/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. * * Copyright 2015 Pluribus Networks Inc. * Copyright 2019 Joyent, Inc. * Copyright 2023 Oxide Computer Company * Copyright 2021 OmniOS Community Edition (OmniOSce) Association. */ #ifndef _VMM_KERNEL_H_ #define _VMM_KERNEL_H_ #include #include #include #include #include SDT_PROVIDER_DECLARE(vmm); struct vm; struct vm_exception; struct seg_desc; struct vm_exit; struct vie; struct vm_run; struct vhpet; struct vioapic; struct vlapic; struct vmspace; struct vm_client; struct vm_object; struct vm_guest_paging; struct vmm_data_req; /* Return values for architecture-specific calculation of the TSC multiplier */ typedef enum { FR_VALID, /* valid multiplier, scaling needed */ FR_SCALING_NOT_NEEDED, /* scaling not required */ FR_SCALING_NOT_SUPPORTED, /* scaling not supported by platform */ FR_OUT_OF_RANGE, /* freq ratio out of supported range */ } freqratio_res_t; typedef int (*vmm_init_func_t)(void); typedef int (*vmm_cleanup_func_t)(void); typedef void (*vmm_resume_func_t)(void); typedef void * (*vmi_init_func_t)(struct vm *vm); typedef int (*vmi_run_func_t)(void *vmi, int vcpu, uint64_t rip); typedef void (*vmi_cleanup_func_t)(void *vmi); typedef int (*vmi_get_register_t)(void *vmi, int vcpu, int num, uint64_t *retval); typedef int (*vmi_set_register_t)(void *vmi, int vcpu, int num, uint64_t val); typedef int (*vmi_get_desc_t)(void *vmi, int vcpu, int num, struct seg_desc *desc); typedef int (*vmi_set_desc_t)(void *vmi, int vcpu, int num, const struct seg_desc *desc); typedef int (*vmi_get_cap_t)(void *vmi, int vcpu, int num, int *retval); typedef int (*vmi_set_cap_t)(void *vmi, int vcpu, int num, int val); typedef struct vlapic *(*vmi_vlapic_init)(void *vmi, int vcpu); typedef void (*vmi_vlapic_cleanup)(void *vmi, struct vlapic *vlapic); typedef void (*vmi_savectx)(void *vmi, int vcpu); typedef void (*vmi_restorectx)(void *vmi, int vcpu); typedef void (*vmi_pause_t)(void *vmi, int vcpu); typedef int (*vmi_get_msr_t)(void *vmi, int vcpu, uint32_t msr, uint64_t *valp); typedef int (*vmi_set_msr_t)(void *vmi, int vcpu, uint32_t msr, uint64_t val); typedef freqratio_res_t (*vmi_freqratio_t)(uint64_t guest_hz, uint64_t host_hz, uint64_t *mult); struct vmm_ops { vmm_init_func_t init; /* module wide initialization */ vmm_cleanup_func_t cleanup; vmm_resume_func_t resume; vmi_init_func_t vminit; /* vm-specific initialization */ vmi_run_func_t vmrun; vmi_cleanup_func_t vmcleanup; vmi_get_register_t vmgetreg; vmi_set_register_t vmsetreg; vmi_get_desc_t vmgetdesc; vmi_set_desc_t vmsetdesc; vmi_get_cap_t vmgetcap; vmi_set_cap_t vmsetcap; vmi_vlapic_init vlapic_init; vmi_vlapic_cleanup vlapic_cleanup; vmi_pause_t vmpause; vmi_savectx vmsavectx; vmi_restorectx vmrestorectx; vmi_get_msr_t vmgetmsr; vmi_set_msr_t vmsetmsr; vmi_freqratio_t vmfreqratio; uint32_t fr_intsize; uint32_t fr_fracsize; }; extern struct vmm_ops vmm_ops_intel; extern struct vmm_ops vmm_ops_amd; int vm_create(uint64_t flags, struct vm **retvm); void vm_destroy(struct vm *vm); int vm_reinit(struct vm *vm, uint64_t); uint16_t vm_get_maxcpus(struct vm *vm); void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus); int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus); int vm_pause_instance(struct vm *); int vm_resume_instance(struct vm *); bool vm_is_paused(struct vm *); /* * APIs that race against hardware. */ int vm_track_dirty_pages(struct vm *, uint64_t, size_t, uint8_t *); /* * APIs that modify the guest memory map require all vcpus to be frozen. */ int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off, size_t len, int prot, int flags); int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len); int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem); void vm_free_memseg(struct vm *vm, int ident); int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa); int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len); int vm_assign_pptdev(struct vm *vm, int pptfd); int vm_unassign_pptdev(struct vm *vm, int pptfd); /* * APIs that inspect the guest memory map require only a *single* vcpu to * be frozen. This acts like a read lock on the guest memory map since any * modification requires *all* vcpus to be frozen. */ int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags); int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, struct vm_object **objptr); vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm); bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa); int vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval); int vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val); int vm_get_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *ret_desc); int vm_set_seg_desc(struct vm *vm, int vcpu, int reg, const struct seg_desc *desc); int vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, uint8_t *sipi_vec); int vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, uint8_t sipi_vec); int vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); int vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); int vm_run(struct vm *vm, int vcpuid, const struct vm_entry *); int vm_suspend(struct vm *vm, enum vm_suspend_how how); int vm_inject_nmi(struct vm *vm, int vcpu); bool vm_nmi_pending(struct vm *vm, int vcpuid); void vm_nmi_clear(struct vm *vm, int vcpuid); int vm_inject_extint(struct vm *vm, int vcpu); bool vm_extint_pending(struct vm *vm, int vcpuid); void vm_extint_clear(struct vm *vm, int vcpuid); int vm_inject_init(struct vm *vm, int vcpuid); int vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vec); struct vlapic *vm_lapic(struct vm *vm, int cpu); struct vioapic *vm_ioapic(struct vm *vm); struct vhpet *vm_hpet(struct vm *vm); int vm_get_capability(struct vm *vm, int vcpu, int type, int *val); int vm_set_capability(struct vm *vm, int vcpu, int type, int val); int vm_get_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state *state); int vm_set_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state state); int vm_apicid2vcpuid(struct vm *vm, int apicid); int vm_activate_cpu(struct vm *vm, int vcpu); int vm_suspend_cpu(struct vm *vm, int vcpu); int vm_resume_cpu(struct vm *vm, int vcpu); struct vm_exit *vm_exitinfo(struct vm *vm, int vcpuid); struct vie *vm_vie_ctx(struct vm *vm, int vcpuid); void vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip); void vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip); void vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip); void vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip); void vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip); int vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval, int rsize); int vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval, int wsize); #ifdef _SYS__CPUSET_H_ cpuset_t vm_active_cpus(struct vm *vm); cpuset_t vm_debug_cpus(struct vm *vm); cpuset_t vm_suspended_cpus(struct vm *vm); #endif /* _SYS__CPUSET_H_ */ bool vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip); bool vcpu_run_state_pending(struct vm *vm, int vcpuid); int vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only); /* * Return true if device indicated by bus/slot/func is supposed to be a * pci passthrough device. * * Return false otherwise. */ bool vmm_is_pptdev(int bus, int slot, int func); void *vm_iommu_domain(struct vm *vm); enum vcpu_state { VCPU_IDLE, VCPU_FROZEN, VCPU_RUNNING, VCPU_SLEEPING, }; int vcpu_set_state(struct vm *vm, int vcpu, enum vcpu_state state, bool from_idle); enum vcpu_state vcpu_get_state(struct vm *vm, int vcpu, int *hostcpu); void vcpu_block_run(struct vm *, int); void vcpu_unblock_run(struct vm *, int); uint64_t vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj); hrtime_t vm_normalize_hrtime(struct vm *, hrtime_t); hrtime_t vm_denormalize_hrtime(struct vm *, hrtime_t); uint64_t vm_get_freq_multiplier(struct vm *); static __inline bool vcpu_is_running(struct vm *vm, int vcpu, int *hostcpu) { return (vcpu_get_state(vm, vcpu, hostcpu) == VCPU_RUNNING); } #ifdef _SYS_THREAD_H static __inline int vcpu_should_yield(struct vm *vm, int vcpu) { if (curthread->t_astflag) return (1); else if (CPU->cpu_runrun) return (1); else return (0); } #endif /* _SYS_THREAD_H */ typedef enum vcpu_notify { VCPU_NOTIFY_NONE, VCPU_NOTIFY_APIC, /* Posted intr notification (if possible) */ VCPU_NOTIFY_EXIT, /* IPI to cause VM exit */ } vcpu_notify_t; void *vcpu_stats(struct vm *vm, int vcpu); void vcpu_notify_event(struct vm *vm, int vcpuid); void vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t); struct vmspace *vm_get_vmspace(struct vm *vm); struct vm_client *vm_get_vmclient(struct vm *vm, int vcpuid); struct vatpic *vm_atpic(struct vm *vm); struct vatpit *vm_atpit(struct vm *vm); struct vpmtmr *vm_pmtmr(struct vm *vm); struct vrtc *vm_rtc(struct vm *vm); /* * Inject exception 'vector' into the guest vcpu. This function returns 0 on * success and non-zero on failure. * * Wrapper functions like 'vm_inject_gp()' should be preferred to calling * this function directly because they enforce the trap-like or fault-like * behavior of an exception. * * This function should only be called in the context of the thread that is * executing this vcpu. */ int vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector, bool err_valid, uint32_t errcode, bool restart_instruction); /* * This function is called after a VM-exit that occurred during exception or * interrupt delivery through the IDT. The format of 'intinfo' is described * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2. * * If a VM-exit handler completes the event delivery successfully then it * should call vm_exit_intinfo() to extinguish the pending event. For e.g., * if the task switch emulation is triggered via a task gate then it should * call this function with 'intinfo=0' to indicate that the external event * is not pending anymore. * * Return value is 0 on success and non-zero on failure. */ int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t intinfo); /* * This function is called before every VM-entry to retrieve a pending * event that should be injected into the guest. This function combines * nested events into a double or triple fault. * * Returns false if there are no events that need to be injected into the guest. */ bool vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *info); int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2); enum vm_reg_name vm_segment_name(int seg_encoding); struct vm_copyinfo { uint64_t gpa; size_t len; int prot; void *hva; void *cookie; }; /* * Set up 'copyinfo[]' to copy to/from guest linear address space starting * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for * a copyin or PROT_WRITE for a copyout. * * retval is_fault Interpretation * 0 0 Success * 0 1 An exception was injected into the guest * EFAULT N/A Unrecoverable error * * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if * the return value is 0. The 'copyinfo[]' resources should be freed by calling * 'vm_copy_teardown()' after the copy is done. */ int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, uint_t num_copyinfo, int *is_fault); void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, uint_t num_copyinfo); void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, size_t len); void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, struct vm_copyinfo *copyinfo, size_t len); int vcpu_trace_exceptions(struct vm *vm, int vcpuid); int vcpu_trap_wbinvd(struct vm *vm, int vcpuid); void vm_inject_ud(struct vm *vm, int vcpuid); void vm_inject_gp(struct vm *vm, int vcpuid); void vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode); void vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode); void vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2); /* * Both SVM and VMX have complex logic for injecting events such as exceptions * or interrupts into the guest. Within those two backends, the progress of * event injection is tracked by event_inject_state, hopefully making it easier * to reason about. */ enum event_inject_state { EIS_CAN_INJECT = 0, /* exception/interrupt can be injected */ EIS_EV_EXISTING = 1, /* blocked by existing event */ EIS_EV_INJECTED = 2, /* blocked by injected event */ EIS_GI_BLOCK = 3, /* blocked by guest interruptability */ /* * Flag to request an immediate exit from VM context after event * injection in order to perform more processing */ EIS_REQ_EXIT = (1 << 15), }; /* Possible result codes for MSR access emulation */ typedef enum vm_msr_result { VMR_OK = 0, /* succesfully emulated */ VMR_GP = 1, /* #GP should be injected */ VMR_UNHANLDED = 2, /* handle in userspace, kernel cannot emulate */ } vm_msr_result_t; enum vm_cpuid_capability { VCC_NONE, VCC_NO_EXECUTE, VCC_FFXSR, VCC_TCE, VCC_LAST }; /* Possible flags and entry count limit definited in sys/vmm.h */ typedef struct vcpu_cpuid_config { uint32_t vcc_flags; uint32_t vcc_nent; struct vcpu_cpuid_entry *vcc_entries; } vcpu_cpuid_config_t; vcpu_cpuid_config_t *vm_cpuid_config(struct vm *, int); int vm_get_cpuid(struct vm *, int, vcpu_cpuid_config_t *); int vm_set_cpuid(struct vm *, int, const vcpu_cpuid_config_t *); void vcpu_emulate_cpuid(struct vm *, int, uint64_t *, uint64_t *, uint64_t *, uint64_t *); void legacy_emulate_cpuid(struct vm *, int, uint32_t *, uint32_t *, uint32_t *, uint32_t *); void vcpu_cpuid_init(vcpu_cpuid_config_t *); void vcpu_cpuid_cleanup(vcpu_cpuid_config_t *); bool vm_cpuid_capability(struct vm *, int, enum vm_cpuid_capability); bool validate_guest_xcr0(uint64_t, uint64_t); void vmm_sol_glue_init(void); void vmm_sol_glue_cleanup(void); void *vmm_contig_alloc(size_t); void vmm_contig_free(void *, size_t); int vmm_mod_load(void); int vmm_mod_unload(void); bool vmm_check_iommu(void); void vmm_call_trap(uint64_t); /* * Because of tangled headers, this is not exposed directly via the vmm_drv * interface, but rather mirrored as vmm_drv_iop_cb_t in vmm_drv.h. */ typedef int (*ioport_handler_t)(void *, bool, uint16_t, uint8_t, uint32_t *); int vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port, uint8_t bytes, uint32_t *val); int vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, void *arg, void **cookie); int vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func, void **old_arg); int vm_ioport_hook(struct vm *, uint16_t, ioport_handler_t, void *, void **); void vm_ioport_unhook(struct vm *, void **); enum vcpu_ustate { VU_INIT = 0, /* initialized but has not yet attempted to run */ VU_RUN, /* running in guest context */ VU_IDLE, /* idle (HLTed, wait-for-SIPI, etc) */ VU_EMU_KERN, /* emulation performed in-kernel */ VU_EMU_USER, /* emulation performed in userspace */ VU_SCHED, /* off-cpu for interrupt, preempt, lock contention */ VU_MAX }; void vcpu_ustate_change(struct vm *, int, enum vcpu_ustate); typedef struct vmm_kstats { kstat_named_t vk_name; } vmm_kstats_t; typedef struct vmm_vcpu_kstats { kstat_named_t vvk_vcpu; kstat_named_t vvk_time_init; kstat_named_t vvk_time_run; kstat_named_t vvk_time_idle; kstat_named_t vvk_time_emu_kern; kstat_named_t vvk_time_emu_user; kstat_named_t vvk_time_sched; } vmm_vcpu_kstats_t; #define VMM_KSTAT_CLASS "misc" int vmm_kstat_update_vcpu(struct kstat *, int); typedef struct vmm_data_req { uint16_t vdr_class; uint16_t vdr_version; uint32_t vdr_flags; uint32_t vdr_len; void *vdr_data; uint32_t *vdr_result_len; } vmm_data_req_t; typedef int (*vmm_data_writef_t)(void *, const vmm_data_req_t *); typedef int (*vmm_data_readf_t)(void *, const vmm_data_req_t *); typedef int (*vmm_data_vcpu_writef_t)(struct vm *, int, const vmm_data_req_t *); typedef int (*vmm_data_vcpu_readf_t)(struct vm *, int, const vmm_data_req_t *); typedef struct vmm_data_version_entry { uint16_t vdve_class; uint16_t vdve_version; /* * If these handlers accept/emit a single item of a fixed length, it * should be specified in vdve_len_expect. The vmm-data logic will then * ensure that requests possess at least that specified length before * calling into the defined handlers. */ uint16_t vdve_len_expect; /* * For handlers which deal with (potentially) multiple items of a fixed * length, vdve_len_per_item is used to hint (via the VDC_VERSION class) * to userspace what that item size is. Although not strictly mutually * exclusive with vdve_len_expect, it is nonsensical to set them both. */ uint16_t vdve_len_per_item; /* * A vmm-data handler is expected to provide read/write functions which * are either VM-wide (via vdve_readf and vdve_writef) or per-vCPU * (via vdve_vcpu_readf and vdve_vcpu_writef). Providing both is not * allowed (but is not currently checked at compile time). */ /* VM-wide handlers */ vmm_data_readf_t vdve_readf; vmm_data_writef_t vdve_writef; /* Per-vCPU handlers */ vmm_data_vcpu_readf_t vdve_vcpu_readf; vmm_data_vcpu_writef_t vdve_vcpu_writef; /* * The vdve_vcpu_readf/writef handlers can rely on vcpuid to be within * the [0, VM_MAXCPU) bounds. If they also can handle vcpuid == -1 (for * VM-wide data), then they can opt into such cases by setting * vdve_vcpu_wildcard to true. * * At a later time, it would make sense to improve the logic so a * vmm-data class could define both the VM-wide and per-vCPU handlers, * letting the incoming vcpuid determine which would be called. Until * then, vdve_vcpu_wildcard is the stopgap. */ bool vdve_vcpu_wildcard; } vmm_data_version_entry_t; #define VMM_DATA_VERSION(sym) SET_ENTRY(vmm_data_version_entries, sym) int vmm_data_read(struct vm *, int, const vmm_data_req_t *); int vmm_data_write(struct vm *, int, const vmm_data_req_t *); /* * TSC Scaling */ uint64_t vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz, uint32_t frac); /* represents a multiplier for a guest in which no scaling is required */ #define VM_TSCM_NOSCALE 0 #endif /* _VMM_KERNEL_H_ */