCS_FPU_RESTORED 1 /* guest FPU restored, host FPU saved */ #define VTCS_FPU_CTX_CRITICAL 2 /* in ctx where FPU restore cannot be lazy */ typedef struct vm_thread_ctx { struct vm *vtc_vm; int vtc_vcpuid; uint_t vtc_status; enum vcpu_ustate vtc_ustate; } vm_thread_ctx_t; #define VMM_MTRR_VAR_MAX 10 #define VMM_MTRR_DEF_MASK \ (MTRR_DEF_ENABLE | MTRR_DEF_FIXED_ENABLE | MTRR_DEF_TYPE) #define VMM_MTRR_PHYSBASE_MASK (MTRR_PHYSBASE_PHYSBASE | MTRR_PHYSBASE_TYPE) #define VMM_MTRR_PHYSMASK_MASK (MTRR_PHYSMASK_PHYSMASK | MTRR_PHYSMASK_VALID) struct vm_mtrr { uint64_t def_type; uint64_t fixed4k[8]; uint64_t fixed16k[2]; uint64_t fixed64k; struct { uint64_t base; uint64_t mask; } var[VMM_MTRR_VAR_MAX]; }; /* * Initialization: * (a) allocated when vcpu is created * (i) initialized when vcpu is created and when it is reinitialized * (o) initialized the first time the vcpu is created * (x) initialized before use */ struct vcpu { /* (o) protects state, run_state, hostcpu, sipi_vector */ kmutex_t lock; enum vcpu_state state; /* (o) vcpu state */ enum vcpu_run_state run_state; /* (i) vcpu init/sipi/run state */ kcondvar_t vcpu_cv; /* (o) cpu waiter cv */ kcondvar_t state_cv; /* (o) IDLE-transition cv */ int hostcpu; /* (o) vcpu's current host cpu */ int lastloccpu; /* (o) last host cpu localized to */ bool reqidle; /* (i) request vcpu to idle */ bool reqconsist; /* (i) req. vcpu exit when consistent */ bool reqbarrier; /* (i) request vcpu exit barrier */ struct vlapic *vlapic; /* (i) APIC device model */ enum x2apic_state x2apic_state; /* (i) APIC mode */ uint64_t exit_intinfo; /* (i) events pending at VM exit */ uint64_t exc_pending; /* (i) exception pending */ bool nmi_pending; /* (i) NMI pending */ bool extint_pending; /* (i) INTR pending */ uint8_t sipi_vector; /* (i) SIPI vector */ hma_fpu_t *guestfpu; /* (a,i) guest fpu state */ uint64_t guest_xcr0; /* (i) guest %xcr0 register */ void *stats; /* (a,i) statistics */ struct vm_exit exitinfo; /* (x) exit reason and collateral */ uint64_t nextrip; /* (x) next instruction to execute */ struct vie *vie_ctx; /* (x) instruction emulation context */ vm_client_t *vmclient; /* (a) VM-system client */ uint64_t tsc_offset; /* (x) vCPU TSC offset */ struct vm_mtrr mtrr; /* (i) vcpu's MTRR */ vcpu_cpuid_config_t cpuid_cfg; /* (x) cpuid configuration */ enum vcpu_ustate ustate; /* (i) microstate for the vcpu */ hrtime_t ustate_when; /* (i) time of last ustate change */ uint64_t ustate_total[VU_MAX]; /* (o) total time spent in ustates */ vm_thread_ctx_t vtc; /* (o) thread state for ctxops */ struct ctxop *ctxop; /* (o) ctxop storage for vcpu */ }; #define vcpu_lock(v) mutex_enter(&((v)->lock)) #define vcpu_unlock(v) mutex_exit(&((v)->lock)) #define vcpu_assert_locked(v) ASSERT(MUTEX_HELD(&((v)->lock))) struct mem_seg { size_t len; bool sysmem; vm_object_t *object; }; #define VM_MAX_MEMSEGS 5 struct mem_map { vm_paddr_t gpa; size_t len; vm_ooffset_t segoff; int segid; int prot; int flags; }; #define VM_MAX_MEMMAPS 8 /* * Initialization: * (o) initialized the first time the VM is created * (i) initialized when VM is created and when it is reinitialized * (x) initialized before use */ struct vm { void *cookie; /* (i) cpu-specific data */ void *iommu; /* (x) iommu-specific data */ struct vhpet *vhpet; /* (i) virtual HPET */ struct vioapic *vioapic; /* (i) virtual ioapic */ struct vatpic *vatpic; /* (i) virtual atpic */ struct vatpit *vatpit; /* (i) virtual atpit */ struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ struct vrtc *vrtc; /* (o) virtual RTC */ volatile cpuset_t active_cpus; /* (i) active vcpus */ volatile cpuset_t debug_cpus; /* (i) vcpus stopped for dbg */ volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ int suspend_how; /* (i) stop VM execution */ int suspend_source; /* (i) src vcpuid of suspend */ hrtime_t suspend_when; /* (i) time suspend asserted */ struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ struct vmspace *vmspace; /* (o) guest's address space */ struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ /* The following describe the vm cpu topology */ uint16_t sockets; /* (o) num of sockets */ uint16_t cores; /* (o) num of cores/socket */ uint16_t threads; /* (o) num of threads/core */ uint16_t maxcpus; /* (o) max pluggable cpus */ hrtime_t boot_hrtime; /* (i) hrtime at VM boot */ /* TSC and TSC scaling related values */ uint64_t tsc_offset; /* (i) VM-wide TSC offset */ uint64_t guest_freq; /* (i) guest TSC Frequency */ uint64_t freq_multiplier; /* (i) guest/host TSC Ratio */ struct ioport_config ioports; /* (o) ioport handling */ bool mem_transient; /* (o) alloc transient memory */ bool is_paused; /* (i) instance is paused */ }; static int vmm_initialized; static uint64_t vmm_host_freq; static void nullop_panic(void) { panic("null vmm operation call"); } /* Do not allow use of an un-set `ops` to do anything but panic */ static struct vmm_ops vmm_ops_null = { .init = (vmm_init_func_t)nullop_panic, .cleanup = (vmm_cleanup_func_t)nullop_panic, .resume = (vmm_resume_func_t)nullop_panic, .vminit = (vmi_init_func_t)nullop_panic, .vmrun = (vmi_run_func_t)nullop_panic, .vmcleanup = (vmi_cleanup_func_t)nullop_panic, .vmgetreg = (vmi_get_register_t)nullop_panic, .vmsetreg = (vmi_set_register_t)nullop_panic, .vmgetdesc = (vmi_get_desc_t)nullop_panic, .vmsetdesc = (vmi_set_desc_t)nullop_panic, .vmgetcap = (vmi_get_cap_t)nullop_panic, .vmsetcap = (vmi_set_cap_t)nullop_panic, .vlapic_init = (vmi_vlapic_init)nullop_panic, .vlapic_cleanup = (vmi_vlapic_cleanup)nullop_panic, .vmpause = (vmi_pause_t)nullop_panic, .vmsavectx = (vmi_savectx)nullop_panic, .vmrestorectx = (vmi_restorectx)nullop_panic, .vmgetmsr = (vmi_get_msr_t)nullop_panic, .vmsetmsr = (vmi_set_msr_t)nullop_panic, .vmfreqratio = (vmi_freqratio_t)nullop_panic, .fr_fracsize = 0, .fr_intsize = 0, }; static struct vmm_ops *ops = &vmm_ops_null; static vmm_pte_ops_t *pte_ops = NULL; #define VMM_INIT() ((*ops->init)()) #define VMM_CLEANUP() ((*ops->cleanup)()) #define VMM_RESUME() ((*ops->resume)()) #define VMINIT(vm) ((*ops->vminit)(vm)) #define VMRUN(vmi, vcpu, rip) ((*ops->vmrun)(vmi, vcpu, rip)) #define VMCLEANUP(vmi) ((*ops->vmcleanup)(vmi)) #define VMGETREG(vmi, vcpu, num, rv) ((*ops->vmgetreg)(vmi, vcpu, num, rv)) #define VMSETREG(vmi, vcpu, num, val) ((*ops->vmsetreg)(vmi, vcpu, num, val)) #define VMGETDESC(vmi, vcpu, num, dsc) ((*ops->vmgetdesc)(vmi, vcpu, num, dsc)) #define VMSETDESC(vmi, vcpu, num, dsc) ((*ops->vmsetdesc)(vmi, vcpu, num, dsc)) #define VMGETCAP(vmi, vcpu, num, rv) ((*ops->vmgetcap)(vmi, vcpu, num, rv)) #define VMSETCAP(vmi, vcpu, num, val) ((*ops->vmsetcap)(vmi, vcpu, num, val)) #define VLAPIC_INIT(vmi, vcpu) ((*ops->vlapic_init)(vmi, vcpu)) #define VLAPIC_CLEANUP(vmi, vlapic) ((*ops->vlapic_cleanup)(vmi, vlapic)) #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) #define fpu_stop_emulating() clts() SDT_PROVIDER_DEFINE(vmm); SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); /* * Halt the guest if all vcpus are executing a HLT instruction with * interrupts disabled. */ int halt_detection_enabled = 1; /* Trap into hypervisor on all guest exceptions and reflect them back */ int trace_guest_exceptions; /* Trap WBINVD and ignore it */ int trap_wbinvd = 1; static void vm_free_memmap(struct vm *vm, int ident); static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); static void vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t); static bool vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid); static int vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector); static bool vm_is_suspended(struct vm *, struct vm_exit *); static void vmm_savectx(void *); static void vmm_restorectx(void *); static const struct ctxop_template vmm_ctxop_tpl = { .ct_rev = CTXOP_TPL_REV, .ct_save = vmm_savectx, .ct_restore = vmm_restorectx, }; static uint64_t calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc, uint64_t mult); static uint64_t calc_guest_tsc(uint64_t host_tsc, uint64_t mult, uint64_t offset); /* functions implemented in vmm_time_support.S */ uint64_t calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz, uint32_t frac_size); uint64_t scale_tsc(uint64_t tsc, uint64_t multiplier, uint32_t frac_size); #ifdef KTR static const char * vcpu_state2str(enum vcpu_state state) { switch (state) { case VCPU_IDLE: return ("idle"); case VCPU_FROZEN: return ("frozen"); case VCPU_RUNNING: return ("running"); case VCPU_SLEEPING: return ("sleeping"); default: return ("unknown"); } } #endif static void vcpu_cleanup(struct vm *vm, int i, bool destroy) { struct vcpu *vcpu = &vm->vcpu[i]; VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); if (destroy) { vmm_stat_free(vcpu->stats); vcpu_cpuid_cleanup(&vcpu->cpuid_cfg); hma_fpu_free(vcpu->guestfpu); vcpu->guestfpu = NULL; vie_free(vcpu->vie_ctx); vcpu->vie_ctx = NULL; vmc_destroy(vcpu->vmclient); vcpu->vmclient = NULL; ctxop_free(vcpu->ctxop); mutex_destroy(&vcpu->lock); } } static void vcpu_init(struct vm *vm, int vcpu_id, bool create) { struct vcpu *vcpu; KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, ("vcpu_init: invalid vcpu %d", vcpu_id)); vcpu = &vm->vcpu[vcpu_id]; if (create) { mutex_init(&vcpu->lock, NULL, MUTEX_ADAPTIVE, NULL); vcpu->state = VCPU_IDLE; vcpu->hostcpu = NOCPU; vcpu->lastloccpu = NOCPU; vcpu->guestfpu = hma_fpu_alloc(KM_SLEEP); vcpu->stats = vmm_stat_alloc(); vcpu->vie_ctx = vie_alloc(); vcpu_cpuid_init(&vcpu->cpuid_cfg); vcpu->ustate = VU_INIT; vcpu->ustate_when = gethrtime(); vcpu->vtc.vtc_vm = vm; vcpu->vtc.vtc_vcpuid = vcpu_id; vcpu->ctxop = ctxop_allocate(&vmm_ctxop_tpl, &vcpu->vtc); } else { vie_reset(vcpu->vie_ctx); bzero(&vcpu->exitinfo, sizeof (vcpu->exitinfo)); vcpu_ustate_change(vm, vcpu_id, VU_INIT); bzero(&vcpu->mtrr, sizeof (vcpu->mtrr)); } vcpu->run_state = VRS_HALT; vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); (void) vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); vcpu->reqidle = false; vcpu->reqconsist = false; vcpu->reqbarrier = false; vcpu->exit_intinfo = 0; vcpu->nmi_pending = false; vcpu->extint_pending = false; vcpu->exc_pending = 0; vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; (void) hma_fpu_init(vcpu->guestfpu); vmm_stat_init(vcpu->stats); vcpu->tsc_offset = 0; } int vcpu_trace_exceptions(struct vm *vm, int vcpuid) { return (trace_guest_exceptions); } int vcpu_trap_wbinvd(struct vm *vm, int vcpuid) { return (trap_wbinvd); } struct vm_exit * vm_exitinfo(struct vm *vm, int cpuid) { struct vcpu *vcpu; if (cpuid < 0 || cpuid >= vm->maxcpus) panic("vm_exitinfo: invalid cpuid %d", cpuid); vcpu = &vm->vcpu[cpuid]; return (&vcpu->exitinfo); } struct vie * vm_vie_ctx(struct vm *vm, int cpuid) { if (cpuid < 0 || cpuid >= vm->maxcpus) panic("vm_vie_ctx: invalid cpuid %d", cpuid); return (vm->vcpu[cpuid].vie_ctx); } static int vmm_init(void) { vmm_host_state_init(); vmm_host_freq = unscalehrtime(NANOSEC); if (vmm_is_intel()) { ops = &vmm_ops_intel; pte_ops = &ept_pte_ops; } else if (vmm_is_svm()) { ops = &vmm_ops_amd; pte_ops = &rvi_pte_ops; } else { return (ENXIO); } return (VMM_INIT()); } int vmm_mod_load() { int error; VERIFY(vmm_initialized == 0); error = vmm_init(); if (error == 0) vmm_initialized = 1; return (error); } int vmm_mod_unload() { int error; VERIFY(vmm_initialized == 1); error = VMM_CLEANUP(); if (error) return (error); vmm_initialized = 0; return (0); } /* * Create a test IOMMU domain to see if the host system has necessary hardware * and drivers to do so. */ bool vmm_check_iommu(void) { void *domain; const size_t arb_test_sz = (1UL << 32); domain = iommu_create_domain(arb_test_sz); if (domain == NULL) { return (false); } iommu_destroy_domain(domain); return (true); } static void vm_init(struct vm *vm, bool create) { int i; vm->cookie = VMINIT(vm); vm->iommu = NULL; vm->vioapic = vioapic_init(vm); vm->vhpet = vhpet_init(vm); vm->vatpic = vatpic_init(vm); vm->vatpit = vatpit_init(vm); vm->vpmtmr = vpmtmr_init(vm); if (create) vm->vrtc = vrtc_init(vm); vm_inout_init(vm, &vm->ioports); CPU_ZERO(&vm->active_cpus); CPU_ZERO(&vm->debug_cpus); vm->suspend_how = 0; vm->suspend_source = 0; vm->suspend_when = 0; for (i = 0; i < vm->maxcpus; i++) vcpu_init(vm, i, create); /* * Configure VM time-related data, including: * - VM-wide TSC offset * - boot_hrtime * - guest_freq (same as host at boot time) * - freq_multiplier (used for scaling) * * This data is configured such that the call to vm_init() represents * the boot time (when the TSC(s) read 0). Each vCPU will have its own * offset from this, which is altered if/when the guest writes to * MSR_TSC. * * Further changes to this data may occur if userspace writes to the * time data. */ const uint64_t boot_tsc = rdtsc_offset(); /* Convert the boot TSC reading to hrtime */ vm->boot_hrtime = (hrtime_t)boot_tsc; scalehrtime(&vm->boot_hrtime); /* Guest frequency is the same as the host at boot time */ vm->guest_freq = vmm_host_freq; /* no scaling needed if guest_freq == host_freq */ vm->freq_multiplier = VM_TSCM_NOSCALE; /* configure VM-wide offset: initial guest TSC is 0 at boot */ vm->tsc_offset = calc_tsc_offset(boot_tsc, 0, vm->freq_multiplier); } /* * The default CPU topology is a single thread per package. */ uint_t cores_per_package = 1; uint_t threads_per_core = 1; int vm_create(uint64_t flags, struct vm **retvm) { struct vm *vm; struct vmspace *vmspace; /* * If vmm.ko could not be successfully initialized then don't attempt * to create the virtual machine. */ if (!vmm_initialized) return (ENXIO); bool track_dirty = (flags & VCF_TRACK_DIRTY) != 0; if (track_dirty && !pte_ops->vpeo_hw_ad_supported()) return (ENOTSUP); vmspace = vmspace_alloc(VM_MAXUSER_ADDRESS, pte_ops, track_dirty); if (vmspace == NULL) return (ENOMEM); vm = kmem_zalloc(sizeof (struct vm), KM_SLEEP); vm->vmspace = vmspace; vm->mem_transient = (flags & VCF_RESERVOIR_MEM) == 0; for (uint_t i = 0; i < VM_MAXCPU; i++) { vm->vcpu[i].vmclient = vmspace_client_alloc(vmspace); } vm->sockets = 1; vm->cores = cores_per_package; /* XXX backwards compatibility */ vm->threads = threads_per_core; /* XXX backwards compatibility */ vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ vm_init(vm, true); *retvm = vm; return (0); } void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) { *sockets = vm->sockets; *cores = vm->cores; *threads = vm->threads; *maxcpus = vm->maxcpus; } uint16_t vm_get_maxcpus(struct vm *vm) { return (vm->maxcpus); } int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) { if (maxcpus != 0) return (EINVAL); /* XXX remove when supported */ if ((sockets * cores * threads) > vm->maxcpus) return (EINVAL); /* XXX need to check sockets * cores * threads == vCPU, how? */ vm->sockets = sockets; vm->cores = cores; vm->threads = threads; vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ return (0); } static void vm_cleanup(struct vm *vm, bool destroy) { struct mem_map *mm; int i; ppt_unassign_all(vm); if (vm->iommu != NULL) iommu_destroy_domain(vm->iommu); /* * Devices which attach their own ioport hooks should be cleaned up * first so they can tear down those registrations. */ vpmtmr_cleanup(vm->vpmtmr); vm_inout_cleanup(vm, &vm->ioports); if (destroy) vrtc_cleanup(vm->vrtc); else vrtc_reset(vm->vrtc); vatpit_cleanup(vm->vatpit); vhpet_cleanup(vm->vhpet); vatpic_cleanup(vm->vatpic); vioapic_cleanup(vm->vioapic); for (i = 0; i < vm->maxcpus; i++) vcpu_cleanup(vm, i, destroy); VMCLEANUP(vm->cookie); /* * System memory is removed from the guest address space only when * the VM is destroyed. This is because the mapping remains the same * across VM reset. * * Device memory can be relocated by the guest (e.g. using PCI BARs) * so those mappings are removed on a VM reset. */ for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (destroy || !sysmem_mapping(vm, mm)) { vm_free_memmap(vm, i); } else { /* * We need to reset the IOMMU flag so this mapping can * be reused when a VM is rebooted. Since the IOMMU * domain has already been destroyed we can just reset * the flag here. */ mm->flags &= ~VM_MEMMAP_F_IOMMU; } } if (destroy) { for (i = 0; i < VM_MAX_MEMSEGS; i++) vm_free_memseg(vm, i); vmspace_destroy(vm->vmspace); vm->vmspace = NULL; } } void vm_destroy(struct vm *vm) { vm_cleanup(vm, true); kmem_free(vm, sizeof (*vm)); } int vm_reinit(struct vm *vm, uint64_t flags) { vm_cleanup(vm, false); vm_init(vm, false); return (0); } bool vm_is_paused(struct vm *vm) { return (vm->is_paused); } int vm_pause_instance(struct vm *vm) { if (vm->is_paused) { return (EALREADY); } vm->is_paused = true; for (uint_t i = 0; i < vm->maxcpus; i++) { struct vcpu *vcpu = &vm->vcpu[i]; if (!CPU_ISSET(i, &vm->active_cpus)) { continue; } vlapic_pause(vcpu->vlapic); /* * vCPU-specific pause logic includes stashing any * to-be-injected events in exit_intinfo where it can be * accessed in a manner generic to the backend. */ ops->vmpause(vm->cookie, i); } vhpet_pause(vm->vhpet); vatpit_pause(vm->vatpit); vrtc_pause(vm->vrtc); return (0); } int vm_resume_instance(struct vm *vm) { if (!vm->is_paused) { return (EALREADY); } vm->is_paused = false; vrtc_resume(vm->vrtc); vatpit_resume(vm->vatpit); vhpet_resume(vm->vhpet); for (uint_t i = 0; i < vm->maxcpus; i++) { struct vcpu *vcpu = &vm->vcpu[i]; if (!CPU_ISSET(i, &vm->active_cpus)) { continue; } vlapic_resume(vcpu->vlapic); } return (0); } int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) { vm_object_t *obj; if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) return (ENOMEM); else return (0); } int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) { return (vmspace_unmap(vm->vmspace, gpa, len)); } /* * Return 'true' if 'gpa' is allocated in the guest address space. * * This function is called in the context of a running vcpu which acts as * an implicit lock on 'vm->mem_maps[]'. */ bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) { struct mem_map *mm; int i; #ifdef INVARIANTS int hostcpu, state; state = vcpu_get_state(vm, vcpuid, &hostcpu); KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); #endif for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) return (true); /* 'gpa' is sysmem or devmem */ } if (ppt_is_mmio(vm, gpa)) return (true); /* 'gpa' is pci passthru mmio */ return (false); } int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) { struct mem_seg *seg; vm_object_t *obj; if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); if (len == 0 || (len & PAGE_MASK)) return (EINVAL); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { if (seg->len == len && seg->sysmem == sysmem) return (EEXIST); else return (EINVAL); } obj = vm_object_mem_allocate(len, vm->mem_transient); if (obj == NULL) return (ENOMEM); seg->len = len; seg->object = obj; seg->sysmem = sysmem; return (0); } int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, vm_object_t **objptr) { struct mem_seg *seg; if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[ident]; if (len) *len = seg->len; if (sysmem) *sysmem = seg->sysmem; if (objptr) *objptr = seg->object; return (0); } void vm_free_memseg(struct vm *vm, int ident) { struct mem_seg *seg; KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, ("%s: invalid memseg ident %d", __func__, ident)); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { vm_object_release(seg->object); bzero(seg, sizeof (struct mem_seg)); } } int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, size_t len, int prot, int flags) { struct mem_seg *seg; struct mem_map *m, *map; vm_ooffset_t last; int i, error; if (prot == 0 || (prot & ~(PROT_ALL)) != 0) return (EINVAL); if (flags & ~VM_MEMMAP_F_WIRED) return (EINVAL); if (segid < 0 || segid >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[segid]; if (seg->object == NULL) return (EINVAL); last = first + len; if (first < 0 || first >= last || last > seg->len) return (EINVAL); if ((gpa | first | last) & PAGE_MASK) return (EINVAL); map = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { m = &vm->mem_maps[i]; if (m->len == 0) { map = m; break; } } if (map == NULL) return (ENOSPC); error = vmspace_map(vm->vmspace, seg->object, first, gpa, len, prot); if (error != 0) return (EFAULT); vm_object_reference(seg->object); if ((flags & VM_MEMMAP_F_WIRED) != 0) { error = vmspace_populate(vm->vmspace, gpa, len); if (error != 0) { VERIFY0(vmspace_unmap(vm->vmspace, gpa, len)); return (EFAULT); } } map->gpa = gpa; map->len = len; map->segoff = first; map->segid = segid; map->prot = prot; map->flags = flags; return (0); } int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) { struct mem_map *m; int i; for (i = 0; i < VM_MAX_MEMMAPS; i++) { m = &vm->mem_maps[i]; if (m->gpa == gpa && m->len == len && (m->flags & VM_MEMMAP_F_IOMMU) == 0) { vm_free_memmap(vm, i); return (0); } } return (EINVAL); } int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) { struct mem_map *mm, *mmnext; int i; mmnext = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len == 0 || mm->gpa < *gpa) continue; if (mmnext == NULL || mm->gpa < mmnext->gpa) mmnext = mm; } if (mmnext != NULL) { *gpa = mmnext->gpa; if (segid) *segid = mmnext->segid; if (segoff) *segoff = mmnext->segoff; if (len) *len = mmnext->len; if (prot) *prot = mmnext->prot; if (flags) *flags = mmnext->flags; return (0); } else { return (ENOENT); } } static void vm_free_memmap(struct vm *vm, int ident) { struct mem_map *mm; int error; mm = &vm->mem_maps[ident]; if (mm->len) { error = vmspace_unmap(vm->vmspace, mm->gpa, mm->len); VERIFY0(error); bzero(mm, sizeof (struct mem_map)); } } static __inline bool sysmem_mapping(struct vm *vm, struct mem_map *mm) { if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) return (true); else return (false); } vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm) { struct mem_map *mm; vm_paddr_t maxaddr; int i; maxaddr = 0; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (sysmem_mapping(vm, mm)) { if (maxaddr < mm->gpa + mm->len) maxaddr = mm->gpa + mm->len; } } return (maxaddr); } static void vm_iommu_modify(struct vm *vm, bool map) { int i, sz; vm_paddr_t gpa, hpa; struct mem_map *mm; vm_client_t *vmc; sz = PAGE_SIZE; vmc = vmspace_client_alloc(vm->vmspace); for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (!sysmem_mapping(vm, mm)) continue; if (map) { KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, ("iommu map found invalid memmap %lx/%lx/%x", mm->gpa, mm->len, mm->flags)); if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) continue; mm->flags |= VM_MEMMAP_F_IOMMU; } else { if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) continue; mm->flags &= ~VM_MEMMAP_F_IOMMU; KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, ("iommu unmap found invalid memmap %lx/%lx/%x", mm->gpa, mm->len, mm->flags)); } gpa = mm->gpa; while (gpa < mm->gpa + mm->len) { vm_page_t *vmp; vmp = vmc_hold(vmc, gpa, PROT_WRITE); ASSERT(vmp != NULL); hpa = ((uintptr_t)vmp_get_pfn(vmp) << PAGESHIFT); (void) vmp_release(vmp); /* * When originally ported from FreeBSD, the logic for * adding memory to the guest domain would * simultaneously remove it from the host domain. The * justification for that is not clear, and FreeBSD has * subsequently changed the behavior to not remove the * memory from the host domain. * * Leaving the guest memory in the host domain for the * life of the VM is necessary to make it available for * DMA, such as through viona in the TX path. */ if (map) { iommu_create_mapping(vm->iommu, gpa, hpa, sz); } else { iommu_remove_mapping(vm->iommu, gpa, sz); } gpa += PAGE_SIZE; } } vmc_destroy(vmc); /* * Invalidate the cached translations associated with the domain * from which pages were removed. */ iommu_invalidate_tlb(vm->iommu); } int vm_unassign_pptdev(struct vm *vm, int pptfd) { int error; error = ppt_unassign_device(vm, pptfd); if (error) return (error); if (ppt_assigned_devices(vm) == 0) vm_iommu_modify(vm, false); return (0); } int vm_assign_pptdev(struct vm *vm, int pptfd) { int error; vm_paddr_t maxaddr; /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ if (ppt_assigned_devices(vm) == 0) { KASSERT(vm->iommu == NULL, ("vm_assign_pptdev: iommu must be NULL")); maxaddr = vmm_sysmem_maxaddr(vm); vm->iommu = iommu_create_domain(maxaddr); if (vm->iommu == NULL) return (ENXIO); vm_iommu_modify(vm, true); } error = ppt_assign_device(vm, pptfd); return (error); } int vm_get_register(struct vm *vm, int vcpuid, int reg, uint64_t *retval) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (reg >= VM_REG_LAST) return (EINVAL); struct vcpu *vcpu = &vm->vcpu[vcpuid]; switch (reg) { case VM_REG_GUEST_XCR0: *retval = vcpu->guest_xcr0; return (0); default: return (VMGETREG(vm->cookie, vcpuid, reg, retval)); } } int vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (reg >= VM_REG_LAST) return (EINVAL); int error; struct vcpu *vcpu = &vm->vcpu[vcpuid]; switch (reg) { case VM_REG_GUEST_RIP: error = VMSETREG(vm->cookie, vcpuid, reg, val); if (error == 0) { vcpu->nextrip = val; } return (error); case VM_REG_GUEST_XCR0: if (!validate_guest_xcr0(val, vmm_get_host_xcr0())) { return (EINVAL); } vcpu->guest_xcr0 = val; return (0); default: return (VMSETREG(vm->cookie, vcpuid, reg, val)); } } static bool is_descriptor_table(int reg) { switch (reg) { case VM_REG_GUEST_IDTR: case VM_REG_GUEST_GDTR: return (true); default: return (false); } } static bool is_segment_register(int reg) { switch (reg) { case VM_REG_GUEST_ES: case VM_REG_GUEST_CS: case VM_REG_GUEST_SS: case VM_REG_GUEST_DS: case VM_REG_GUEST_FS: case VM_REG_GUEST_GS: case VM_REG_GUEST_TR: case VM_REG_GUEST_LDTR: return (true); default: return (false); } } int vm_get_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *desc) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (VMGETDESC(vm->cookie, vcpu, reg, desc)); } int vm_set_seg_desc(struct vm *vm, int vcpu, int reg, const struct seg_desc *desc) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (VMSETDESC(vm->cookie, vcpu, reg, desc)); } static int translate_hma_xsave_result(hma_fpu_xsave_result_t res) { switch (res) { case HFXR_OK: return (0); case HFXR_NO_SPACE: return (ENOSPC); case HFXR_BAD_ALIGN: case HFXR_UNSUP_FMT: case HFXR_UNSUP_FEAT: case HFXR_INVALID_DATA: return (EINVAL); default: panic("unexpected xsave result"); } } int vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); struct vcpu *vcpu = &vm->vcpu[vcpuid]; hma_fpu_xsave_result_t res; res = hma_fpu_get_xsave_state(vcpu->guestfpu, buf, len); return (translate_hma_xsave_result(res)); } int vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); struct vcpu *vcpu = &vm->vcpu[vcpuid]; hma_fpu_xsave_result_t res; res = hma_fpu_set_xsave_state(vcpu->guestfpu, buf, len); return (translate_hma_xsave_result(res)); } int vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, uint8_t *sipi_vec) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) { return (EINVAL); } vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); *state = vcpu->run_state; *sipi_vec = vcpu->sipi_vector; vcpu_unlock(vcpu); return (0); } int vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, uint8_t sipi_vec) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) { return (EINVAL); } if (!VRS_IS_VALID(state)) { return (EINVAL); } vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); vcpu->run_state = state; vcpu->sipi_vector = sipi_vec; vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); vcpu_unlock(vcpu); return (0); } int vm_track_dirty_pages(struct vm *vm, uint64_t gpa, size_t len, uint8_t *bitmap) { ASSERT0(gpa & PAGEOFFSET); ASSERT0(len & PAGEOFFSET); /* * The only difference in expectations between this legacy interface and * an equivalent call to vm_npt_do_operation() is the check for * dirty-page-tracking being enabled on the vmspace. */ if (!vmspace_get_tracking(vm->vmspace)) { return (EPERM); } vmspace_bits_operate(vm->vmspace, gpa, len, VBO_RESET_DIRTY | VBO_FLAG_BITMAP_OUT, bitmap); return (0); } int vm_npt_do_operation(struct vm *vm, uint64_t gpa, size_t len, uint32_t oper, uint8_t *bitmap, int *rvalp) { ASSERT0(gpa & PAGEOFFSET); ASSERT0(len & PAGEOFFSET); /* * For now, the bits defined in vmm_dev.h are meant to match up 1:1 with * those in vmm_vm.h */ CTASSERT(VNO_OP_RESET_DIRTY == VBO_RESET_DIRTY); CTASSERT(VNO_OP_SET_DIRTY == VBO_SET_DIRTY); CTASSERT(VNO_OP_GET_DIRTY == VBO_GET_DIRTY); CTASSERT(VNO_FLAG_BITMAP_IN == VBO_FLAG_BITMAP_IN); CTASSERT(VNO_FLAG_BITMAP_OUT == VBO_FLAG_BITMAP_OUT); const uint32_t oper_only = oper & ~(VNO_FLAG_BITMAP_IN | VNO_FLAG_BITMAP_OUT); switch (oper_only) { case VNO_OP_RESET_DIRTY: case VNO_OP_SET_DIRTY: case VNO_OP_GET_DIRTY: if (len == 0) { break; } vmspace_bits_operate(vm->vmspace, gpa, len, oper, bitmap); break; case VNO_OP_GET_TRACK_DIRTY: ASSERT3P(rvalp, !=, NULL); *rvalp = vmspace_get_tracking(vm->vmspace) ? 1 : 0; break; case VNO_OP_EN_TRACK_DIRTY: return (vmspace_set_tracking(vm->vmspace, true)); case VNO_OP_DIS_TRACK_DIRTY: return (vmspace_set_tracking(vm->vmspace, false)); default: return (EINVAL); } return (0); } static void restore_guest_fpustate(struct vcpu *vcpu) { /* Save host FPU and restore guest FPU */ fpu_stop_emulating(); hma_fpu_start_guest(vcpu->guestfpu); /* restore guest XCR0 if XSAVE is enabled in the host */ if (rcr4() & CR4_XSAVE) load_xcr(0, vcpu->guest_xcr0); /* * The FPU is now "dirty" with the guest's state so turn on emulation * to trap any access to the FPU by the host. */ fpu_start_emulating(); } static void save_guest_fpustate(struct vcpu *vcpu) { if ((rcr0() & CR0_TS) == 0) panic("fpu emulation not enabled in host!"); /* save guest XCR0 and restore host XCR0 */ if (rcr4() & CR4_XSAVE) { vcpu->guest_xcr0 = rxcr(0); load_xcr(0, vmm_get_host_xcr0()); } /* save guest FPU and restore host FPU */ fpu_stop_emulating(); hma_fpu_stop_guest(vcpu->guestfpu); /* * When the host state has been restored, we should not re-enable * CR0.TS on illumos for eager FPU. */ } static int vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, bool from_idle) { struct vcpu *vcpu; int error; vcpu = &vm->vcpu[vcpuid]; vcpu_assert_locked(vcpu); /* * State transitions from the vmmdev_ioctl() must always begin from * the VCPU_IDLE state. This guarantees that there is only a single * ioctl() operating on a vcpu at any point. */ if (from_idle) { while (vcpu->state != VCPU_IDLE) { vcpu->reqidle = true; vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); cv_wait(&vcpu->state_cv, &vcpu->lock); vcpu->reqidle = false; } } else { KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " "vcpu idle state")); } if (vcpu->state == VCPU_RUNNING) { KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " "mismatch for running vcpu", curcpu, vcpu->hostcpu)); } else { KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " "vcpu that is not running", vcpu->hostcpu)); } /* * The following state transitions are allowed: * IDLE -> FROZEN -> IDLE * FROZEN -> RUNNING -> FROZEN * FROZEN -> SLEEPING -> FROZEN */ switch (vcpu->state) { case VCPU_IDLE: case VCPU_RUNNING: case VCPU_SLEEPING: error = (newstate != VCPU_FROZEN); break; case VCPU_FROZEN: error = (newstate == VCPU_FROZEN); break; default: error = 1; break; } if (error) return (EBUSY); vcpu->state = newstate; if (newstate == VCPU_RUNNING) vcpu->hostcpu = curcpu; else vcpu->hostcpu = NOCPU; if (newstate == VCPU_IDLE) { cv_broadcast(&vcpu->state_cv); } return (0); } static void vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) panic("Error %d setting state to %d\n", error, newstate); } static void vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) panic("Error %d setting state to %d", error, newstate); } /* * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. */ static int vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled) { struct vcpu *vcpu; int vcpu_halted, vm_halted; bool userspace_exit = false; KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); vcpu = &vm->vcpu[vcpuid]; vcpu_halted = 0; vm_halted = 0; vcpu_lock(vcpu); while (1) { /* * Do a final check for pending interrupts (including NMI and * INIT) before putting this thread to sleep. */ if (vm_nmi_pending(vm, vcpuid)) break; if (vcpu_run_state_pending(vm, vcpuid)) break; if (!intr_disabled) { if (vm_extint_pending(vm, vcpuid) || vlapic_pending_intr(vcpu->vlapic, NULL)) { break; } } /* * Also check for software events which would cause a wake-up. * This will set the appropriate exitcode directly, rather than * requiring a trip through VM_RUN(). */ if (vcpu_sleep_bailout_checks(vm, vcpuid)) { userspace_exit = true; break; } /* * Some Linux guests implement "halt" by having all vcpus * execute HLT with interrupts disabled. 'halted_cpus' keeps * track of the vcpus that have entered this state. When all * vcpus enter the halted state the virtual machine is halted. */ if (intr_disabled) { if (!vcpu_halted && halt_detection_enabled) { vcpu_halted = 1; CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); } if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { vm_halted = 1; break; } } vcpu_ustate_change(vm, vcpuid, VU_IDLE); vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock); vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN); } if (vcpu_halted) CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); vcpu_unlock(vcpu); if (vm_halted) { (void) vm_suspend(vm, VM_SUSPEND_HALT, -1); } return (userspace_exit ? -1 : 0); } static int vm_handle_paging(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; vm_client_t *vmc = vcpu->vmclient; struct vm_exit *vme = &vcpu->exitinfo; const int ftype = vme->u.paging.fault_type; ASSERT0(vme->inst_length); ASSERT(ftype == PROT_READ || ftype == PROT_WRITE || ftype == PROT_EXEC); if (vmc_fault(vmc, vme->u.paging.gpa, ftype) != 0) { /* * If the fault cannot be serviced, kick it out to userspace for * handling (or more likely, halting the instance). */ return (-1); } return (0); } int vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval, int rsize) { int err = ESRCH; if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { struct vlapic *vlapic = vm_lapic(vm, cpuid); err = vlapic_mmio_read(vlapic, gpa, rval, rsize); } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { err = vioapic_mmio_read(vm, cpuid, gpa, rval, rsize); } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { err = vhpet_mmio_read(vm, cpuid, gpa, rval, rsize); } return (err); } int vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval, int wsize) { int err = ESRCH; if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { struct vlapic *vlapic = vm_lapic(vm, cpuid); err = vlapic_mmio_write(vlapic, gpa, wval, wsize); } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { err = vioapic_mmio_write(vm, cpuid, gpa, wval, wsize); } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { err = vhpet_mmio_write(vm, cpuid, gpa, wval, wsize); } return (err); } static int vm_handle_mmio_emul(struct vm *vm, int vcpuid) { struct vie *vie; struct vcpu *vcpu; struct vm_exit *vme; uint64_t inst_addr; int error, fault, cs_d; vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; vie = vcpu->vie_ctx; KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", __func__, vme->inst_length)); inst_addr = vme->rip + vme->u.mmio_emul.cs_base; cs_d = vme->u.mmio_emul.cs_d; /* Fetch the faulting instruction */ if (vie_needs_fetch(vie)) { error = vie_fetch_instruction(vie, vm, vcpuid, inst_addr, &fault); if (error != 0) { return (error); } else if (fault) { /* * If a fault during instruction fetch was encountered, * it will have asserted that the appropriate exception * be injected at next entry. * No further work is required. */ return (0); } } if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) { /* Dump (unrecognized) instruction bytes in userspace */ vie_fallback_exitinfo(vie, vme); return (-1); } if (vme->u.mmio_emul.gla != VIE_INVALID_GLA && vie_verify_gla(vie, vm, vcpuid, vme->u.mmio_emul.gla) != 0) { /* Decoded GLA does not match GLA from VM exit state */ vie_fallback_exitinfo(vie, vme); return (-1); } repeat: error = vie_emulate_mmio(vie, vm, vcpuid); if (error < 0) { /* * MMIO not handled by any of the in-kernel-emulated devices, so * make a trip out to userspace for it. */ vie_exitinfo(vie, vme); } else if (error == EAGAIN) { /* * Continue emulating the rep-prefixed instruction, which has * not completed its iterations. * * In case this can be emulated in-kernel and has a high * repetition count (causing a tight spin), it should be * deferential to yield conditions. */ if (!vcpu_should_yield(vm, vcpuid)) { goto repeat; } else { /* * Defer to the contending load by making a trip to * userspace with a no-op (BOGUS) exit reason. */ vie_reset(vie); vme->exitcode = VM_EXITCODE_BOGUS; return (-1); } } else if (error == 0) { /* Update %rip now that instruction has been emulated */ vie_advance_pc(vie, &vcpu->nextrip); } return (error); } static int vm_handle_inout(struct vm *vm, int vcpuid, struct vm_exit *vme) { struct vcpu *vcpu; struct vie *vie; int err; vcpu = &vm->vcpu[vcpuid]; vie = vcpu->vie_ctx; repeat: err = vie_emulate_inout(vie, vm, vcpuid); if (err < 0) { /* * In/out not handled by any of the in-kernel-emulated devices, * so make a trip out to userspace for it. */ vie_exitinfo(vie, vme); return (err); } else if (err == EAGAIN) { /* * Continue emulating the rep-prefixed ins/outs, which has not * completed its iterations. * * In case this can be emulated in-kernel and has a high * repetition count (causing a tight spin), it should be * deferential to yield conditions. */ if (!vcpu_should_yield(vm, vcpuid)) { goto repeat; } else { /* * Defer to the contending load by making a trip to * userspace with a no-op (BOGUS) exit reason. */ vie_reset(vie); vme->exitcode = VM_EXITCODE_BOGUS; return (-1); } } else if (err != 0) { /* Emulation failure. Bail all the way out to userspace. */ vme->exitcode = VM_EXITCODE_INST_EMUL; bzero(&vme->u.inst_emul, sizeof (vme->u.inst_emul)); return (-1); } vie_advance_pc(vie, &vcpu->nextrip); return (0); } static int vm_handle_inst_emul(struct vm *vm, int vcpuid) { struct vie *vie; struct vcpu *vcpu; struct vm_exit *vme; uint64_t cs_base; int error, fault, cs_d; vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; vie = vcpu->vie_ctx; vie_cs_info(vie, vm, vcpuid, &cs_base, &cs_d); /* Fetch the faulting instruction */ ASSERT(vie_needs_fetch(vie)); error = vie_fetch_instruction(vie, vm, vcpuid, vme->rip + cs_base, &fault); if (error != 0) { return (error); } else if (fault) { /* * If a fault during instruction fetch was encounted, it will * have asserted that the appropriate exception be injected at * next entry. No further work is required. */ return (0); } if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) { /* Dump (unrecognized) instruction bytes in userspace */ vie_fallback_exitinfo(vie, vme); return (-1); } error = vie_emulate_other(vie, vm, vcpuid); if (error != 0) { /* * Instruction emulation was unable to complete successfully, so * kick it out to userspace for handling. */ vie_fallback_exitinfo(vie, vme); } else { /* Update %rip now that instruction has been emulated */ vie_advance_pc(vie, &vcpu->nextrip); } return (error); } static int vm_handle_run_state(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; bool handled = false; vcpu_lock(vcpu); while (1) { if ((vcpu->run_state & VRS_PEND_INIT) != 0) { vcpu_unlock(vcpu); VERIFY0(vcpu_arch_reset(vm, vcpuid, true)); vcpu_lock(vcpu); vcpu->run_state &= ~(VRS_RUN | VRS_PEND_INIT); vcpu->run_state |= VRS_INIT; } if ((vcpu->run_state & (VRS_INIT | VRS_RUN | VRS_PEND_SIPI)) == (VRS_INIT | VRS_PEND_SIPI)) { const uint8_t vector = vcpu->sipi_vector; vcpu_unlock(vcpu); VERIFY0(vcpu_vector_sipi(vm, vcpuid, vector)); vcpu_lock(vcpu); vcpu->run_state &= ~VRS_PEND_SIPI; vcpu->run_state |= VRS_RUN; } /* * If the vCPU is now in the running state, there is no need to * wait for anything prior to re-entry. */ if ((vcpu->run_state & VRS_RUN) != 0) { handled = true; break; } /* * Also check for software events which would cause a wake-up. * This will set the appropriate exitcode directly, rather than * requiring a trip through VM_RUN(). */ if (vcpu_sleep_bailout_checks(vm, vcpuid)) { break; } vcpu_ustate_change(vm, vcpuid, VU_IDLE); vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock); vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN); } vcpu_unlock(vcpu); return (handled ? 0 : -1); } static int vm_rdmtrr(const struct vm_mtrr *mtrr, uint32_t num, uint64_t *val) { switch (num) { case MSR_MTRRcap: *val = MTRR_CAP_WC | MTRR_CAP_FIXED | VMM_MTRR_VAR_MAX; break; case MSR_MTRRdefType: *val = mtrr->def_type; break; case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: *val = mtrr->fixed4k[num - MSR_MTRR4kBase]; break; case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: *val = mtrr->fixed16k[num - MSR_MTRR16kBase]; break; case MSR_MTRR64kBase: *val = mtrr->fixed64k; break; case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: { uint_t offset = num - MSR_MTRRVarBase; if (offset % 2 == 0) { *val = mtrr->var[offset / 2].base; } else { *val = mtrr->var[offset / 2].mask; } break; } default: return (EINVAL); } return (0); } static int vm_wrmtrr(struct vm_mtrr *mtrr, uint32_t num, uint64_t val) { switch (num) { case MSR_MTRRcap: /* MTRRCAP is read only */ return (EPERM); case MSR_MTRRdefType: if (val & ~VMM_MTRR_DEF_MASK) { /* generate #GP on writes to reserved fields */ return (EINVAL); } mtrr->def_type = val; break; case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: mtrr->fixed4k[num - MSR_MTRR4kBase] = val; break; case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: mtrr->fixed16k[num - MSR_MTRR16kBase] = val; break; case MSR_MTRR64kBase: mtrr->fixed64k = val; break; case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: { uint_t offset = num - MSR_MTRRVarBase; if (offset % 2 == 0) { if (val & ~VMM_MTRR_PHYSBASE_MASK) { /* generate #GP on writes to reserved fields */ return (EINVAL); } mtrr->var[offset / 2].base = val; } else { if (val & ~VMM_MTRR_PHYSMASK_MASK) { /* generate #GP on writes to reserved fields */ return (EINVAL); } mtrr->var[offset / 2].mask = val; } break; } default: return (EINVAL); } return (0); } static bool is_mtrr_msr(uint32_t msr) { switch (msr) { case MSR_MTRRcap: case MSR_MTRRdefType: case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: case MSR_MTRR64kBase: case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: return (true); default: return (false); } } static int vm_handle_rdmsr(struct vm *vm, int vcpuid, struct vm_exit *vme) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; const uint32_t code = vme->u.msr.code; uint64_t val = 0; switch (code) { case MSR_MCG_CAP: case MSR_MCG_STATUS: val = 0; break; case MSR_MTRRcap: case MSR_MTRRdefType: case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: case MSR_MTRR64kBase: case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: if (vm_rdmtrr(&vcpu->mtrr, code, &val) != 0) vm_inject_gp(vm, vcpuid); break; case MSR_TSC: /* * Get the guest TSC, applying necessary vCPU offsets. * * In all likelihood, this should always be handled in guest * context by VMX/SVM rather than taking an exit. (Both VMX and * SVM pass through read-only access to MSR_TSC to the guest.) * * The VM-wide TSC offset and per-vCPU offset are included in * the calculations of vcpu_tsc_offset(), so this is sufficient * to use as the offset in our calculations. * * No physical offset is requested of vcpu_tsc_offset() since * rdtsc_offset() takes care of that instead. */ val = calc_guest_tsc(rdtsc_offset(), vm->freq_multiplier, vcpu_tsc_offset(vm, vcpuid, false)); break; default: /* * Anything not handled at this point will be kicked out to * userspace for attempted processing there. */ return (-1); } VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RAX, val & 0xffffffff)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX, val >> 32)); return (0); } static int vm_handle_wrmsr(struct vm *vm, int vcpuid, struct vm_exit *vme) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; const uint32_t code = vme->u.msr.code; const uint64_t val = vme->u.msr.wval; switch (code) { case MSR_MCG_CAP: case MSR_MCG_STATUS: /* Ignore writes */ break; case MSR_MTRRcap: case MSR_MTRRdefType: case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: case MSR_MTRR64kBase: case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: if (vm_wrmtrr(&vcpu->mtrr, code, val) != 0) vm_inject_gp(vm, vcpuid); break; case MSR_TSC: /* * The effect of writing the TSC MSR is that a subsequent read * of the TSC would report that value written (plus any time * elapsed between the write and the read). * * To calculate that per-vCPU offset, we can work backwards from * the guest TSC at the time of write: * * value = current guest TSC + vCPU offset * * so therefore: * * value - current guest TSC = vCPU offset */ vcpu->tsc_offset = val - calc_guest_tsc(rdtsc_offset(), vm->freq_multiplier, vm->tsc_offset); break; default: /* * Anything not handled at this point will be kicked out to * userspace for attempted processing there. */ return (-1); } return (0); } /* * Has a suspend event been asserted on the VM? * * The reason and (in the case of a triple-fault) source vcpuid are optionally * returned if such a state is present. */ static bool vm_is_suspended(struct vm *vm, struct vm_exit *vme) { const int val = vm->suspend_how; if (val == 0) { return (false); } else { if (vme != NULL) { vme->exitcode = VM_EXITCODE_SUSPENDED; vme->u.suspended.how = val; vme->u.suspended.source = vm->suspend_source; /* * Normalize suspend event time and, on the off chance * that it was recorded as occuring prior to VM boot, * clamp it to a minimum of 0. */ vme->u.suspended.when = (uint64_t) MAX(vm_normalize_hrtime(vm, vm->suspend_when), 0); } return (true); } } int vm_suspend(struct vm *vm, enum vm_suspend_how how, int source) { if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) { return (EINVAL); } /* * Although the common case of calling vm_suspend() is via * ioctl(VM_SUSPEND), where all the vCPUs will be held in the frozen * state, it can also be called by a running vCPU to indicate a * triple-fault. In the latter case, there is no exclusion from a * racing vm_suspend() from a different vCPU, so assertion of the * suspended state must be performed carefully. * * The `suspend_when` is set first via atomic cmpset to pick a "winner" * of the suspension race, followed by population of 'suspend_source'. * Only after those are done, and a membar is emitted will 'suspend_how' * be set, which makes the suspended state visible to any vCPU checking * for it. That order will prevent an incomplete suspend state (between * 'how', 'source', and 'when') from being observed. */ const hrtime_t now = gethrtime(); if (atomic_cmpset_long((ulong_t *)&vm->suspend_when, 0, now) == 0) { return (EALREADY); } vm->suspend_source = source; membar_producer(); vm->suspend_how = how; /* Notify all active vcpus that they are now suspended. */ for (uint_t i = 0; i < vm->maxcpus; i++) { struct vcpu *vcpu = &vm->vcpu[i]; vcpu_lock(vcpu); if (!CPU_ISSET(i, &vm->active_cpus)) { /* * vCPUs not already marked as active can be ignored, * since they cannot become marked as active unless the * VM is reinitialized, clearing the suspended state. */ vcpu_unlock(vcpu); continue; } switch (vcpu->state) { case VCPU_IDLE: case VCPU_FROZEN: /* * vCPUs not locked by in-kernel activity can be * immediately marked as suspended: The ustate is moved * back to VU_INIT, since no further guest work will * occur while the VM is in this state. * * A FROZEN vCPU may still change its ustate on the way * out of the kernel, but a subsequent check at the end * of vm_run() should be adequate to fix it up. */ vcpu_ustate_change(vm, i, VU_INIT); break; default: /* * Any vCPUs which are running or waiting in-kernel * (such as in HLT) are notified to pick up the newly * suspended state. */ vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); break; } vcpu_unlock(vcpu); } return (0); } void vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_RUN_STATE; vmm_stat_incr(vm, vcpuid, VMEXIT_RUN_STATE, 1); } /* * Some vmm resources, such as the lapic, may have CPU-specific resources * allocated to them which would benefit from migration onto the host CPU which * is processing the vcpu state. */ static void vm_localize_resources(struct vm *vm, struct vcpu *vcpu) { /* * Localizing cyclic resources requires acquisition of cpu_lock, and * doing so with kpreempt disabled is a recipe for deadlock disaster. */ VERIFY(curthread->t_preempt == 0); /* * Do not bother with localization if this vCPU is about to return to * the host CPU it was last localized to. */ if (vcpu->lastloccpu == curcpu) return; /* * Localize system-wide resources to the primary boot vCPU. While any * of the other vCPUs may access them, it keeps the potential interrupt * footprint constrained to CPUs involved with this instance. */ if (vcpu == &vm->vcpu[0]) { vhpet_localize_resources(vm->vhpet); vrtc_localize_resources(vm->vrtc); vatpit_localize_resources(vm->vatpit); } vlapic_localize_resources(vcpu->vlapic); vcpu->lastloccpu = curcpu; } static void vmm_savectx(void *arg) { vm_thread_ctx_t *vtc = arg; struct vm *vm = vtc->vtc_vm; const int vcpuid = vtc->vtc_vcpuid; if (ops->vmsavectx != NULL) { ops->vmsavectx(vm->cookie, vcpuid); } /* * Account for going off-cpu, unless the vCPU is idled, where being * off-cpu is the explicit point. */ if (vm->vcpu[vcpuid].ustate != VU_IDLE) { vtc->vtc_ustate = vm->vcpu[vcpuid].ustate; vcpu_ustate_change(vm, vcpuid, VU_SCHED); } /* * If the CPU holds the restored guest FPU state, save it and restore * the host FPU state before this thread goes off-cpu. */ if ((vtc->vtc_status & VTCS_FPU_RESTORED) != 0) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; save_guest_fpustate(vcpu); vtc->vtc_status &= ~VTCS_FPU_RESTORED; } } static void vmm_restorectx(void *arg) { vm_thread_ctx_t *vtc = arg; struct vm *vm = vtc->vtc_vm; const int vcpuid = vtc->vtc_vcpuid; /* Complete microstate accounting for vCPU being off-cpu */ if (vm->vcpu[vcpuid].ustate != VU_IDLE) { vcpu_ustate_change(vm, vcpuid, vtc->vtc_ustate); } /* * When coming back on-cpu, only restore the guest FPU status if the * thread is in a context marked as requiring it. This should be rare, * occurring only when a future logic error results in a voluntary * sleep during the VMRUN critical section. * * The common case will result in elision of the guest FPU state * restoration, deferring that action until it is clearly necessary * during vm_run. */ VERIFY((vtc->vtc_status & VTCS_FPU_RESTORED) == 0); if ((vtc->vtc_status & VTCS_FPU_CTX_CRITICAL) != 0) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; restore_guest_fpustate(vcpu); vtc->vtc_status |= VTCS_FPU_RESTORED; } if (ops->vmrestorectx != NULL) { ops->vmrestorectx(vm->cookie, vcpuid); } } /* Convenience defines for parsing vm_entry`cmd values */ #define VEC_MASK_FLAGS (VEC_FLAG_EXIT_CONSISTENT) #define VEC_MASK_CMD (~VEC_MASK_FLAGS) static int vm_entry_actions(struct vm *vm, int vcpuid, const struct vm_entry *entry, struct vm_exit *vme) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; struct vie *vie = vcpu->vie_ctx; int err = 0; const uint_t cmd = entry->cmd & VEC_MASK_CMD; const uint_t flags = entry->cmd & VEC_MASK_FLAGS; switch (cmd) { case VEC_DEFAULT: break; case VEC_DISCARD_INSTR: vie_reset(vie); break; case VEC_FULFILL_MMIO: err = vie_fulfill_mmio(vie, &entry->u.mmio); if (err == 0) { err = vie_emulate_mmio(vie, vm, vcpuid); if (err == 0) { vie_advance_pc(vie, &vcpu->nextrip); } else if (err < 0) { vie_exitinfo(vie, vme); } else if (err == EAGAIN) { /* * Clear the instruction emulation state in * order to re-enter VM context and continue * this 'rep ' */ vie_reset(vie); err = 0; } } break; case VEC_FULFILL_INOUT: err = vie_fulfill_inout(vie, &entry->u.inout); if (err == 0) { err = vie_emulate_inout(vie, vm, vcpuid); if (err == 0) { vie_advance_pc(vie, &vcpu->nextrip); } else if (err < 0) { vie_exitinfo(vie, vme); } else if (err == EAGAIN) { /* * Clear the instruction emulation state in * order to re-enter VM context and continue * this 'rep ins/outs' */ vie_reset(vie); err = 0; } } break; default: return (EINVAL); } /* * Pay heed to requests for exit-when-vCPU-is-consistent requests, at * least when we are not immediately bound for another exit due to * multi-part instruction emulation or related causes. */ if ((flags & VEC_FLAG_EXIT_CONSISTENT) != 0 && err == 0) { vcpu->reqconsist = true; } return (err); } static int vm_loop_checks(struct vm *vm, int vcpuid, struct vm_exit *vme) { struct vie *vie; vie = vm->vcpu[vcpuid].vie_ctx; if (vie_pending(vie)) { /* * Userspace has not fulfilled the pending needs of the * instruction emulation, so bail back out. */ vie_exitinfo(vie, vme); return (-1); } return (0); } int vm_run(struct vm *vm, int vcpuid, const struct vm_entry *entry) { int error; struct vcpu *vcpu; struct vm_exit *vme; bool intr_disabled; int affinity_type = CPU_CURRENT; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (!CPU_ISSET(vcpuid, &vm->active_cpus)) return (EINVAL); if (vm->is_paused) { return (EBUSY); } vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN); vcpu->vtc.vtc_status = 0; ctxop_attach(curthread, vcpu->ctxop); error = vm_entry_actions(vm, vcpuid, entry, vme); if (error != 0) { goto exit; } restart: error = vm_loop_checks(vm, vcpuid, vme); if (error != 0) { goto exit; } thread_affinity_set(curthread, affinity_type); /* * Resource localization should happen after the CPU affinity for the * thread has been set to ensure that access from restricted contexts, * such as VMX-accelerated APIC operations, can occur without inducing * cyclic cross-calls. * * This must be done prior to disabling kpreempt via critical_enter(). */ vm_localize_resources(vm, vcpu); affinity_type = CPU_CURRENT; critical_enter(); /* Force a trip through update_sregs to reload %fs/%gs and friends */ PCB_SET_UPDATE_SEGS(&ttolwp(curthread)->lwp_pcb); if ((vcpu->vtc.vtc_status & VTCS_FPU_RESTORED) == 0) { restore_guest_fpustate(vcpu); vcpu->vtc.vtc_status |= VTCS_FPU_RESTORED; } vcpu->vtc.vtc_status |= VTCS_FPU_CTX_CRITICAL; vcpu_require_state(vm, vcpuid, VCPU_RUNNING); error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip); vcpu_require_state(vm, vcpuid, VCPU_FROZEN); /* * Once clear of the delicate contexts comprising the VM_RUN handler, * thread CPU affinity can be loosened while other processing occurs. */ vcpu->vtc.vtc_status &= ~VTCS_FPU_CTX_CRITICAL; thread_affinity_clear(curthread); critical_exit(); if (error != 0) { /* Communicate out any error from VMRUN() above */ goto exit; } vcpu->nextrip = vme->rip + vme->inst_length; switch (vme->exitcode) { case VM_EXITCODE_RUN_STATE: error = vm_handle_run_state(vm, vcpuid); break; case VM_EXITCODE_IOAPIC_EOI: vioapic_process_eoi(vm, vcpuid, vme->u.ioapic_eoi.vector); break; case VM_EXITCODE_HLT: intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); error = vm_handle_hlt(vm, vcpuid, intr_disabled); break; case VM_EXITCODE_PAGING: error = vm_handle_paging(vm, vcpuid); break; case VM_EXITCODE_MMIO_EMUL: error = vm_handle_mmio_emul(vm, vcpuid); break; case VM_EXITCODE_INOUT: error = vm_handle_inout(vm, vcpuid, vme); break; case VM_EXITCODE_INST_EMUL: error = vm_handle_inst_emul(vm, vcpuid); break; case VM_EXITCODE_MONITOR: case VM_EXITCODE_MWAIT: case VM_EXITCODE_VMINSN: vm_inject_ud(vm, vcpuid); break; case VM_EXITCODE_RDMSR: error = vm_handle_rdmsr(vm, vcpuid, vme); break; case VM_EXITCODE_WRMSR: error = vm_handle_wrmsr(vm, vcpuid, vme); break; case VM_EXITCODE_HT: affinity_type = CPU_BEST; break; case VM_EXITCODE_MTRAP: VERIFY0(vm_suspend_cpu(vm, vcpuid)); error = -1; break; default: /* handled in userland */ error = -1; break; } if (error == 0) { /* VM exit conditions handled in-kernel, continue running */ goto restart; } exit: kpreempt_disable(); ctxop_detach(curthread, vcpu->ctxop); /* Make sure all of the needed vCPU context state is saved */ vmm_savectx(&vcpu->vtc); kpreempt_enable(); /* * Bill time in userspace against VU_EMU_USER, unless the VM is * suspended, in which case VU_INIT is the choice. */ vcpu_ustate_change(vm, vcpuid, vm_is_suspended(vm, NULL) ? VU_INIT : VU_EMU_USER); return (error); } int vm_restart_instruction(void *arg, int vcpuid) { struct vm *vm; struct vcpu *vcpu; enum vcpu_state state; uint64_t rip; int error; vm = arg; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; state = vcpu_get_state(vm, vcpuid, NULL); if (state == VCPU_RUNNING) { /* * When a vcpu is "running" the next instruction is determined * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. * Thus setting 'inst_length' to zero will cause the current * instruction to be restarted. */ vcpu->exitinfo.inst_length = 0; } else if (state == VCPU_FROZEN) { /* * When a vcpu is "frozen" it is outside the critical section * around VMRUN() and 'nextrip' points to the next instruction. * Thus instruction restart is achieved by setting 'nextrip' * to the vcpu's %rip. */ error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); KASSERT(!error, ("%s: error %d getting rip", __func__, error)); vcpu->nextrip = rip; } else { panic("%s: invalid state %d", __func__, state); } return (0); } int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; if (VM_INTINFO_PENDING(info)) { const uint32_t type = VM_INTINFO_TYPE(info); const uint8_t vector = VM_INTINFO_VECTOR(info); if (type == VM_INTINFO_NMI && vector != IDT_NMI) return (EINVAL); if (type == VM_INTINFO_HWEXCP && vector >= 32) return (EINVAL); if (info & VM_INTINFO_MASK_RSVD) return (EINVAL); } else { info = 0; } vcpu->exit_intinfo = info; return (0); } enum exc_class { EXC_BENIGN, EXC_CONTRIBUTORY, EXC_PAGEFAULT }; #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ static enum exc_class exception_class(uint64_t info) { ASSERT(VM_INTINFO_PENDING(info)); /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ switch (VM_INTINFO_TYPE(info)) { case VM_INTINFO_HWINTR: case VM_INTINFO_SWINTR: case VM_INTINFO_NMI: return (EXC_BENIGN); default: /* * Hardware exception. * * SVM and VT-x use identical type values to represent NMI, * hardware interrupt and software interrupt. * * SVM uses type '3' for all exceptions. VT-x uses type '3' * for exceptions except #BP and #OF. #BP and #OF use a type * value of '5' or '6'. Therefore we don't check for explicit * values of 'type' to classify 'intinfo' into a hardware * exception. */ break; } switch (VM_INTINFO_VECTOR(info)) { case IDT_PF: case IDT_VE: return (EXC_PAGEFAULT); case IDT_DE: case IDT_TS: case IDT_NP: case IDT_SS: case IDT_GP: return (EXC_CONTRIBUTORY); default: return (EXC_BENIGN); } } /* * Fetch event pending injection into the guest, if one exists. * * Returns true if an event is to be injected (which is placed in `retinfo`). */ bool vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; const uint64_t info1 = vcpu->exit_intinfo; vcpu->exit_intinfo = 0; const uint64_t info2 = vcpu->exc_pending; vcpu->exc_pending = 0; if (VM_INTINFO_PENDING(info1) && VM_INTINFO_PENDING(info2)) { /* * If an exception occurs while attempting to call the * double-fault handler the processor enters shutdown mode * (aka triple fault). */ if (VM_INTINFO_TYPE(info1) == VM_INTINFO_HWEXCP && VM_INTINFO_VECTOR(info1) == IDT_DF) { (void) vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT, vcpuid); *retinfo = 0; return (false); } /* * "Conditions for Generating a Double Fault" * Intel SDM, Vol3, Table 6-5 */ const enum exc_class exc1 = exception_class(info1); const enum exc_class exc2 = exception_class(info2); if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { /* Convert nested fault into a double fault. */ *retinfo = VM_INTINFO_VALID | VM_INTINFO_DEL_ERRCODE | VM_INTINFO_HWEXCP | IDT_DF; } else { /* Handle exceptions serially */ vcpu->exit_intinfo = info1; *retinfo = info2; } return (true); } else if (VM_INTINFO_PENDING(info1)) { *retinfo = info1; return (true); } else if (VM_INTINFO_PENDING(info2)) { *retinfo = info2; return (true); } return (false); } int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; *info1 = vcpu->exit_intinfo; *info2 = vcpu->exc_pending; return (0); } int vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector, bool errcode_valid, uint32_t errcode, bool restart_instruction) { struct vcpu *vcpu; uint64_t regval; int error; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (vector >= 32) return (EINVAL); /* * NMIs are to be injected via their own specialized path using * vm_inject_nmi(). */ if (vector == IDT_NMI) { return (EINVAL); } /* * A double fault exception should never be injected directly into * the guest. It is a derived exception that results from specific * combinations of nested faults. */ if (vector == IDT_DF) { return (EINVAL); } vcpu = &vm->vcpu[vcpuid]; if (VM_INTINFO_PENDING(vcpu->exc_pending)) { /* Unable to inject exception due to one already pending */ return (EBUSY); } if (errcode_valid) { /* * Exceptions don't deliver an error code in real mode. */ error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); VERIFY0(error); if ((regval & CR0_PE) == 0) { errcode_valid = false; } } /* * From section 26.6.1 "Interruptibility State" in Intel SDM: * * Event blocking by "STI" or "MOV SS" is cleared after guest executes * one instruction or incurs an exception. */ error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); VERIFY0(error); if (restart_instruction) { VERIFY0(vm_restart_instruction(vm, vcpuid)); } uint64_t val = VM_INTINFO_VALID | VM_INTINFO_HWEXCP | vector; if (errcode_valid) { val |= VM_INTINFO_DEL_ERRCODE; val |= (uint64_t)errcode << VM_INTINFO_SHIFT_ERRCODE; } vcpu->exc_pending = val; return (0); } void vm_inject_ud(struct vm *vm, int vcpuid) { VERIFY0(vm_inject_exception(vm, vcpuid, IDT_UD, false, 0, true)); } void vm_inject_gp(struct vm *vm, int vcpuid) { VERIFY0(vm_inject_exception(vm, vcpuid, IDT_GP, true, 0, true)); } void vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode) { VERIFY0(vm_inject_exception(vm, vcpuid, IDT_AC, true, errcode, true)); } void vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode) { VERIFY0(vm_inject_exception(vm, vcpuid, IDT_SS, true, errcode, true)); } void vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2) { VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2)); VERIFY0(vm_inject_exception(vm, vcpuid, IDT_PF, true, errcode, true)); } static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); int vm_inject_nmi(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu->nmi_pending = true; vcpu_notify_event(vm, vcpuid); return (0); } bool vm_nmi_pending(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; return (vcpu->nmi_pending); } void vm_nmi_clear(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; ASSERT(vcpu->nmi_pending); vcpu->nmi_pending = false; vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); } static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); int vm_inject_extint(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu->extint_pending = true; vcpu_notify_event(vm, vcpuid); return (0); } bool vm_extint_pending(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; return (vcpu->extint_pending); } void vm_extint_clear(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; ASSERT(vcpu->extint_pending); vcpu->extint_pending = false; vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); } int vm_inject_init(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); vcpu->run_state |= VRS_PEND_INIT; /* * As part of queuing the INIT request, clear any pending SIPI. It * would not otherwise survive across the reset of the vCPU when it * undergoes the requested INIT. We would not want it to linger when it * could be mistaken as a subsequent (after the INIT) SIPI request. */ vcpu->run_state &= ~VRS_PEND_SIPI; vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); vcpu_unlock(vcpu); return (0); } int vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vector) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); vcpu->run_state |= VRS_PEND_SIPI; vcpu->sipi_vector = vector; /* SIPI is only actionable if the CPU is waiting in INIT state */ if ((vcpu->run_state & (VRS_INIT | VRS_RUN)) == VRS_INIT) { vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); } vcpu_unlock(vcpu); return (0); } bool vcpu_run_state_pending(struct vm *vm, int vcpuid) { struct vcpu *vcpu; ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus); vcpu = &vm->vcpu[vcpuid]; /* Of interest: vCPU not in running state or with pending INIT */ return ((vcpu->run_state & (VRS_RUN | VRS_PEND_INIT)) != VRS_RUN); } int vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only) { struct seg_desc desc; const enum vm_reg_name clear_regs[] = { VM_REG_GUEST_CR2, VM_REG_GUEST_CR3, VM_REG_GUEST_CR4, VM_REG_GUEST_RAX, VM_REG_GUEST_RBX, VM_REG_GUEST_RCX, VM_REG_GUEST_RSI, VM_REG_GUEST_RDI, VM_REG_GUEST_RBP, VM_REG_GUEST_RSP, VM_REG_GUEST_R8, VM_REG_GUEST_R9, VM_REG_GUEST_R10, VM_REG_GUEST_R11, VM_REG_GUEST_R12, VM_REG_GUEST_R13, VM_REG_GUEST_R14, VM_REG_GUEST_R15, VM_REG_GUEST_DR0, VM_REG_GUEST_DR1, VM_REG_GUEST_DR2, VM_REG_GUEST_DR3, VM_REG_GUEST_EFER, }; const enum vm_reg_name data_segs[] = { VM_REG_GUEST_SS, VM_REG_GUEST_DS, VM_REG_GUEST_ES, VM_REG_GUEST_FS, VM_REG_GUEST_GS, }; struct vcpu *vcpu = &vm->vcpu[vcpuid]; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); for (uint_t i = 0; i < nitems(clear_regs); i++) { VERIFY0(vm_set_register(vm, vcpuid, clear_regs[i], 0)); } VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, 2)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0xfff0)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR0, 0x60000010)); /* * The prescribed contents of %rdx differ slightly between the Intel and * AMD architectural definitions. The former expects the Extended Model * in bits 16-19 where the latter expects all the Family, Model, and * Stepping be there. Common boot ROMs appear to disregard this * anyways, so we stick with a compromise value similar to what is * spelled out in the Intel SDM. */ VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX, 0x600)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR6, 0xffff0ff0)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR7, 0x400)); /* CS: Present, R/W, Accessed */ desc.access = 0x0093; desc.base = 0xffff0000; desc.limit = 0xffff; VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS, 0xf000)); /* SS, DS, ES, FS, GS: Present, R/W, Accessed */ desc.access = 0x0093; desc.base = 0; desc.limit = 0xffff; for (uint_t i = 0; i < nitems(data_segs); i++) { VERIFY0(vm_set_seg_desc(vm, vcpuid, data_segs[i], &desc)); VERIFY0(vm_set_register(vm, vcpuid, data_segs[i], 0)); } /* GDTR, IDTR */ desc.base = 0; desc.limit = 0xffff; VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_GDTR, &desc)); VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_IDTR, &desc)); /* LDTR: Present, LDT */ desc.access = 0x0082; desc.base = 0; desc.limit = 0xffff; VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_LDTR, &desc)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_LDTR, 0)); /* TR: Present, 32-bit TSS */ desc.access = 0x008b; desc.base = 0; desc.limit = 0xffff; VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_TR, &desc)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_TR, 0)); vlapic_reset(vm_lapic(vm, vcpuid)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0)); vcpu->exit_intinfo = 0; vcpu->exc_pending = 0; vcpu->nmi_pending = false; vcpu->extint_pending = 0; /* * A CPU reset caused by power-on or system reset clears more state than * one which is trigged from an INIT IPI. */ if (!init_only) { vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; (void) hma_fpu_init(vcpu->guestfpu); /* XXX: clear MSRs and other pieces */ bzero(&vcpu->mtrr, sizeof (vcpu->mtrr)); } return (0); } static int vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector) { struct seg_desc desc; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); /* CS: Present, R/W, Accessed */ desc.access = 0x0093; desc.base = (uint64_t)vector << 12; desc.limit = 0xffff; VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS, (uint64_t)vector << 8)); VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0)); return (0); } int vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (VMGETCAP(vm->cookie, vcpu, type, retval)); } int vm_set_capability(struct vm *vm, int vcpu, int type, int val) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (VMSETCAP(vm->cookie, vcpu, type, val)); } vcpu_cpuid_config_t * vm_cpuid_config(struct vm *vm, int vcpuid) { ASSERT3S(vcpuid, >=, 0); ASSERT3S(vcpuid, <, VM_MAXCPU); return (&vm->vcpu[vcpuid].cpuid_cfg); } struct vlapic * vm_lapic(struct vm *vm, int cpu) { ASSERT3S(cpu, >=, 0); ASSERT3S(cpu, <, VM_MAXCPU); return (vm->vcpu[cpu].vlapic); } struct vioapic * vm_ioapic(struct vm *vm) { return (vm->vioapic); } struct vhpet * vm_hpet(struct vm *vm) { return (vm->vhpet); } void * vm_iommu_domain(struct vm *vm) { return (vm->iommu); } int vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, bool from_idle) { int error; struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vcpu_set_state: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); vcpu_unlock(vcpu); return (error); } enum vcpu_state vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) { struct vcpu *vcpu; enum vcpu_state state; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vcpu_get_state: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); state = vcpu->state; if (hostcpu != NULL) *hostcpu = vcpu->hostcpu; vcpu_unlock(vcpu); return (state); } /* * Calculate the TSC offset for a vCPU, applying physical CPU adjustments if * requested. The offset calculations include the VM-wide TSC offset. */ uint64_t vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj) { ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus); uint64_t vcpu_off = vm->tsc_offset + vm->vcpu[vcpuid].tsc_offset; if (phys_adj) { /* Include any offset for the current physical CPU too */ vcpu_off += vmm_host_tsc_delta(); } return (vcpu_off); } uint64_t vm_get_freq_multiplier(struct vm *vm) { return (vm->freq_multiplier); } /* Normalize hrtime against the boot time for a VM */ hrtime_t vm_normalize_hrtime(struct vm *vm, hrtime_t hrt) { /* To avoid underflow/overflow UB, perform math as unsigned */ return ((hrtime_t)((uint64_t)hrt - (uint64_t)vm->boot_hrtime)); } /* Denormalize hrtime against the boot time for a VM */ hrtime_t vm_denormalize_hrtime(struct vm *vm, hrtime_t hrt) { /* To avoid underflow/overflow UB, perform math as unsigned */ return ((hrtime_t)((uint64_t)hrt + (uint64_t)vm->boot_hrtime)); } int vm_activate_cpu(struct vm *vm, int vcpuid) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (CPU_ISSET(vcpuid, &vm->active_cpus)) return (EBUSY); if (vm_is_suspended(vm, NULL)) { return (EBUSY); } CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); /* * It is possible that this vCPU was undergoing activation at the same * time that the VM was being suspended. */ if (vm_is_suspended(vm, NULL)) { return (EBUSY); } return (0); } int vm_suspend_cpu(struct vm *vm, int vcpuid) { int i; if (vcpuid < -1 || vcpuid >= vm->maxcpus) return (EINVAL); if (vcpuid == -1) { vm->debug_cpus = vm->active_cpus; for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->active_cpus)) vcpu_notify_event(vm, i); } } else { if (!CPU_ISSET(vcpuid, &vm->active_cpus)) return (EINVAL); CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); vcpu_notify_event(vm, vcpuid); } return (0); } int vm_resume_cpu(struct vm *vm, int vcpuid) { if (vcpuid < -1 || vcpuid >= vm->maxcpus) return (EINVAL); if (vcpuid == -1) { CPU_ZERO(&vm->debug_cpus); } else { if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) return (EINVAL); CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); } return (0); } static bool vcpu_bailout_checks(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; struct vm_exit *vme = &vcpu->exitinfo; ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus); /* * Check if VM is suspended, only passing the 'vm_exit *' to be * populated if this check is being performed as part of entry. */ if (vm_is_suspended(vm, vme)) { /* Confirm exit details are as expected */ VERIFY3S(vme->exitcode, ==, VM_EXITCODE_SUSPENDED); VERIFY(vme->u.suspended.how > VM_SUSPEND_NONE && vme->u.suspended.how < VM_SUSPEND_LAST); return (true); } if (vcpu->reqidle) { /* * Another thread is trying to lock this vCPU and is waiting for * it to enter the VCPU_IDLE state. Take a lap with a BOGUS * exit to allow other thread(s) access to this vCPU. */ vme->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); return (true); } if (vcpu->reqbarrier) { /* * Similar to 'reqidle', userspace has requested that this vCPU * be pushed to a barrier by exiting to userspace. Take that * lap with BOGUS and clear the flag. */ vme->exitcode = VM_EXITCODE_BOGUS; vcpu->reqbarrier = false; return (true); } if (vcpu->reqconsist) { /* * We only expect exit-when-consistent requests to be asserted * during entry, not as an otherwise spontaneous condition. As * such, we do not count it among the exit statistics, and emit * the expected BOGUS exitcode, while clearing the request. */ vme->exitcode = VM_EXITCODE_BOGUS; vcpu->reqconsist = false; return (true); } if (vcpu_should_yield(vm, vcpuid)) { vme->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); return (true); } if (CPU_ISSET(vcpuid, &vm->debug_cpus)) { vme->exitcode = VM_EXITCODE_DEBUG; return (true); } return (false); } static bool vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid) { if (vcpu_bailout_checks(vm, vcpuid)) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; struct vm_exit *vme = &vcpu->exitinfo; /* * Bail-out check done prior to sleeping (in vCPU contexts like * HLT or wait-for-SIPI) expect that %rip is already populated * in the vm_exit structure, and we would only modify the * exitcode and clear the inst_length. */ vme->inst_length = 0; return (true); } return (false); } bool vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip) { if (vcpu_bailout_checks(vm, vcpuid)) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; struct vm_exit *vme = &vcpu->exitinfo; /* * Bail-out checks done as part of VM entry require an updated * %rip to populate the vm_exit struct if any of the conditions * of interest are matched in the check. */ vme->rip = rip; vme->inst_length = 0; return (true); } return (false); } int vm_vcpu_barrier(struct vm *vm, int vcpuid) { if (vcpuid >= 0 && vcpuid < vm->maxcpus) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; /* Push specified vCPU to barrier */ vcpu_lock(vcpu); if (CPU_ISSET(vcpuid, &vm->active_cpus)) { vcpu->reqbarrier = true; vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); } vcpu_unlock(vcpu); return (0); } else if (vcpuid == -1) { /* Push all (active) vCPUs to barrier */ for (int i = 0; i < vm->maxcpus; i++) { struct vcpu *vcpu = &vm->vcpu[i]; vcpu_lock(vcpu); if (CPU_ISSET(vcpuid, &vm->active_cpus)) { vcpu->reqbarrier = true; vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); } vcpu_unlock(vcpu); } return (0); } else { return (EINVAL); } } cpuset_t vm_active_cpus(struct vm *vm) { return (vm->active_cpus); } cpuset_t vm_debug_cpus(struct vm *vm) { return (vm->debug_cpus); } void * vcpu_stats(struct vm *vm, int vcpuid) { return (vm->vcpu[vcpuid].stats); } int vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); *state = vm->vcpu[vcpuid].x2apic_state; return (0); } int vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (state >= X2APIC_STATE_LAST) return (EINVAL); vm->vcpu[vcpuid].x2apic_state = state; vlapic_set_x2apic_state(vm, vcpuid, state); return (0); } /* * This function is called to ensure that a vcpu "sees" a pending event * as soon as possible: * - If the vcpu thread is sleeping then it is woken up. * - If the vcpu is running on a different host_cpu then an IPI will be directed * to the host_cpu to cause the vcpu to trap into the hypervisor. */ static void vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t ntype) { int hostcpu; ASSERT(ntype == VCPU_NOTIFY_APIC || VCPU_NOTIFY_EXIT); hostcpu = vcpu->hostcpu; if (vcpu->state == VCPU_RUNNING) { KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); if (hostcpu != curcpu) { if (ntype == VCPU_NOTIFY_APIC) { vlapic_post_intr(vcpu->vlapic, hostcpu); } else { poke_cpu(hostcpu); } } else { /* * If the 'vcpu' is running on 'curcpu' then it must * be sending a notification to itself (e.g. SELF_IPI). * The pending event will be picked up when the vcpu * transitions back to guest context. */ } } else { KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " "with hostcpu %d", vcpu->state, hostcpu)); if (vcpu->state == VCPU_SLEEPING) { cv_signal(&vcpu->vcpu_cv); } } } void vcpu_notify_event(struct vm *vm, int vcpuid) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT); vcpu_unlock(vcpu); } void vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t ntype) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; if (ntype == VCPU_NOTIFY_NONE) { return; } vcpu_lock(vcpu); vcpu_notify_event_locked(vcpu, ntype); vcpu_unlock(vcpu); } void vcpu_ustate_change(struct vm *vm, int vcpuid, enum vcpu_ustate ustate) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; const hrtime_t now = gethrtime(); ASSERT3S(ustate, <, VU_MAX); ASSERT3S(ustate, >=, VU_INIT); if (ustate == vcpu->ustate) { return; } const hrtime_t delta = now - vcpu->ustate_when; vcpu->ustate_total[vcpu->ustate] += delta; membar_producer(); vcpu->ustate_when = now; vcpu->ustate = ustate; } struct vmspace * vm_get_vmspace(struct vm *vm) { return (vm->vmspace); } struct vm_client * vm_get_vmclient(struct vm *vm, int vcpuid) { return (vm->vcpu[vcpuid].vmclient); } int vm_apicid2vcpuid(struct vm *vm, int apicid) { /* * XXX apic id is assumed to be numerically identical to vcpu id */ return (apicid); } struct vatpic * vm_atpic(struct vm *vm) { return (vm->vatpic); } struct vatpit * vm_atpit(struct vm *vm) { return (vm->vatpit); } struct vpmtmr * vm_pmtmr(struct vm *vm) { return (vm->vpmtmr); } struct vrtc * vm_rtc(struct vm *vm) { return (vm->vrtc); } enum vm_reg_name vm_segment_name(int seg) { static enum vm_reg_name seg_names[] = { VM_REG_GUEST_ES, VM_REG_GUEST_CS, VM_REG_GUEST_SS, VM_REG_GUEST_DS, VM_REG_GUEST_FS, VM_REG_GUEST_GS }; KASSERT(seg >= 0 && seg < nitems(seg_names), ("%s: invalid segment encoding %d", __func__, seg)); return (seg_names[seg]); } void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, uint_t num_copyinfo) { for (uint_t idx = 0; idx < num_copyinfo; idx++) { if (copyinfo[idx].cookie != NULL) { (void) vmp_release((vm_page_t *)copyinfo[idx].cookie); } } bzero(copyinfo, num_copyinfo * sizeof (struct vm_copyinfo)); } int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, uint_t num_copyinfo, int *fault) { uint_t idx, nused; size_t n, off, remaining; vm_client_t *vmc = vm_get_vmclient(vm, vcpuid); bzero(copyinfo, sizeof (struct vm_copyinfo) * num_copyinfo); nused = 0; remaining = len; while (remaining > 0) { uint64_t gpa; int error; KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); if (error || *fault) return (error); off = gpa & PAGEOFFSET; n = min(remaining, PAGESIZE - off); copyinfo[nused].gpa = gpa; copyinfo[nused].len = n; remaining -= n; gla += n; nused++; } for (idx = 0; idx < nused; idx++) { vm_page_t *vmp; caddr_t hva; vmp = vmc_hold(vmc, copyinfo[idx].gpa & PAGEMASK, prot); if (vmp == NULL) { break; } if ((prot & PROT_WRITE) != 0) { hva = (caddr_t)vmp_get_writable(vmp); } else { hva = (caddr_t)vmp_get_readable(vmp); } copyinfo[idx].hva = hva + (copyinfo[idx].gpa & PAGEOFFSET); copyinfo[idx].cookie = vmp; copyinfo[idx].prot = prot; } if (idx != nused) { vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); return (EFAULT); } else { *fault = 0; return (0); } } void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, size_t len) { char *dst; int idx; dst = kaddr; idx = 0; while (len > 0) { ASSERT(copyinfo[idx].prot & PROT_READ); bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); len -= copyinfo[idx].len; dst += copyinfo[idx].len; idx++; } } void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) { const char *src; int idx; src = kaddr; idx = 0; while (len > 0) { ASSERT(copyinfo[idx].prot & PROT_WRITE); bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); len -= copyinfo[idx].len; src += copyinfo[idx].len; idx++; } } /* * Return the amount of in-use and wired memory for the VM. Since * these are global stats, only return the values with for vCPU 0 */ VMM_STAT_DECLARE(VMM_MEM_RESIDENT); static void vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) { if (vcpu == 0) { vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * vmspace_resident_count(vm->vmspace)); } } VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); int vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port, uint8_t bytes, uint32_t *val) { return (vm_inout_access(&vm->ioports, in, port, bytes, val)); } /* * bhyve-internal interfaces to attach or detach IO port handlers. * Must be called with VM write lock held for safety. */ int vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, void *arg, void **cookie) { int err; err = vm_inout_attach(&vm->ioports, port, IOPF_DEFAULT, func, arg); if (err == 0) { *cookie = (void *)IOP_GEN_COOKIE(func, arg, port); } return (err); } int vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func, void **old_arg) { uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie); int err; err = vm_inout_detach(&vm->ioports, port, false, old_func, old_arg); if (err == 0) { *cookie = NULL; } return (err); } /* * External driver interfaces to attach or detach IO port handlers. * Must be called with VM write lock held for safety. */ int vm_ioport_hook(struct vm *vm, uint16_t port, ioport_handler_t func, void *arg, void **cookie) { int err; if (port == 0) { return (EINVAL); } err = vm_inout_attach(&vm->ioports, port, IOPF_DRV_HOOK, func, arg); if (err == 0) { *cookie = (void *)IOP_GEN_COOKIE(func, arg, port); } return (err); } void vm_ioport_unhook(struct vm *vm, void **cookie) { uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie); ioport_handler_t old_func; void *old_arg; int err; err = vm_inout_detach(&vm->ioports, port, true, &old_func, &old_arg); /* ioport-hook-using drivers are expected to be well-behaved */ VERIFY0(err); VERIFY(IOP_GEN_COOKIE(old_func, old_arg, port) == (uintptr_t)*cookie); *cookie = NULL; } int vmm_kstat_update_vcpu(struct kstat *ksp, int rw) { struct vm *vm = ksp->ks_private; vmm_vcpu_kstats_t *vvk = ksp->ks_data; const int vcpuid = vvk->vvk_vcpu.value.ui32; struct vcpu *vcpu = &vm->vcpu[vcpuid]; ASSERT3U(vcpuid, <, VM_MAXCPU); vvk->vvk_time_init.value.ui64 = vcpu->ustate_total[VU_INIT]; vvk->vvk_time_run.value.ui64 = vcpu->ustate_total[VU_RUN]; vvk->vvk_time_idle.value.ui64 = vcpu->ustate_total[VU_IDLE]; vvk->vvk_time_emu_kern.value.ui64 = vcpu->ustate_total[VU_EMU_KERN]; vvk->vvk_time_emu_user.value.ui64 = vcpu->ustate_total[VU_EMU_USER]; vvk->vvk_time_sched.value.ui64 = vcpu->ustate_total[VU_SCHED]; return (0); } SET_DECLARE(vmm_data_version_entries, const vmm_data_version_entry_t); static int vmm_data_find(const vmm_data_req_t *req, const vmm_data_version_entry_t **resp) { const vmm_data_version_entry_t **vdpp, *vdp; ASSERT(resp != NULL); ASSERT(req->vdr_result_len != NULL); SET_FOREACH(vdpp, vmm_data_version_entries) { vdp = *vdpp; if (vdp->vdve_class != req->vdr_class || vdp->vdve_version != req->vdr_version) { continue; } /* * Enforce any data length expectation expressed by the provider * for this data. */ if (vdp->vdve_len_expect != 0 && vdp->vdve_len_expect > req->vdr_len) { *req->vdr_result_len = vdp->vdve_len_expect; return (ENOSPC); } /* * Make sure that the provided vcpuid is acceptable for the * backend handler. */ if (vdp->vdve_readf != NULL || vdp->vdve_writef != NULL) { /* * While it is tempting to demand the -1 sentinel value * in vcpuid here, that expectation was not established * for early consumers, so it is ignored. */ } else if (vdp->vdve_vcpu_readf != NULL || vdp->vdve_vcpu_writef != NULL) { /* * Per-vCPU handlers which permit "wildcard" access will * accept a vcpuid of -1 (for VM-wide data), while all * others expect vcpuid [0, VM_MAXCPU). */ const int llimit = vdp->vdve_vcpu_wildcard ? -1 : 0; if (req->vdr_vcpuid < llimit || req->vdr_vcpuid >= VM_MAXCPU) { return (EINVAL); } } else { /* * A provider with neither VM-wide nor per-vCPU handlers * is completely unexpected. Such a situation should be * made into a compile-time error. Bail out for now, * rather than punishing the user with a panic. */ return (EINVAL); } *resp = vdp; return (0); } return (EINVAL); } static void * vmm_data_from_class(const vmm_data_req_t *req, struct vm *vm) { switch (req->vdr_class) { case VDC_REGISTER: case VDC_MSR: case VDC_FPU: case VDC_LAPIC: case VDC_VMM_ARCH: /* * These have per-CPU handling which is dispatched outside * vmm_data_version_entries listing. */ panic("Unexpected per-vcpu class %u", req->vdr_class); break; case VDC_IOAPIC: return (vm->vioapic); case VDC_ATPIT: return (vm->vatpit); case VDC_ATPIC: return (vm->vatpic); case VDC_HPET: return (vm->vhpet); case VDC_PM_TIMER: return (vm->vpmtmr); case VDC_RTC: return (vm->vrtc); case VDC_VMM_TIME: return (vm); case VDC_VERSION: /* * Play along with all of the other classes which need backup * data, even though version info does not require it. */ return (vm); default: /* The data class will have been validated by now */ panic("Unexpected class %u", req->vdr_class); } } const uint32_t default_msr_iter[] = { /* * Although EFER is also available via the get/set-register interface, * we include it in the default list of emitted MSRs. */ MSR_EFER, /* * While gsbase and fsbase are accessible via the MSR accessors, they * are not included in MSR iteration since they are covered by the * segment descriptor interface too. */ MSR_KGSBASE, MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SF_MASK, MSR_SYSENTER_CS_MSR, MSR_SYSENTER_ESP_MSR, MSR_SYSENTER_EIP_MSR, MSR_PAT, MSR_TSC, MSR_MTRRcap, MSR_MTRRdefType, MSR_MTRR4kBase, MSR_MTRR4kBase + 1, MSR_MTRR4kBase + 2, MSR_MTRR4kBase + 3, MSR_MTRR4kBase + 4, MSR_MTRR4kBase + 5, MSR_MTRR4kBase + 6, MSR_MTRR4kBase + 7, MSR_MTRR16kBase, MSR_MTRR16kBase + 1, MSR_MTRR64kBase, }; static int vmm_data_read_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t *value) { int err = 0; switch (msr) { case MSR_TSC: /* * The vmm-data interface for MSRs provides access to the * per-vCPU offset of the TSC, when reading/writing MSR_TSC. * * The VM-wide offset (and scaling) of the guest TSC is accessed * via the VMM_TIME data class. */ *value = vm->vcpu[vcpuid].tsc_offset; return (0); default: if (is_mtrr_msr(msr)) { err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, value); } else { err = ops->vmgetmsr(vm->cookie, vcpuid, msr, value); } break; } return (err); } static int vmm_data_write_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t value) { int err = 0; switch (msr) { case MSR_TSC: /* See vmm_data_read_msr() for more detail */ vm->vcpu[vcpuid].tsc_offset = value; return (0); case MSR_MTRRcap: { /* * MTRRcap is read-only. If the desired value matches the * existing one, consider it a success. */ uint64_t comp; err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, &comp); if (err == 0 && comp != value) { return (EINVAL); } break; } default: if (is_mtrr_msr(msr)) { /* MTRRcap is already handled above */ ASSERT3U(msr, !=, MSR_MTRRcap); err = vm_wrmtrr(&vm->vcpu[vcpuid].mtrr, msr, value); } else { err = ops->vmsetmsr(vm->cookie, vcpuid, msr, value); } break; } return (err); } static int vmm_data_read_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_MSR); VERIFY3U(req->vdr_version, ==, 1); struct vdi_field_entry_v1 *entryp = req->vdr_data; /* Specific MSRs requested */ if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) { const uint_t count = req->vdr_len / sizeof (struct vdi_field_entry_v1); for (uint_t i = 0; i < count; i++, entryp++) { int err = vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident, &entryp->vfe_value); if (err != 0) { return (err); } } *req->vdr_result_len = count * sizeof (struct vdi_field_entry_v1); return (0); } /* * If specific MSRs are not requested, try to provide all those which we * know about instead. */ const uint_t num_msrs = nitems(default_msr_iter) + (VMM_MTRR_VAR_MAX * 2); const uint32_t output_len = num_msrs * sizeof (struct vdi_field_entry_v1); *req->vdr_result_len = output_len; if (req->vdr_len < output_len) { return (ENOSPC); } /* Output the MSRs in the default list */ for (uint_t i = 0; i < nitems(default_msr_iter); i++, entryp++) { entryp->vfe_ident = default_msr_iter[i]; /* All of these MSRs are expected to work */ VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident, &entryp->vfe_value)); } /* Output the variable MTRRs */ for (uint_t i = 0; i < (VMM_MTRR_VAR_MAX * 2); i++, entryp++) { entryp->vfe_ident = MSR_MTRRVarBase + i; /* All of these MSRs are expected to work */ VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident, &entryp->vfe_value)); } return (0); } static int vmm_data_write_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_MSR); VERIFY3U(req->vdr_version, ==, 1); const struct vdi_field_entry_v1 *entryp = req->vdr_data; const uint_t entry_count = req->vdr_len / sizeof (struct vdi_field_entry_v1); /* * First make sure that all of the MSRs can be manipulated. * For now, this check is done by going though the getmsr handler */ for (uint_t i = 0; i < entry_count; i++, entryp++) { const uint64_t msr = entryp->vfe_ident; uint64_t val; if (vmm_data_read_msr(vm, vcpuid, msr, &val) != 0) { return (EINVAL); } } /* * Fairly confident that all of the 'set' operations are at least * targeting valid MSRs, continue on. */ entryp = req->vdr_data; for (uint_t i = 0; i < entry_count; i++, entryp++) { int err = vmm_data_write_msr(vm, vcpuid, entryp->vfe_ident, entryp->vfe_value); if (err != 0) { return (err); } } *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1); return (0); } static const vmm_data_version_entry_t msr_v1 = { .vdve_class = VDC_MSR, .vdve_version = 1, .vdve_len_per_item = sizeof (struct vdi_field_entry_v1), .vdve_vcpu_readf = vmm_data_read_msrs, .vdve_vcpu_writef = vmm_data_write_msrs, }; VMM_DATA_VERSION(msr_v1); static const uint32_t vmm_arch_v1_fields[] = { VAI_VM_IS_PAUSED, }; static const uint32_t vmm_arch_v1_vcpu_fields[] = { VAI_PEND_NMI, VAI_PEND_EXTINT, VAI_PEND_EXCP, VAI_PEND_INTINFO, }; static bool vmm_read_arch_field(struct vm *vm, int vcpuid, uint32_t ident, uint64_t *valp) { ASSERT(valp != NULL); if (vcpuid == -1) { switch (ident) { case VAI_VM_IS_PAUSED: *valp = vm->is_paused ? 1 : 0; return (true); default: break; } } else { VERIFY(vcpuid >= 0 && vcpuid <= VM_MAXCPU); struct vcpu *vcpu = &vm->vcpu[vcpuid]; switch (ident) { case VAI_PEND_NMI: *valp = vcpu->nmi_pending != 0 ? 1 : 0; return (true); case VAI_PEND_EXTINT: *valp = vcpu->extint_pending != 0 ? 1 : 0; return (true); case VAI_PEND_EXCP: *valp = vcpu->exc_pending; return (true); case VAI_PEND_INTINFO: *valp = vcpu->exit_intinfo; return (true); default: break; } } return (false); } static int vmm_data_read_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH); VERIFY3U(req->vdr_version, ==, 1); /* per-vCPU fields are handled separately from VM-wide ones */ if (vcpuid != -1 && (vcpuid < 0 || vcpuid >= VM_MAXCPU)) { return (EINVAL); } struct vdi_field_entry_v1 *entryp = req->vdr_data; /* Specific fields requested */ if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) { const uint_t count = req->vdr_len / sizeof (struct vdi_field_entry_v1); for (uint_t i = 0; i < count; i++, entryp++) { if (!vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident, &entryp->vfe_value)) { return (EINVAL); } } *req->vdr_result_len = count * sizeof (struct vdi_field_entry_v1); return (0); } /* Emit all of the possible values */ const uint32_t *idents; uint_t ident_count; if (vcpuid == -1) { idents = vmm_arch_v1_fields; ident_count = nitems(vmm_arch_v1_fields); } else { idents = vmm_arch_v1_vcpu_fields; ident_count = nitems(vmm_arch_v1_vcpu_fields); } const uint32_t total_size = ident_count * sizeof (struct vdi_field_entry_v1); *req->vdr_result_len = total_size; if (req->vdr_len < total_size) { return (ENOSPC); } for (uint_t i = 0; i < ident_count; i++, entryp++) { entryp->vfe_ident = idents[i]; VERIFY(vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident, &entryp->vfe_value)); } return (0); } static int vmm_data_write_varch_vcpu(struct vm *vm, int vcpuid, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH); VERIFY3U(req->vdr_version, ==, 1); if (vcpuid < 0 || vcpuid >= VM_MAXCPU) { return (EINVAL); } const struct vdi_field_entry_v1 *entryp = req->vdr_data; const uint_t entry_count = req->vdr_len / sizeof (struct vdi_field_entry_v1); struct vcpu *vcpu = &vm->vcpu[vcpuid]; for (uint_t i = 0; i < entry_count; i++, entryp++) { const uint64_t val = entryp->vfe_value; switch (entryp->vfe_ident) { case VAI_PEND_NMI: vcpu->nmi_pending = (val != 0); break; case VAI_PEND_EXTINT: vcpu->extint_pending = (val != 0); break; case VAI_PEND_EXCP: if (!VM_INTINFO_PENDING(val)) { vcpu->exc_pending = 0; } else if (VM_INTINFO_TYPE(val) != VM_INTINFO_HWEXCP || (val & VM_INTINFO_MASK_RSVD) != 0) { /* reject improperly-formed hw exception */ return (EINVAL); } else { vcpu->exc_pending = val; } break; case VAI_PEND_INTINFO: if (vm_exit_intinfo(vm, vcpuid, val) != 0) { return (EINVAL); } break; default: return (EINVAL); } } *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1); return (0); } static int vmm_data_write_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH); VERIFY3U(req->vdr_version, ==, 1); /* per-vCPU fields are handled separately from VM-wide ones */ if (vcpuid != -1) { return (vmm_data_write_varch_vcpu(vm, vcpuid, req)); } const struct vdi_field_entry_v1 *entryp = req->vdr_data; const uint_t entry_count = req->vdr_len / sizeof (struct vdi_field_entry_v1); if (entry_count > 0) { if (entryp->vfe_ident == VAI_VM_IS_PAUSED) { /* * The VM_PAUSE and VM_RESUME ioctls are the officially * sanctioned mechanisms for setting the is-paused state * of the VM. */ return (EPERM); } else { /* no other valid arch entries at this time */ return (EINVAL); } } *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1); return (0); } static const vmm_data_version_entry_t vmm_arch_v1 = { .vdve_class = VDC_VMM_ARCH, .vdve_version = 1, .vdve_len_per_item = sizeof (struct vdi_field_entry_v1), .vdve_vcpu_readf = vmm_data_read_varch, .vdve_vcpu_writef = vmm_data_write_varch, /* * Handlers for VMM_ARCH can process VM-wide (vcpuid == -1) entries in * addition to vCPU specific ones. */ .vdve_vcpu_wildcard = true, }; VMM_DATA_VERSION(vmm_arch_v1); /* * GUEST TIME SUPPORT * * Broadly, there are two categories of functionality related to time passing in * the guest: the guest's TSC and timers used by emulated devices. * * --------------------------- * GUEST TSC "VIRTUALIZATION" * --------------------------- * * The TSC can be read either via an instruction (rdtsc/rdtscp) or by reading * the TSC MSR. * * When a guest reads the TSC via its MSR, the guest will exit and we emulate * the rdmsr. More typically, the guest reads the TSC via a rdtsc(p) * instruction. Both SVM and VMX support virtualizing the guest TSC in hardware * -- that is, a guest will not generally exit on a rdtsc instruction. * * To support hardware-virtualized guest TSC, both SVM and VMX provide two knobs * for the hypervisor to adjust the guest's view of the TSC: * - TSC offset * - TSC frequency multiplier (also called "frequency ratio") * * When a guest calls rdtsc(p), the TSC value it sees is the sum of: * guest_tsc = (host TSC, scaled according to frequency multiplier) * + (TSC offset, programmed by hypervisor) * * See the discussions of the TSC offset and frequency multiplier below for more * details on each of these. * * -------------------- * TSC OFFSET OVERVIEW * -------------------- * * The TSC offset is a value added to the host TSC (which may be scaled first) * to provide the guest TSC. This offset addition is generally done by hardware, * but may be used in emulating the TSC if necessary. * * Recall that general formula for calculating the guest TSC is: * * guest_tsc = (host TSC, scaled if needed) + TSC offset * * Intuitively, the TSC offset is simply an offset of the host's TSC to make the * guest's view of the TSC appear correct: The guest TSC should be 0 at boot and * monotonically increase at a roughly constant frequency. Thus in the simplest * case, the TSC offset is just the negated value of the host TSC when the guest * was booted, assuming they have the same frequencies. * * In practice, there are several factors that can make calculating the TSC * offset more complicated, including: * * (1) the physical CPU the guest is running on * (2) whether the guest has written to the TSC of that vCPU * (3) differing host and guest frequencies, like after a live migration * (4) a guest running on a different system than where it was booted, like * after a live migration * * We will explore each of these factors individually. See below for a * summary. * * * (1) Physical CPU offsets * * The system maintains a set of per-CPU offsets to the TSC to provide a * consistent view of the TSC regardless of the CPU a thread is running on. * These offsets are included automatically as a part of rdtsc_offset(). * * The per-CPU offset must be included as a part reading the host TSC when * calculating the offset before running the guest on a given CPU. * * * (2) Guest TSC writes (vCPU offsets) * * The TSC is a writable MSR. When a guest writes to the TSC, this operation * should result in the TSC, when read from that vCPU, shows the value written, * plus whatever time has elapsed since the read. * * To support this, when the guest writes to the TSC, we store an additional * vCPU offset calculated to make future reads of the TSC map to what the guest * expects. * * * (3) Differing host and guest frequencies (host TSC scaling) * * A guest has the same frequency of its host when it boots, but it may be * migrated to a machine with a different TSC frequency. Systems expect that * their TSC frequency does not change. To support this fiction in which a guest * is running on hardware of a different TSC frequency, the hypervisor can * program a "frequency multiplier" that represents the ratio of guest/host * frequency. * * Any time a host TSC is used in calculations for the offset, it should be * "scaled" according to this multiplier, and the hypervisor should program the * multiplier before running a guest so that the hardware virtualization of the * TSC functions properly. Similarly, the multiplier should be used in any TSC * emulation. * * See below for more details about the frequency multiplier. * * * (4) Guest running on a system it did not boot on ("base guest TSC") * * When a guest boots, its TSC offset is simply the negated host TSC at the time * it booted. If a guest is migrated from a source host to a target host, the * TSC offset from the source host is no longer useful for several reasons: * - the target host TSC has no relationship to the source host TSC * - the guest did not boot on the target system, so the TSC of the target host * is not sufficient to describe how long the guest has been running prior to * migration * - the target system may have a different TSC frequency than the source system * * Ignoring the issue of frequency differences for a moment, let's consider how * to re-align the guest TSC with the host TSC of the target host. Intuitively, * for the guest to see the correct TSC, we still want to add some offset to the * host TSC that offsets how long this guest has been running on * the system. * * An example here might be helpful. Consider a source host and target host, * both with TSC frequencies of 1GHz. On the source host, the guest and host TSC * values might look like: * * +----------------------------------------------------------------------+ * | Event | source host TSC | guest TSC | * ------------------------------------------------------------------------ * | guest boot (t=0s) | 5000000000 | 5000000000 + -5000000000 | * | | | 0 | * ------------------------------------------------------------------------ * | guest rdtsc (t=10s)) | 15000000000 | 15000000000 + -5000000000 | * | | | 10000000000 | * ------------------------------------------------------------------------ * | migration (t=15s) | 20000000000 | 20000000000 + -5000000000 | * | | | 15000000000 | * +----------------------------------------------------------------------+ * * Ignoring the time it takes for a guest to physically migrate machines, on the * target host, we would expect the TSC to continue functioning as such: * * +----------------------------------------------------------------------+ * | Event | target host TSC | guest TSC | * ------------------------------------------------------------------------ * | guest migrate (t=15s) | 300000000000 | 15000000000 | * ------------------------------------------------------------------------ * | guest rdtsc (t=20s)) | 305000000000 | 20000000000 | * ------------------------------------------------------------------------ * * In order to produce a correct TSC value here, we can calculate a new * "effective" boot TSC that maps to what the host TSC would've been had it been * booted on the target. We add that to the guest TSC when it began to run on * this machine, and negate them both to get a new offset. In this example, the * effective boot TSC is: -(300000000000 - 15000000000) = -285000000000. * * +-------------------------------------------------------------------------+ * | Event | target host TSC | guest TSC | * --------------------------------------------------------------------------- * | guest "boot" (t=0s) | 285000000000 | 285000000000 + -285000000000 | * | | | 0 | * --------------------------------------------------------------------------- * | guest migrate (t=15s) | 300000000000 | 300000000000 + -285000000000 | * | | | 15000000000 | * --------------------------------------------------------------------------- * | guest rdtsc (t=20s)) | 305000000000 | 305000000000 + -285000000000 | * | | | 20000000000 | * --------------------------------------------------------------------------+ * * To support the offset calculation following a migration, the VMM data time * interface allows callers to set a "base guest TSC", which is the TSC value of * the guest when it began running on the host. The current guest TSC can be * requested via a read of the time data. See below for details on that * interface. * * Frequency differences between the host and the guest are accounted for when * scaling the host TSC. See below for details on the frequency multiplier. * * * -------------------- * TSC OFFSET SUMMARY * -------------------- * * Factoring in all of the components to the TSC above, the TSC offset that is * programmed by the hypervisor before running a given vCPU is: * * offset = -((base host TSC, scaled if needed) - base_guest_tsc) + vCPU offset * * This offset is stored in two pieces. Per-vCPU offsets are stored with the * given vCPU and added in when programming the offset. The rest of the offset * is stored as a VM-wide offset, and computed either at boot or when the time * data is written to. * * It is safe to add the vCPU offset and the VM-wide offsets together because * the vCPU offset is in terms of the guest TSC. The host TSC is scaled before * using it in calculations, so all TSC values are applicable to the same * frequency. * * Note: Though both the VM-wide offset and per-vCPU offsets may be negative, we * store them as unsigned values and perform all offsetting math unsigned. This * is to avoid UB from signed overflow. * * ------------------------- * TSC FREQUENCY MULTIPLIER * ------------------------- * * In order to account for frequency differences between the host and guest, SVM * and VMX provide an interface to set a "frequency multiplier" (or "frequency * ratio") representing guest to host frequency. In a hardware-virtualized read * of the TSC, the host TSC is scaled using this multiplier prior to adding the * programmed TSC offset. * * Both platforms represent the ratio as a fixed point number, where the lower * bits are used as a fractional component, and some number of the upper bits * are used as the integer component. * * Some example multipliers, for a platform with FRAC fractional bits in the * multiplier: * - guest frequency == host: 1 << FRAC * - guest frequency is 2x host: 1 << (FRAC + 1) * - guest frequency is 0.5x host: 1 << (FRAC - 1), as the highest-order * fractional bit represents 1/2 * - guest frequency is 2.5x host: (1 << FRAC) | (1 << (FRAC - 1)) * and so on. * * In general, the frequency multiplier is calculated as follows: * (guest_hz * (1 << FRAC_SIZE)) / host_hz * * The multiplier should be used any time the host TSC value is used in * calculations with the guest TSC (and their frequencies differ). The function * `vmm_scale_tsc` is intended to be used for these purposes, as it will scale * the host TSC only if needed. * * The multiplier should also be programmed by the hypervisor before the guest * is run. * * * ---------------------------- * DEVICE TIMERS (BOOT_HRTIME) * ---------------------------- * * Emulated devices use timers to do things such as scheduling periodic events. * These timers are scheduled relative to the hrtime of the host. When device * state is exported or imported, we use boot_hrtime to normalize these timers * against the host hrtime. The boot_hrtime represents the hrtime of the host * when the guest was booted. * * If a guest is migrated to a different machine, boot_hrtime must be adjusted * to match the hrtime of when the guest was effectively booted on the target * host. This allows timers to continue functioning when device state is * imported on the target. * * * ------------------------ * VMM DATA TIME INTERFACE * ------------------------ * * In order to facilitate live migrations of guests, we provide an interface, * via the VMM data read/write ioctls, for userspace to make changes to the * guest's view of the TSC and device timers, allowing these features to * continue functioning after a migration. * * The interface was designed to expose the minimal amount of data needed for a * userspace component to make adjustments to the guest's view of time (e.g., to * account for time passing in a live migration). At a minimum, such a program * needs: * - the current guest TSC * - guest TSC frequency * - guest's boot_hrtime * - timestamps of when this data was taken (hrtime for hrtime calculations, and * wall clock time for computing time deltas between machines) * * The wall clock time is provided for consumers to make adjustments to the * guest TSC and boot_hrtime based on deltas observed during migrations. It may * be prudent for consumers to use this data only in circumstances where the * source and target have well-synchronized wall clocks, but nothing in the * interface depends on this assumption. * * On writes, consumers write back: * - the base guest TSC (used for TSC offset calculations) * - desired boot_hrtime * - guest_frequency (cannot change) * - hrtime of when this data was adjusted * - (wall clock time on writes is ignored) * * The interface will adjust the input guest TSC slightly, based on the input * hrtime, to account for latency between userspace calculations and application * of the data on the kernel side. This amounts to adding a small amount of * additional "uptime" for the guest. * * After the adjustments, the interface updates the VM-wide TSC offset and * boot_hrtime. Per-vCPU offsets are not adjusted, as those are already in terms * of the guest TSC and can be exported/imported via the MSR VMM data interface. * * * -------------------------------- * SUPPORTED PLATFORMS AND CAVEATS * -------------------------------- * * While both VMX and SVM offer TSC scaling as a feature, at this time only SVM * is supported by bhyve. * * The time data interface is designed such that Intel support can be added * easily, and all other aspects of the time interface should work on Intel. * (Without frequency control though, in practice, doing live migrations of * guests on Intel will not work for time-related things, as two machines * rarely have exactly the same frequency). * * Additionally, while on both SVM and VMX the frequency multiplier is a fixed * point number, each uses a different number of fractional and integer bits for * the multiplier. As such, calculating the multiplier and fractional bit size * is requested via the vmm_ops. * * Care should be taken to set reasonable limits for ratios based on the * platform, as the difference in fractional bits can lead to slightly different * tradeoffs in terms of representable ratios and potentially overflowing * calculations. */ /* * Scales the TSC if needed, based on the input frequency multiplier. */ static uint64_t vmm_scale_tsc(uint64_t tsc, uint64_t mult) { const uint32_t frac_size = ops->fr_fracsize; if (mult != VM_TSCM_NOSCALE) { VERIFY3U(frac_size, >, 0); return (scale_tsc(tsc, mult, frac_size)); } else { return (tsc); } } /* * Calculate the frequency multiplier, which represents the ratio of * guest_hz / host_hz. The frequency multiplier is a fixed point number with * `frac_sz` fractional bits (fractional bits begin at bit 0). * * See comment for "calc_freq_multiplier" in "vmm_time_support.S" for more * information about valid input to this function. */ uint64_t vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz, uint32_t frac_size) { VERIFY3U(guest_hz, !=, 0); VERIFY3U(frac_size, >, 0); VERIFY3U(frac_size, <, 64); return (calc_freq_multiplier(guest_hz, host_hz, frac_size)); } /* * Calculate the guest VM-wide TSC offset. * * offset = - ((base host TSC, scaled if needed) - base_guest_tsc) * * The base_host_tsc and the base_guest_tsc are the TSC values of the host * (read on the system) and the guest (calculated) at the same point in time. * This allows us to fix the guest TSC at this point in time as a base, either * following boot (guest TSC = 0), or a change to the guest's time data from * userspace (such as in the case of a migration). */ static uint64_t calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc, uint64_t mult) { const uint64_t htsc_scaled = vmm_scale_tsc(base_host_tsc, mult); if (htsc_scaled > base_guest_tsc) { return ((uint64_t)(- (int64_t)(htsc_scaled - base_guest_tsc))); } else { return (base_guest_tsc - htsc_scaled); } } /* * Calculate an estimate of the guest TSC. * * guest_tsc = (host TSC, scaled if needed) + offset */ static uint64_t calc_guest_tsc(uint64_t host_tsc, uint64_t mult, uint64_t offset) { return (vmm_scale_tsc(host_tsc, mult) + offset); } /* * Take a non-atomic "snapshot" of the current: * - TSC * - hrtime * - wall clock time */ static void vmm_time_snapshot(uint64_t *tsc, hrtime_t *hrtime, timespec_t *hrestime) { /* * Disable interrupts while we take the readings: In the absence of a * mechanism to convert hrtime to hrestime, we want the time between * each of these measurements to be as small as possible. */ ulong_t iflag = intr_clear(); hrtime_t hrt = gethrtimeunscaledf(); *tsc = (uint64_t)hrt; *hrtime = hrt; scalehrtime(hrtime); gethrestime(hrestime); intr_restore(iflag); } /* * Read VMM Time data * * Provides: * - the current guest TSC and TSC frequency * - guest boot_hrtime * - timestamps of the read (hrtime and wall clock time) */ static int vmm_data_read_vmm_time(void *arg, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME); VERIFY3U(req->vdr_version, ==, 1); VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1)); struct vm *vm = arg; struct vdi_time_info_v1 *out = req->vdr_data; /* * Since write operations on VMM_TIME data are strict about vcpuid * (see: vmm_data_write_vmm_time()), read operations should be as well. */ if (req->vdr_vcpuid != -1) { return (EINVAL); } /* Take a snapshot of this point in time */ uint64_t tsc; hrtime_t hrtime; timespec_t hrestime; vmm_time_snapshot(&tsc, &hrtime, &hrestime); /* Write the output values */ out->vt_guest_freq = vm->guest_freq; /* * Use only the VM-wide TSC offset for calculating the guest TSC, * ignoring per-vCPU offsets. This value is provided as a "base" guest * TSC at the time of the read; per-vCPU offsets are factored in as * needed elsewhere, either when running the vCPU or if the guest reads * the TSC via rdmsr. */ out->vt_guest_tsc = calc_guest_tsc(tsc, vm->freq_multiplier, vm->tsc_offset); out->vt_boot_hrtime = vm->boot_hrtime; out->vt_hrtime = hrtime; out->vt_hres_sec = hrestime.tv_sec; out->vt_hres_ns = hrestime.tv_nsec; return (0); } /* * Modify VMM Time data related values * * This interface serves to allow guests' TSC and device timers to continue * functioning across live migrations. On a successful write, the VM-wide TSC * offset and boot_hrtime of the guest are updated. * * The interface requires an hrtime of the system at which the caller wrote * this data; this allows us to adjust the TSC and boot_hrtime slightly to * account for time passing between the userspace call and application * of the data here. * * There are several possibilities for invalid input, including: * - a requested guest frequency of 0, or a frequency otherwise unsupported by * the underlying platform * - hrtime or boot_hrtime values that appear to be from the future * - the requested frequency does not match the host, and this system does not * have hardware TSC scaling support */ static int vmm_data_write_vmm_time(void *arg, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME); VERIFY3U(req->vdr_version, ==, 1); VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1)); struct vm *vm = arg; const struct vdi_time_info_v1 *src = req->vdr_data; /* * While vcpuid values != -1 are tolerated by the vmm_data machinery for * VM-wide endpoints, the time-related data is more strict: It relies on * write-locking the VM (implied by the vcpuid -1) to prevent vCPUs or * other bits from observing inconsistent values while the state is * being written. */ if (req->vdr_vcpuid != -1) { return (EINVAL); } /* * Platform-specific checks will verify the requested frequency against * the supported range further, but a frequency of 0 is never valid. */ if (src->vt_guest_freq == 0) { return (EINVAL); } /* * Check whether the request frequency is supported and get the * frequency multiplier. */ uint64_t mult = VM_TSCM_NOSCALE; freqratio_res_t res = ops->vmfreqratio(src->vt_guest_freq, vmm_host_freq, &mult); switch (res) { case FR_SCALING_NOT_SUPPORTED: /* * This system doesn't support TSC scaling, and the guest/host * frequencies differ */ return (EPERM); case FR_OUT_OF_RANGE: /* Requested frequency ratio is too small/large */ return (EINVAL); case FR_SCALING_NOT_NEEDED: /* Host and guest frequencies are the same */ VERIFY3U(mult, ==, VM_TSCM_NOSCALE); break; case FR_VALID: VERIFY3U(mult, !=, VM_TSCM_NOSCALE); break; } /* * Find (and validate) the hrtime delta between the input request and * when we received it so that we can bump the TSC to account for time * passing. * * We ignore the hrestime as input, as this is a field that * exists for reads. */ uint64_t tsc; hrtime_t hrtime; timespec_t hrestime; vmm_time_snapshot(&tsc, &hrtime, &hrestime); if ((src->vt_hrtime > hrtime) || (src->vt_boot_hrtime > hrtime)) { /* * The caller has passed in an hrtime / boot_hrtime from the * future. */ return (EINVAL); } hrtime_t hrt_delta = hrtime - src->vt_hrtime; /* Calculate guest TSC adjustment */ const uint64_t host_ticks = unscalehrtime(hrt_delta); const uint64_t guest_ticks = vmm_scale_tsc(host_ticks, vm->freq_multiplier); const uint64_t base_guest_tsc = src->vt_guest_tsc + guest_ticks; /* Update guest time data */ vm->freq_multiplier = mult; vm->guest_freq = src->vt_guest_freq; vm->boot_hrtime = src->vt_boot_hrtime; vm->tsc_offset = calc_tsc_offset(tsc, base_guest_tsc, vm->freq_multiplier); return (0); } static const vmm_data_version_entry_t vmm_time_v1 = { .vdve_class = VDC_VMM_TIME, .vdve_version = 1, .vdve_len_expect = sizeof (struct vdi_time_info_v1), .vdve_readf = vmm_data_read_vmm_time, .vdve_writef = vmm_data_write_vmm_time, }; VMM_DATA_VERSION(vmm_time_v1); static int vmm_data_read_versions(void *arg, const vmm_data_req_t *req) { VERIFY3U(req->vdr_class, ==, VDC_VERSION); VERIFY3U(req->vdr_version, ==, 1); const uint32_t total_size = SET_COUNT(vmm_data_version_entries) * sizeof (struct vdi_version_entry_v1); /* Make sure there is room for all of the entries */ *req->vdr_result_len = total_size; if (req->vdr_len < *req->vdr_result_len) { return (ENOSPC); } struct vdi_version_entry_v1 *entryp = req->vdr_data; const vmm_data_version_entry_t **vdpp; SET_FOREACH(vdpp, vmm_data_version_entries) { const vmm_data_version_entry_t *vdp = *vdpp; entryp->vve_class = vdp->vdve_class; entryp->vve_version = vdp->vdve_version; entryp->vve_len_expect = vdp->vdve_len_expect; entryp->vve_len_per_item = vdp->vdve_len_per_item; entryp++; } return (0); } static int vmm_data_write_versions(void *arg, const vmm_data_req_t *req) { /* Writing to the version information makes no sense */ return (EPERM); } static const vmm_data_version_entry_t versions_v1 = { .vdve_class = VDC_VERSION, .vdve_version = 1, .vdve_len_per_item = sizeof (struct vdi_version_entry_v1), .vdve_readf = vmm_data_read_versions, .vdve_writef = vmm_data_write_versions, }; VMM_DATA_VERSION(versions_v1); int vmm_data_read(struct vm *vm, const vmm_data_req_t *req) { int err = 0; const vmm_data_version_entry_t *entry = NULL; err = vmm_data_find(req, &entry); if (err != 0) { return (err); } ASSERT(entry != NULL); if (entry->vdve_readf != NULL) { void *datap = vmm_data_from_class(req, vm); err = entry->vdve_readf(datap, req); } else if (entry->vdve_vcpu_readf != NULL) { err = entry->vdve_vcpu_readf(vm, req->vdr_vcpuid, req); } else { err = EINVAL; } /* * Successful reads of fixed-length data should populate the length of * that result. */ if (err == 0 && entry->vdve_len_expect != 0) { *req->vdr_result_len = entry->vdve_len_expect; } return (err); } int vmm_data_write(struct vm *vm, const vmm_data_req_t *req) { int err = 0; const vmm_data_version_entry_t *entry = NULL; err = vmm_data_find(req, &entry); if (err != 0) { return (err); } ASSERT(entry != NULL); if (entry->vdve_writef != NULL) { void *datap = vmm_data_from_class(req, vm); err = entry->vdve_writef(datap, req); } else if (entry->vdve_vcpu_writef != NULL) { err = entry->vdve_vcpu_writef(vm, req->vdr_vcpuid, req); } else { err = EINVAL; } /* * Successful writes of fixed-length data should populate the length of * that result. */ if (err == 0 && entry->vdve_len_expect != 0) { *req->vdr_result_len = entry->vdve_len_expect; } return (err); }