/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * ACPI CA OSL for Solaris x86 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_DAT_FILE_SIZE (64*1024) /* local functions */ static int CompressEisaID(char *np); static void scan_d2a_map(void); static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus); static void acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj); static int acpica_query_bbn_problem(void); static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh); static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint); static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *); static void acpica_devinfo_handler(ACPI_HANDLE, UINT32, void *); /* * Event queue vars */ int acpica_eventq_init = 0; ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1]; /* * Priorities relative to minclsyspri that each taskq * run at; OSL_NOTIFY_HANDLER needs to run at a higher * priority than OSL_GPE_HANDLER. There's an implicit * assumption that no priority here results in exceeding * maxclsyspri. * Note: these initializations need to match the order of * ACPI_EXECUTE_TYPE. */ int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = { 0, /* OSL_GLOBAL_LOCK_HANDLER */ 2, /* OSL_NOTIFY_HANDLER */ 0, /* OSL_GPE_HANDLER */ 0, /* OSL_DEBUGGER_THREAD */ 0, /* OSL_EC_POLL_HANDLER */ 0 /* OSL_EC_BURST_HANDLER */ }; /* * Note, if you change this path, you need to update * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386 */ static char *acpi_table_path = "/boot/acpi/tables/"; /* non-zero while scan_d2a_map() is working */ static int scanning_d2a_map = 0; static int d2a_done = 0; /* set by acpi_poweroff() in PSMs and appm_ioctl() in acpippm for S3 */ int acpica_use_safe_delay = 0; /* CPU mapping data */ struct cpu_map_item { UINT32 proc_id; ACPI_HANDLE obj; }; static struct cpu_map_item **cpu_map = NULL; static int cpu_map_count = 0; static int cpu_map_built = 0; static int acpi_has_broken_bbn = -1; /* buffer for AcpiOsVprintf() */ #define ACPI_OSL_PR_BUFLEN 1024 static char *acpi_osl_pr_buffer = NULL; static int acpi_osl_pr_buflen; #define D2A_DEBUG /* * */ static void discard_event_queues() { int i; /* * destroy event queues */ for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { if (osl_eventq[i]) ddi_taskq_destroy(osl_eventq[i]); } } /* * */ static ACPI_STATUS init_event_queues() { char namebuf[32]; int i, error = 0; /* * Initialize event queues */ /* Always allocate only 1 thread per queue to force FIFO execution */ for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { snprintf(namebuf, 32, "ACPI%d", i); osl_eventq[i] = ddi_taskq_create(NULL, namebuf, 1, osl_eventq_pri_delta[i] + minclsyspri, 0); if (osl_eventq[i] == NULL) error++; } if (error != 0) { discard_event_queues(); #ifdef DEBUG cmn_err(CE_WARN, "!acpica: could not initialize event queues"); #endif return (AE_ERROR); } acpica_eventq_init = 1; return (AE_OK); } /* * One-time initialization of OSL layer */ ACPI_STATUS AcpiOsInitialize(void) { /* * Allocate buffer for AcpiOsVprintf() here to avoid * kmem_alloc()/kmem_free() at high PIL */ acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP); if (acpi_osl_pr_buffer != NULL) acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN; return (AE_OK); } /* * One-time shut-down of OSL layer */ ACPI_STATUS AcpiOsTerminate(void) { if (acpi_osl_pr_buffer != NULL) kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen); discard_event_queues(); return (AE_OK); } ACPI_PHYSICAL_ADDRESS AcpiOsGetRootPointer() { ACPI_PHYSICAL_ADDRESS Address; /* * For EFI firmware, the root pointer is defined in EFI systab. * The boot code process the table and put the physical address * in the acpi-root-tab property. */ Address = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, "acpi-root-tab", NULL); if ((Address == NULL) && ACPI_FAILURE(AcpiFindRootPointer(&Address))) Address = NULL; return (Address); } /*ARGSUSED*/ ACPI_STATUS AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal, ACPI_STRING *NewVal) { *NewVal = 0; return (AE_OK); } static void acpica_strncpy(char *dest, const char *src, int len) { /*LINTED*/ while ((*dest++ = *src++) && (--len > 0)) /* copy the string */; *dest = '\0'; } ACPI_STATUS AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable, ACPI_TABLE_HEADER **NewTable) { char signature[5]; char oemid[7]; char oemtableid[9]; struct _buf *file; char *buf1, *buf2; int count; char acpi_table_loc[128]; acpica_strncpy(signature, ExistingTable->Signature, 4); acpica_strncpy(oemid, ExistingTable->OemId, 6); acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8); #ifdef DEBUG cmn_err(CE_NOTE, "!acpica: table [%s] v%d OEM ID [%s]" " OEM TABLE ID [%s] OEM rev %x", signature, ExistingTable->Revision, oemid, oemtableid, ExistingTable->OemRevision); #endif /* File name format is "signature_oemid_oemtableid.dat" */ (void) strcpy(acpi_table_loc, acpi_table_path); (void) strcat(acpi_table_loc, signature); /* for example, DSDT */ (void) strcat(acpi_table_loc, "_"); (void) strcat(acpi_table_loc, oemid); /* for example, IntelR */ (void) strcat(acpi_table_loc, "_"); (void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */ (void) strcat(acpi_table_loc, ".dat"); file = kobj_open_file(acpi_table_loc); if (file == (struct _buf *)-1) { *NewTable = 0; return (AE_OK); } else { buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP); count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0); if (count >= MAX_DAT_FILE_SIZE) { cmn_err(CE_WARN, "!acpica: table %s file size too big", acpi_table_loc); *NewTable = 0; } else { buf2 = (char *)kmem_alloc(count, KM_SLEEP); (void) memcpy(buf2, buf1, count); *NewTable = (ACPI_TABLE_HEADER *)buf2; cmn_err(CE_NOTE, "!acpica: replacing table: %s", acpi_table_loc); } } kobj_close_file(file); kmem_free(buf1, MAX_DAT_FILE_SIZE); return (AE_OK); } /* * ACPI semaphore implementation */ typedef struct { kmutex_t mutex; kcondvar_t cv; uint32_t available; uint32_t initial; uint32_t maximum; } acpi_sema_t; /* * */ void acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count) { mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL); cv_init(&sp->cv, NULL, CV_DRIVER, NULL); /* no need to enter mutex here at creation */ sp->available = count; sp->initial = count; sp->maximum = max; } /* * */ void acpi_sema_destroy(acpi_sema_t *sp) { cv_destroy(&sp->cv); mutex_destroy(&sp->mutex); } /* * */ ACPI_STATUS acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time) { ACPI_STATUS rv = AE_OK; clock_t deadline; mutex_enter(&sp->mutex); if (sp->available >= count) { /* * Enough units available, no blocking */ sp->available -= count; mutex_exit(&sp->mutex); return (rv); } else if (wait_time == 0) { /* * Not enough units available and timeout * specifies no blocking */ rv = AE_TIME; mutex_exit(&sp->mutex); return (rv); } /* * Not enough units available and timeout specifies waiting */ if (wait_time != ACPI_WAIT_FOREVER) deadline = ddi_get_lbolt() + (clock_t)drv_usectohz(wait_time * 1000); do { if (wait_time == ACPI_WAIT_FOREVER) cv_wait(&sp->cv, &sp->mutex); else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) { rv = AE_TIME; break; } } while (sp->available < count); /* if we dropped out of the wait with AE_OK, we got the units */ if (rv == AE_OK) sp->available -= count; mutex_exit(&sp->mutex); return (rv); } /* * */ void acpi_sema_v(acpi_sema_t *sp, unsigned count) { mutex_enter(&sp->mutex); sp->available += count; cv_broadcast(&sp->cv); mutex_exit(&sp->mutex); } ACPI_STATUS AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits, ACPI_HANDLE *OutHandle) { acpi_sema_t *sp; if ((OutHandle == NULL) || (InitialUnits > MaxUnits)) return (AE_BAD_PARAMETER); sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP); acpi_sema_init(sp, MaxUnits, InitialUnits); *OutHandle = (ACPI_HANDLE)sp; return (AE_OK); } ACPI_STATUS AcpiOsDeleteSemaphore(ACPI_HANDLE Handle) { if (Handle == NULL) return (AE_BAD_PARAMETER); acpi_sema_destroy((acpi_sema_t *)Handle); kmem_free((void *)Handle, sizeof (acpi_sema_t)); return (AE_OK); } ACPI_STATUS AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout) { if ((Handle == NULL) || (Units < 1)) return (AE_BAD_PARAMETER); return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout)); } ACPI_STATUS AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units) { if ((Handle == NULL) || (Units < 1)) return (AE_BAD_PARAMETER); acpi_sema_v((acpi_sema_t *)Handle, Units); return (AE_OK); } ACPI_STATUS AcpiOsCreateLock(ACPI_HANDLE *OutHandle) { kmutex_t *mp; if (OutHandle == NULL) return (AE_BAD_PARAMETER); mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP); mutex_init(mp, NULL, MUTEX_DRIVER, NULL); *OutHandle = (ACPI_HANDLE)mp; return (AE_OK); } void AcpiOsDeleteLock(ACPI_HANDLE Handle) { if (Handle == NULL) return; mutex_destroy((kmutex_t *)Handle); kmem_free((void *)Handle, sizeof (kmutex_t)); } ACPI_CPU_FLAGS AcpiOsAcquireLock(ACPI_HANDLE Handle) { mutex_enter((kmutex_t *)Handle); return (0); } void AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_CPU_FLAGS Flags) { _NOTE(ARGUNUSED(Flags)) mutex_exit((kmutex_t *)Handle); } void * AcpiOsAllocate(ACPI_SIZE Size) { ACPI_SIZE *tmp_ptr; Size += sizeof (Size); tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP); *tmp_ptr++ = Size; return (tmp_ptr); } void AcpiOsFree(void *Memory) { ACPI_SIZE size, *tmp_ptr; tmp_ptr = (ACPI_SIZE *)Memory; tmp_ptr -= 1; size = *tmp_ptr; kmem_free(tmp_ptr, size); } void * AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_SIZE Size) { /* FUTUREWORK: test PhysicalAddress for > 32 bits */ return (psm_map_new((paddr_t)PhysicalAddress, (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ)); } void AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size) { psm_unmap((caddr_t)LogicalAddress, (size_t)Size); } /*ARGSUSED*/ ACPI_STATUS AcpiOsGetPhysicalAddress(void *LogicalAddress, ACPI_PHYSICAL_ADDRESS *PhysicalAddress) { /* UNIMPLEMENTED: not invoked by ACPI CA code */ return (AE_NOT_IMPLEMENTED); } ACPI_OSD_HANDLER acpi_isr; void *acpi_isr_context; uint_t acpi_wrapper_isr(char *arg) { _NOTE(ARGUNUSED(arg)) int status; status = (*acpi_isr)(acpi_isr_context); if (status == ACPI_INTERRUPT_HANDLED) { return (DDI_INTR_CLAIMED); } else { return (DDI_INTR_UNCLAIMED); } } static int acpi_intr_hooked = 0; ACPI_STATUS AcpiOsInstallInterruptHandler(UINT32 InterruptNumber, ACPI_OSD_HANDLER ServiceRoutine, void *Context) { _NOTE(ARGUNUSED(InterruptNumber)) int retval; int sci_vect; iflag_t sci_flags; acpi_isr = ServiceRoutine; acpi_isr_context = Context; /* * Get SCI (adjusted for PIC/APIC mode if necessary) */ if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) { return (AE_ERROR); } #ifdef DEBUG cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect); #endif retval = add_avintr(NULL, SCI_IPL, (avfunc)acpi_wrapper_isr, "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL); if (retval) { acpi_intr_hooked = 1; return (AE_OK); } else return (AE_BAD_PARAMETER); } ACPI_STATUS AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber, ACPI_OSD_HANDLER ServiceRoutine) { _NOTE(ARGUNUSED(ServiceRoutine)) #ifdef DEBUG cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber); #endif if (acpi_intr_hooked) { rem_avintr(NULL, LOCK_LEVEL - 1, (avfunc)acpi_wrapper_isr, InterruptNumber); acpi_intr_hooked = 0; } return (AE_OK); } ACPI_THREAD_ID AcpiOsGetThreadId(void) { /* * ACPI CA regards thread ID as an error, but it's valid * on Solaris during kernel initialization. Thus, 1 is added * to the kernel thread ID to avoid returning 0 */ return (ddi_get_kt_did() + 1); } /* * */ ACPI_STATUS AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK Function, void *Context) { if (!acpica_eventq_init) { /* * Create taskqs for event handling */ if (init_event_queues() != AE_OK) return (AE_ERROR); } if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context, DDI_NOSLEEP) == DDI_FAILURE) { #ifdef DEBUG cmn_err(CE_WARN, "!acpica: unable to dispatch event"); #endif return (AE_ERROR); } return (AE_OK); } void AcpiOsSleep(ACPI_INTEGER Milliseconds) { /* * During kernel startup, before the first tick interrupt * has taken place, we can't call delay; very late in * kernel shutdown or suspend/resume, clock interrupts * are blocked, so delay doesn't work then either. * So we busy wait if lbolt == 0 (kernel startup) * or if acpica_use_safe_delay has been set to a * non-zero value. */ if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay) drv_usecwait(Milliseconds * 1000); else delay(drv_usectohz(Milliseconds * 1000)); } void AcpiOsStall(UINT32 Microseconds) { drv_usecwait(Microseconds); } /* * Implementation of "Windows 2001" compatible I/O permission map * */ #define OSL_IO_NONE (0) #define OSL_IO_READ (1<<0) #define OSL_IO_WRITE (1<<1) #define OSL_IO_RW (OSL_IO_READ | OSL_IO_WRITE) #define OSL_IO_TERM (1<<2) #define OSL_IO_DEFAULT OSL_IO_RW static struct io_perm { ACPI_IO_ADDRESS low; ACPI_IO_ADDRESS high; uint8_t perm; } osl_io_perm[] = { { 0xcf8, 0xd00, OSL_IO_NONE | OSL_IO_TERM } }; /* * */ static struct io_perm * osl_io_find_perm(ACPI_IO_ADDRESS addr) { struct io_perm *p; p = osl_io_perm; while (p != NULL) { if ((p->low <= addr) && (addr <= p->high)) break; p = (p->perm & OSL_IO_TERM) ? NULL : p+1; } return (p); } /* * */ ACPI_STATUS AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) { struct io_perm *p; /* verify permission */ p = osl_io_find_perm(Address); if (p && (p->perm & OSL_IO_READ) == 0) { cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted", (long)Address, Width); *Value = 0xffffffff; return (AE_ERROR); } switch (Width) { case 8: *Value = inb(Address); break; case 16: *Value = inw(Address); break; case 32: *Value = inl(Address); break; default: cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed", (long)Address, Width); return (AE_BAD_PARAMETER); } return (AE_OK); } ACPI_STATUS AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) { struct io_perm *p; /* verify permission */ p = osl_io_find_perm(Address); if (p && (p->perm & OSL_IO_WRITE) == 0) { cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted", (long)Address, Width); return (AE_ERROR); } switch (Width) { case 8: outb(Address, Value); break; case 16: outw(Address, Value); break; case 32: outl(Address, Value); break; default: cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed", (long)Address, Width); return (AE_BAD_PARAMETER); } return (AE_OK); } /* * */ #define OSL_RW(ptr, val, type, rw) \ { if (rw) *((type *)(ptr)) = *((type *) val); \ else *((type *) val) = *((type *)(ptr)); } static void osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value, UINT32 Width, int write) { size_t maplen = Width / 8; caddr_t ptr; ptr = psm_map_new((paddr_t)Address, maplen, PSM_PROT_WRITE | PSM_PROT_READ); switch (maplen) { case 1: OSL_RW(ptr, Value, uint8_t, write); break; case 2: OSL_RW(ptr, Value, uint16_t, write); break; case 4: OSL_RW(ptr, Value, uint32_t, write); break; default: cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d", Width); break; } psm_unmap(ptr, maplen); } ACPI_STATUS AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value, UINT32 Width) { osl_rw_memory(Address, Value, Width, 0); return (AE_OK); } ACPI_STATUS AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address, UINT32 Value, UINT32 Width) { osl_rw_memory(Address, &Value, Width, 1); return (AE_OK); } ACPI_STATUS AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, void *Value, UINT32 Width) { switch (Width) { case 8: *((UINT64 *)Value) = (UINT64)(*pci_getb_func) (PciId->Bus, PciId->Device, PciId->Function, Register); break; case 16: *((UINT64 *)Value) = (UINT64)(*pci_getw_func) (PciId->Bus, PciId->Device, PciId->Function, Register); break; case 32: *((UINT64 *)Value) = (UINT64)(*pci_getl_func) (PciId->Bus, PciId->Device, PciId->Function, Register); break; case 64: default: cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed", Register, Width); return (AE_BAD_PARAMETER); } return (AE_OK); } /* * */ int acpica_write_pci_config_ok = 1; ACPI_STATUS AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, ACPI_INTEGER Value, UINT32 Width) { if (!acpica_write_pci_config_ok) { cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x" " %lx %d not permitted", PciId->Bus, PciId->Device, PciId->Function, Register, (long)Value, Width); return (AE_OK); } switch (Width) { case 8: (*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function, Register, (uint8_t)Value); break; case 16: (*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function, Register, (uint16_t)Value); break; case 32: (*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function, Register, (uint32_t)Value); break; case 64: default: cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed", Register, Width); return (AE_BAD_PARAMETER); } return (AE_OK); } /* * Called with ACPI_HANDLEs for both a PCI Config Space * OpRegion and (what ACPI CA thinks is) the PCI device * to which this ConfigSpace OpRegion belongs. Since * ACPI CA depends on a valid _BBN object being present * and this is not always true (one old x86 had broken _BBN), * we go ahead and get the correct PCI bus number using the * devinfo mapping (which compensates for broken _BBN). * * Default values for bus, segment, device and function are * all 0 when ACPI CA can't figure them out. * * Some BIOSes implement _BBN() by reading PCI config space * on bus #0 - which means that we'll recurse when we attempt * to create the devinfo-to-ACPI map. If Derive is called during * scan_d2a_map, we don't translate the bus # and return. * * We get the parent of the OpRegion, which must be a PCI * node, fetch the associated devinfo node and snag the * b/d/f from it. */ void AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle, ACPI_PCI_ID **PciId) { ACPI_HANDLE handle; dev_info_t *dip; int bus, device, func, devfn; /* * See above - avoid recursing during scanning_d2a_map. */ if (scanning_d2a_map) return; /* * Get the OpRegion's parent */ if (AcpiGetParent(chandle, &handle) != AE_OK) return; /* * If we've mapped the ACPI node to the devinfo * tree, use the devinfo reg property */ if (acpica_get_devinfo(handle, &dip) == AE_OK) { (void) acpica_get_bdf(dip, &bus, &device, &func); (*PciId)->Bus = bus; (*PciId)->Device = device; (*PciId)->Function = func; } else if (acpica_eval_int(handle, "_ADR", &devfn) == AE_OK) { /* no devinfo node - just confirm the d/f */ (*PciId)->Device = (devfn >> 16) & 0xFFFF; (*PciId)->Function = devfn & 0xFFFF; } } /*ARGSUSED*/ BOOLEAN AcpiOsReadable(void *Pointer, ACPI_SIZE Length) { /* Always says yes; all mapped memory assumed readable */ return (1); } /*ARGSUSED*/ BOOLEAN AcpiOsWritable(void *Pointer, ACPI_SIZE Length) { /* Always says yes; all mapped memory assumed writable */ return (1); } UINT64 AcpiOsGetTimer(void) { /* gethrtime() returns 1nS resolution; convert to 100nS granules */ return ((gethrtime() + 50) / 100); } /*ARGSUSED*/ ACPI_STATUS AcpiOsValidateInterface(char *interface) { return (AE_SUPPORT); } /*ARGSUSED*/ ACPI_STATUS AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr, ACPI_SIZE length) { return (AE_OK); } ACPI_STATUS AcpiOsSignal(UINT32 Function, void *Info) { _NOTE(ARGUNUSED(Function, Info)) /* FUTUREWORK: debugger support */ cmn_err(CE_NOTE, "!OsSignal unimplemented"); return (AE_OK); } void ACPI_INTERNAL_VAR_XFACE AcpiOsPrintf(const char *Format, ...) { va_list ap; va_start(ap, Format); AcpiOsVprintf(Format, ap); va_end(ap); } /* * When != 0, sends output to console * Patchable with kmdb or /etc/system. */ int acpica_console_out = 0; #define ACPICA_OUTBUF_LEN 160 char acpica_outbuf[ACPICA_OUTBUF_LEN]; int acpica_outbuf_offset; /* * */ static void acpica_pr_buf(char *buf) { char c, *bufp, *outp; int out_remaining; /* * copy the supplied buffer into the output buffer * when we hit a '\n' or overflow the output buffer, * output and reset the output buffer */ bufp = buf; outp = acpica_outbuf + acpica_outbuf_offset; out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1; while (c = *bufp++) { *outp++ = c; if (c == '\n' || --out_remaining == 0) { *outp = '\0'; if (acpica_console_out) printf(acpica_outbuf); else (void) strlog(0, 0, 0, SL_CONSOLE | SL_NOTE | SL_LOGONLY, acpica_outbuf); acpica_outbuf_offset = 0; outp = acpica_outbuf; out_remaining = ACPICA_OUTBUF_LEN - 1; } } acpica_outbuf_offset = outp - acpica_outbuf; } void AcpiOsVprintf(const char *Format, va_list Args) { /* * If AcpiOsInitialize() failed to allocate a string buffer, * resort to vprintf(). */ if (acpi_osl_pr_buffer == NULL) { vprintf(Format, Args); return; } /* * It is possible that a very long debug output statement will * be truncated; this is silently ignored. */ (void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args); acpica_pr_buf(acpi_osl_pr_buffer); } void AcpiOsRedirectOutput(void *Destination) { _NOTE(ARGUNUSED(Destination)) /* FUTUREWORK: debugger support */ #ifdef DEBUG cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called"); #endif } UINT32 AcpiOsGetLine(char *Buffer) { _NOTE(ARGUNUSED(Buffer)) /* FUTUREWORK: debugger support */ return (0); } /* * Device tree binding */ static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh) { ACPI_HANDLE sbobj, busobj; int hid, bbn; /* initialize static flag by querying ACPI namespace for bug */ if (acpi_has_broken_bbn == -1) acpi_has_broken_bbn = acpica_query_bbn_problem(); busobj = NULL; AcpiGetHandle(NULL, "\\_SB", &sbobj); while (AcpiGetNextObject(ACPI_TYPE_DEVICE, sbobj, busobj, &busobj) == AE_OK) { if (acpica_eval_hid(busobj, "_HID", &hid) == AE_OK && (hid == HID_PCI_BUS || hid == HID_PCI_EXPRESS_BUS)) { if (acpi_has_broken_bbn) { ACPI_BUFFER rb; rb.Pointer = NULL; rb.Length = ACPI_ALLOCATE_BUFFER; /* Decree _BBN == n from PCI */ if (AcpiGetName(busobj, ACPI_SINGLE_NAME, &rb) != AE_OK) { return (AE_ERROR); } bbn = ((char *)rb.Pointer)[3] - '0'; AcpiOsFree(rb.Pointer); if (bbn == busno || busno == 0) { *rh = busobj; return (AE_OK); } } else { if (acpica_eval_int(busobj, "_BBN", &bbn) == AE_OK) { if (bbn == busno) { *rh = busobj; return (AE_OK); } } else if (busno == 0) { *rh = busobj; return (AE_OK); } } } } return (AE_ERROR); } /* * Look for ACPI problem where _BBN is zero for multiple PCI buses * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus() * below if it exists. */ static int acpica_query_bbn_problem(void) { ACPI_HANDLE sbobj, busobj; int hid, bbn; int zerobbncnt; busobj = NULL; zerobbncnt = 0; AcpiGetHandle(NULL, "\\_SB", &sbobj); while (AcpiGetNextObject(ACPI_TYPE_DEVICE, sbobj, busobj, &busobj) == AE_OK) { if ((acpica_eval_hid(busobj, "_HID", &hid) == AE_OK) && (hid == HID_PCI_BUS || hid == HID_PCI_EXPRESS_BUS) && (acpica_eval_int(busobj, "_BBN", &bbn) == AE_OK)) { if (bbn == 0) { /* * If we find more than one bus with a 0 _BBN * we have the problem that BigBear's BIOS shows */ if (++zerobbncnt > 1) return (1); } } } return (0); } static const char hextab[] = "0123456789ABCDEF"; static int hexdig(int c) { /* * Get hex digit: * * Returns the 4-bit hex digit named by the input character. Returns * zero if the input character is not valid hex! */ int x = ((c < 'a') || (c > 'z')) ? c : (c - ' '); int j = sizeof (hextab); while (--j && (x != hextab[j])) { } return (j); } static int CompressEisaID(char *np) { /* * Compress an EISA device name: * * This routine converts a 7-byte ASCII device name into the 4-byte * compressed form used by EISA (50 bytes of ROM to save 1 byte of * NV-RAM!) */ union { char octets[4]; int retval; } myu; myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03); myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F); myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]); myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]); return (myu.retval); } ACPI_STATUS acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint) { ACPI_STATUS status; ACPI_BUFFER rb; ACPI_OBJECT ro; rb.Pointer = &ro; rb.Length = sizeof (ro); if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb, ACPI_TYPE_INTEGER)) == AE_OK) *rint = ro.Integer.Value; return (status); } static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint) { ACPI_BUFFER rb; ACPI_OBJECT *rv; rb.Pointer = NULL; rb.Length = ACPI_ALLOCATE_BUFFER; if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK && rb.Length != 0) { rv = rb.Pointer; if (rv->Type == ACPI_TYPE_INTEGER) { *rint = rv->Integer.Value; AcpiOsFree(rv); return (AE_OK); } else if (rv->Type == ACPI_TYPE_STRING) { char *stringData; /* Convert the string into an EISA ID */ if (rv->String.Pointer == NULL) { AcpiOsFree(rv); return (AE_ERROR); } stringData = rv->String.Pointer; /* * If the string is an EisaID, it must be 7 * characters; if it's an ACPI ID, it will be 8 * (and we don't care about ACPI ids here). */ if (strlen(stringData) != 7) { AcpiOsFree(rv); return (AE_ERROR); } *rint = CompressEisaID(stringData); AcpiOsFree(rv); return (AE_OK); } else AcpiOsFree(rv); } return (AE_ERROR); } /* * Create linkage between devinfo nodes and ACPI nodes */ static void acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) { ACPI_STATUS status; ACPI_BUFFER rb; /* * Tag the ACPI node with the dip */ status = acpica_set_devinfo(acpiobj, dip); ASSERT(status == AE_OK); /* * Tag the devinfo node with the ACPI name */ rb.Pointer = NULL; rb.Length = ACPI_ALLOCATE_BUFFER; if (AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb) == AE_OK) { (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "acpi-namespace", (char *)rb.Pointer); AcpiOsFree(rb.Pointer); } else { cmn_err(CE_WARN, "acpica: could not get ACPI path!"); } } static void acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj) { int cpu_id; /* * Special case: if we're a uppc system, there won't be * a CPU map yet. So we create one and use the passed-in * processor as CPU 0 */ if (cpu_map == NULL) { cpu_map = kmem_zalloc(sizeof (cpu_map[0]) * NCPU, KM_SLEEP); cpu_map[0] = kmem_zalloc(sizeof (*cpu_map[0]), KM_SLEEP); cpu_map[0]->obj = obj; cpu_map_count = 1; return; } for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { if (cpu_map[cpu_id] == NULL) continue; if (cpu_map[cpu_id]->proc_id == acpi_id) { if (cpu_map[cpu_id]->obj == NULL) cpu_map[cpu_id]->obj = obj; break; } } } /* * Return the ACPI device node matching the CPU dev_info node. */ ACPI_STATUS acpica_get_handle_cpu(dev_info_t *dip, ACPI_HANDLE *rh) { char *device_type_prop; int cpu_id; /* * if "device_type" != "cpu", error */ if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0, "device_type", &device_type_prop) != DDI_PROP_SUCCESS) return (AE_ERROR); if (strcmp("cpu", device_type_prop) != 0) { ddi_prop_free(device_type_prop); return (AE_ERROR); } ddi_prop_free(device_type_prop); /* * if cpu_map itself is NULL, we're a uppc system and * acpica_build_processor_map() hasn't been called yet. * So call it here */ if (cpu_map == NULL) { (void) acpica_build_processor_map(); if (cpu_map == NULL) return (AE_ERROR); } /* * get 'reg' and get obj from cpu_map */ cpu_id = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", -1); if ((cpu_id < 0) || (cpu_map[cpu_id] == NULL) || (cpu_map[cpu_id]->obj == NULL)) return (AE_ERROR); /* * tag devinfo and obj */ (void) acpica_tag_devinfo(dip, cpu_map[cpu_id]->obj); *rh = cpu_map[cpu_id]->obj; return (AE_OK); } /* * Convert CPU device _UID strings into unique integers * ACPI 3.0 spec 6.1.9 permits _UID to be either * an arbitrary string or numeric value. ACPI CA converts * numeric types to a string, providing a consistent API, * but it can not be assumed that _UID is always numeric. * Keep a private list of CPU _UIDs and convert them to * an integer representation. */ struct acpica_cpu_uid { struct acpica_cpu_uid *next; char *uid; }; static struct acpica_cpu_uid *acpica_cpu_uid_list = NULL; static UINT32 acpica_cpu_uid_str_to_uint(char *uidstr) { UINT32 n; struct acpica_cpu_uid *current, **tail; ASSERT(uidstr != NULL); n = 0; current = acpica_cpu_uid_list; tail = &acpica_cpu_uid_list; while (current != NULL) { if (strcmp(current->uid, uidstr) == 0) break; n++; tail = ¤t->next; current = current->next; } /* * failed to find a matching element; create it here */ if (current == NULL) { /* allocate new list element as current one */ current = (struct acpica_cpu_uid *)kmem_zalloc( sizeof (struct acpica_cpu_uid), KM_SLEEP); /* allocate storage for the device ID string */ current->uid = (char *)kmem_zalloc(strlen(uidstr) + 1, KM_SLEEP); strcpy(current->uid, uidstr); *tail = current; } /* * 'n' correctly contains the index for either * a new element or an existing element */ return (n); } /* * Determine if this object is a processor */ static ACPI_STATUS acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv) { ACPI_STATUS status; ACPI_OBJECT_TYPE objtype; UINT32 acpi_id; ACPI_BUFFER rb; if (AcpiGetType(obj, &objtype) != AE_OK) return (AE_OK); if (objtype == ACPI_TYPE_PROCESSOR) { /* process a Processor */ rb.Pointer = NULL; rb.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObjectTyped(obj, NULL, NULL, &rb, ACPI_TYPE_PROCESSOR); if (status != AE_OK) { cmn_err(CE_WARN, "acpica: error probing Processor"); return (status); } acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId; AcpiOsFree(rb.Pointer); } else if (objtype == ACPI_TYPE_DEVICE) { /* process a processor Device */ rb.Pointer = NULL; rb.Length = ACPI_ALLOCATE_BUFFER; status = AcpiGetObjectInfo(obj, &rb); if (status != AE_OK) { cmn_err(CE_WARN, "acpica: error probing Processor Device\n"); return (status); } ASSERT(((ACPI_OBJECT *)rb.Pointer)->Type == ACPI_TYPE_DEVICE); acpi_id = acpica_cpu_uid_str_to_uint( ((ACPI_DEVICE_INFO *)rb.Pointer)->UniqueId.Value); AcpiOsFree(rb.Pointer); } acpica_add_processor_to_map(acpi_id, obj); return (AE_OK); } static void scan_d2a_map(void) { dev_info_t *dip, *cdip; ACPI_HANDLE acpiobj; char *device_type_prop; int bus; static int map_error = 0; if (map_error) return; scanning_d2a_map = 1; /* * Find all child-of-root PCI buses, and find their corresponding * ACPI child-of-root PCI nodes. For each one, add to the * d2a table. */ for (dip = ddi_get_child(ddi_root_node()); dip != NULL; dip = ddi_get_next_sibling(dip)) { /* prune non-PCI nodes */ if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0, "device_type", &device_type_prop) != DDI_PROP_SUCCESS) continue; if ((strcmp("pci", device_type_prop) != 0) && (strcmp("pciex", device_type_prop) != 0)) { ddi_prop_free(device_type_prop); continue; } ddi_prop_free(device_type_prop); /* * To get bus number of dip, get first child and get its * bus number. If NULL, just continue, because we don't * care about bus nodes with no children anyway. */ if ((cdip = ddi_get_child(dip)) == NULL) continue; if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) { #ifdef D2ADEBUG cmn_err(CE_WARN, "Can't get bus number of PCI child?"); #endif map_error = 1; scanning_d2a_map = 0; d2a_done = 1; return; } if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) { #ifdef D2ADEBUG cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus); #endif map_error = 1; continue; } acpica_tag_devinfo(dip, acpiobj); /* call recursively to enumerate subtrees */ scan_d2a_subtree(dip, acpiobj, bus); } scanning_d2a_map = 0; d2a_done = 1; } /* * For all acpi child devices of acpiobj, find their matching * dip under "dip" argument. (matching means "matches dev/fn"). * bus is assumed to already be a match from caller, and is * used here only to record in the d2a entry. Recurse if necessary. */ static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus) { int acpi_devfn, hid; ACPI_HANDLE acld; dev_info_t *dcld; int dcld_b, dcld_d, dcld_f; int dev, func; char *device_type_prop; acld = NULL; while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld) == AE_OK) { /* get the dev/func we're looking for in the devinfo tree */ if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK) continue; dev = (acpi_devfn >> 16) & 0xFFFF; func = acpi_devfn & 0xFFFF; /* look through all the immediate children of dip */ for (dcld = ddi_get_child(dip); dcld != NULL; dcld = ddi_get_next_sibling(dcld)) { if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0) continue; /* dev must match; function must match or wildcard */ if (dcld_d != dev || (func != 0xFFFF && func != dcld_f)) continue; bus = dcld_b; /* found a match, record it */ acpica_tag_devinfo(dcld, acld); /* if we find a bridge, recurse from here */ if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld, 0, "device_type", &device_type_prop) == DDI_PROP_SUCCESS) { if ((strcmp("pci", device_type_prop) == 0) || (strcmp("pciex", device_type_prop) == 0)) scan_d2a_subtree(dcld, acld, bus); ddi_prop_free(device_type_prop); } /* done finding a match, so break now */ break; } } } /* * Return bus/dev/fn for PCI dip (note: not the parent "pci" node). */ int acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func) { pci_regspec_t *pci_rp; int len; if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS) return (-1); if (len < (sizeof (pci_regspec_t) / sizeof (int))) { ddi_prop_free(pci_rp); return (-1); } if (bus != NULL) *bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi); if (device != NULL) *device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi); if (func != NULL) *func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi); ddi_prop_free(pci_rp); return (0); } /* * Return the ACPI device node matching this dev_info node, if it * exists in the ACPI tree. */ ACPI_STATUS acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh) { ACPI_STATUS status; char *acpiname; if (!d2a_done) scan_d2a_map(); if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) { return (acpica_get_handle_cpu(dip, rh)); } status = AcpiGetHandle(NULL, acpiname, rh); ddi_prop_free((void *)acpiname); return (status); } /* * Manage OS data attachment to ACPI nodes */ /* * Return the (dev_info_t *) associated with the ACPI node. */ ACPI_STATUS acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp) { ACPI_STATUS status; void *ptr; status = AcpiGetData(obj, acpica_devinfo_handler, &ptr); if (status == AE_OK) *dipp = (dev_info_t *)ptr; return (status); } /* * Set the dev_info_t associated with the ACPI node. */ static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip) { ACPI_STATUS status; status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip); return (status); } /* * */ void acpica_devinfo_handler(ACPI_HANDLE obj, UINT32 func, void *data) { /* noop */ } /* * */ void acpica_map_cpu(processorid_t cpuid, UINT32 proc_id) { struct cpu_map_item *item; if (cpu_map == NULL) cpu_map = kmem_zalloc(sizeof (item) * NCPU, KM_SLEEP); item = kmem_zalloc(sizeof (*item), KM_SLEEP); item->proc_id = proc_id; item->obj = NULL; cpu_map[cpuid] = item; cpu_map_count++; } void acpica_build_processor_map() { ACPI_STATUS status; void *rv; /* * shouldn't be called more than once anyway */ if (cpu_map_built) return; /* * Look for Processor objects */ status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR, ACPI_ROOT_OBJECT, 4, acpica_probe_processor, NULL, &rv); ASSERT(status == AE_OK); /* * Look for processor Device objects */ status = AcpiGetDevices("ACPI0007", acpica_probe_processor, NULL, &rv); ASSERT(status == AE_OK); cpu_map_built = 1; }