/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2019 Joyent, Inc. */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. */ /* * UNIX machine dependent virtual memory support. */ #ifndef _VM_DEP_H #define _VM_DEP_H #ifdef __cplusplus extern "C" { #endif #include #include #include #include /* * WARNING: vm_dep.h is included by files in common. */ #define GETTICK() tsc_read() /* * Do not use this function for obtaining clock tick. This * is called by callers who do not need to have a guarenteed * correct tick value. The proper routine to use is tsc_read(). */ extern u_longlong_t randtick(); extern uint_t page_create_update_flags_x86(uint_t); extern size_t plcnt_sz(size_t); #define PLCNT_SZ(ctrs_sz) (ctrs_sz = plcnt_sz(ctrs_sz)) extern caddr_t plcnt_init(caddr_t); #define PLCNT_INIT(addr) (addr = plcnt_init(addr)) extern void plcnt_inc_dec(page_t *, int, int, long, int); #define PLCNT_INCR(pp, mnode, mtype, szc, flags) \ plcnt_inc_dec(pp, mtype, szc, 1l << PAGE_BSZS_SHIFT(szc), flags) #define PLCNT_DECR(pp, mnode, mtype, szc, flags) \ plcnt_inc_dec(pp, mtype, szc, \ (long)(ULONG_MAX << PAGE_BSZS_SHIFT(szc)), flags) /* * macro to update page list max counts. no-op on x86. */ #define PLCNT_XFER_NORELOC(pp) /* * macro to modify the page list max counts when memory is added to * the page lists during startup (add_physmem) or during a DR operation * when memory is added (kphysm_add_memory_dynamic) or deleted * (kphysm_del_cleanup). */ #define PLCNT_MODIFY_MAX(pfn, cnt) mtype_modify_max(pfn, cnt) extern int memrange_num(pfn_t); extern int pfn_2_mtype(pfn_t); extern int mtype_func(int, int, uint_t); extern void mtype_modify_max(pfn_t, long); extern int mnode_pgcnt(int); extern int mnode_range_cnt(int); /* * candidate counters in vm_pagelist.c are indexed by color and range */ #define NUM_MEM_RANGES 4 /* memory range types */ #define MAX_MNODE_MRANGES NUM_MEM_RANGES #define MNODE_RANGE_CNT(mnode) mnode_range_cnt(mnode) #define MNODE_MAX_MRANGE(mnode) memrange_num(mem_node_config[mnode].physbase) /* * This was really badly defined, it implicitly uses mnode_maxmrange[] * which is a static in vm_pagelist.c */ extern int mtype_2_mrange(int); #define MTYPE_2_MRANGE(mnode, mtype) \ (mnode_maxmrange[mnode] - mtype_2_mrange(mtype)) /* * Per page size free lists. Allocated dynamically. * dimensions [mtype][mmu_page_sizes][colors] * * mtype specifies a physical memory range with a unique mnode. */ extern page_t ****page_freelists; #define PAGE_FREELISTS(mnode, szc, color, mtype) \ (*(page_freelists[mtype][szc] + (color))) /* * For now there is only a single size cache list. Allocated dynamically. * dimensions [mtype][colors] * * mtype specifies a physical memory range with a unique mnode. */ extern page_t ***page_cachelists; #define PAGE_CACHELISTS(mnode, color, mtype) \ (*(page_cachelists[mtype] + (color))) /* * There are mutexes for both the page freelist * and the page cachelist. We want enough locks to make contention * reasonable, but not too many -- otherwise page_freelist_lock() gets * so expensive that it becomes the bottleneck! */ #define NPC_MUTEX 16 extern kmutex_t *fpc_mutex[NPC_MUTEX]; extern kmutex_t *cpc_mutex[NPC_MUTEX]; extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t); extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int); /* mem node iterator is not used on x86 */ #define MEM_NODE_ITERATOR_DECL(it) #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) /* * interleaved_mnodes mode is never set on x86, therefore, * simply return the limits of the given mnode, which then * determines the length of hpm_counters array for the mnode. */ #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ { \ (physbase) = mem_node_config[(mnode)].physbase; \ (physmax) = mem_node_config[(mnode)].physmax; \ (first) = (mnode); \ } #define PAGE_CTRS_WRITE_LOCK(mnode) \ { \ rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);\ page_freelist_lock(mnode); \ } #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ { \ page_freelist_unlock(mnode); \ rw_exit(&page_ctrs_rwlock[(mnode)]); \ } /* * macro to call page_ctrs_adjust() when memory is added * during a DR operation. */ #define PAGE_CTRS_ADJUST(pfn, cnt, rv) { \ spgcnt_t _cnt = (spgcnt_t)(cnt); \ int _mn; \ pgcnt_t _np; \ pfn_t _pfn = (pfn); \ pfn_t _endpfn = _pfn + _cnt; \ while (_pfn < _endpfn) { \ _mn = PFN_2_MEM_NODE(_pfn); \ _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - _pfn; \ _pfn += _np; \ if ((rv = page_ctrs_adjust(_mn)) != 0) \ break; \ } \ } #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift) #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))) #define PFN_2_COLOR(pfn, szc, it) \ (((pfn) & page_colors_mask) >> \ (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) #define PNUM_SIZE(szc) \ (hw_page_array[(szc)].hp_pgcnt) #define PNUM_SHIFT(szc) \ (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) #define PAGE_GET_SHIFT(szc) \ (hw_page_array[(szc)].hp_shift) #define PAGE_GET_PAGECOLORS(szc) \ (hw_page_array[(szc)].hp_colors) /* * This macro calculates the next sequential pfn with the specified * color using color equivalency mask */ #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ { \ uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ pfn_t spfn = pfn >> pfn_shift; \ pfn_t stride = (ceq_mask) + 1; \ ASSERT(((color) & ~(ceq_mask)) == 0); \ ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ pfn += stride << pfn_shift; \ } else { \ pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \ } \ } /* get the color equivalency mask for the next szc */ #define PAGE_GET_NSZ_MASK(szc, mask) \ ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) /* get the color of the next szc */ #define PAGE_GET_NSZ_COLOR(szc, color) \ ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) /* Find the bin for the given page if it was of size szc */ #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, NULL)) #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) #define PP_2_MTYPE(pp) (pfn_2_mtype(pp->p_pagenum)) #define PP_2_SZC(pp) (pp->p_szc) #define SZCPAGES(szc) (1 << PAGE_BSZS_SHIFT(szc)) #define PFN_BASE(pfnum, szc) (pfnum & ~(SZCPAGES(szc) - 1)) /* * this structure is used for walking free page lists * controls when to split large pages into smaller pages, * and when to coalesce smaller pages into larger pages */ typedef struct page_list_walker { uint_t plw_colors; /* num of colors for szc */ uint_t plw_color_mask; /* colors-1 */ uint_t plw_bin_step; /* next bin: 1 or 2 */ uint_t plw_count; /* loop count */ uint_t plw_bin0; /* starting bin */ uint_t plw_bin_marker; /* bin after initial jump */ uint_t plw_bin_split_prev; /* last bin we tried to split */ uint_t plw_do_split; /* set if OK to split */ uint_t plw_split_next; /* next bin to split */ uint_t plw_ceq_dif; /* number of different color groups */ /* to check */ uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ } page_list_walker_t; void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, int can_split, int use_ceq, page_list_walker_t *plw); uint_t page_list_walk_next_bin(uchar_t szc, uint_t bin, page_list_walker_t *plw); extern struct cpu cpus[]; #define CPU0 cpus extern int mtype_init(vnode_t *, caddr_t, uint_t *, size_t); #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ (mtype = mtype_init(vp, vaddr, &(flags), pgsz)) /* * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list, * and page_get_contig_pages) * * MTYPE_START sets the initial mtype. -1 if the mtype range specified does * not contain mnode. * * MTYPE_NEXT sets the next mtype. -1 if there are no more valid * mtype in the range. */ #define MTYPE_START(mnode, mtype, flags) \ (mtype = mtype_func(mnode, mtype, flags)) #define MTYPE_NEXT(mnode, mtype, flags) { \ if (flags & PGI_MT_RANGE) { \ mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); \ } else { \ mtype = -1; \ } \ } extern int mtype_pgr_init(int *, page_t *, pgcnt_t); #define MTYPE_PGR_INIT(mtype, flags, pp, pgcnt) \ (mtype = mtype_pgr_init(&flags, pp, pgcnt)) #define MNODE_PGCNT(mnode) mnode_pgcnt(mnode) extern void mnodetype_2_pfn(int, int, pfn_t *, pfn_t *); #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ mnodetype_2_pfn(mnode, mtype, &pfnlo, &pfnhi) #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) #ifdef DEBUG #define CHK_LPG(pp, szc) chk_lpg(pp, szc) extern void chk_lpg(page_t *, uchar_t); #else #define CHK_LPG(pp, szc) #endif #define FULL_REGION_CNT(rg_szc) \ (LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1)) /* Return the leader for this mapping size */ #define PP_GROUPLEADER(pp, szc) \ (&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))]) /* Return the root page for this page based on p_szc */ #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ PP_GROUPLEADER((pp), (pp)->p_szc)) /* * The counter base must be per page_counter element to prevent * races when re-indexing, and the base page size element should * be aligned on a boundary of the given region size. * * We also round up the number of pages spanned by the counters * for a given region to PC_BASE_ALIGN in certain situations to simplify * the coding for some non-performance critical routines. */ #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1)) #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) /* * cpu/mmu-dependent vm variables */ extern uint_t mmu_page_sizes; extern uint_t mmu_exported_page_sizes; /* * page sizes that legacy applications can see via getpagesizes(3c). * Used to prevent legacy applications from inadvertantly using the * 'new' large pagesizes (1g and above). */ extern uint_t mmu_legacy_page_sizes; /* For x86, userszc is the same as the kernel's szc */ #define USERSZC_2_SZC(userszc) (userszc) #define SZC_2_USERSZC(szc) (szc) /* * for hw_page_map_t, sized to hold the ratio of large page to base * pagesize (1024 max) */ typedef short hpmctr_t; /* * get the setsize of the current cpu - assume homogenous for x86 */ extern int l2cache_sz, l2cache_linesz, l2cache_assoc; #define L2CACHE_ALIGN l2cache_linesz #define L2CACHE_ALIGN_MAX 64 #define CPUSETSIZE() \ (l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE) /* * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count * for the number of base pages in this pagesize */ #define PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT) /* * Internal PG_ flags. */ #define PGI_RELOCONLY 0x010000 /* opposite of PG_NORELOC */ #define PGI_NOCAGE 0x020000 /* cage is disabled */ #define PGI_PGCPHIPRI 0x040000 /* page_get_contig_page pri alloc */ #define PGI_PGCPSZC0 0x080000 /* relocate base pagesize page */ /* * PGI range flags - should not overlap PGI flags */ #define PGI_MT_RANGE0 0x1000000 /* mtype range to 0 */ #define PGI_MT_RANGE16M 0x2000000 /* mtype range to 16m */ #define PGI_MT_RANGE4G 0x4000000 /* mtype range to 4g */ #define PGI_MT_NEXT 0x8000000 /* get next mtype */ #define PGI_MT_RANGE (PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G) /* * Maximum and default values for user heap, stack, private and shared * anonymous memory, and user text and initialized data. * Used by map_pgsz*() routines. */ extern size_t max_uheap_lpsize; extern size_t default_uheap_lpsize; extern size_t max_ustack_lpsize; extern size_t default_ustack_lpsize; extern size_t max_privmap_lpsize; extern size_t max_uidata_lpsize; extern size_t max_utext_lpsize; extern size_t max_shm_lpsize; extern size_t mcntl0_lpsize; /* * Sanity control. Don't use large pages regardless of user * settings if there's less than priv or shm_lpg_min_physmem memory installed. * The units for this variable are 8K pages. */ extern pgcnt_t privm_lpg_min_physmem; extern pgcnt_t shm_lpg_min_physmem; /* * hash as and addr to get a bin. */ #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \ & page_colors_mask) >> \ (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) /* * cpu private vm data - accessed thru CPU->cpu_vm_data * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() * vc_pnext_memseg: tracks last memseg visited in page_nextn() * vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t * vc_kmsize: orignal kmem size for this vm_cpu_data_t */ typedef struct { struct memseg *vc_pnum_memseg; struct memseg *vc_pnext_memseg; void *vc_kmptr; size_t vc_kmsize; } vm_cpu_data_t; /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ #define VM_CPU_DATA_PADSIZE \ (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) /* * When a bin is empty, and we can't satisfy a color request correctly, * we scan. If we assume that the programs have reasonable spatial * behavior, then it will not be a good idea to use the adjacent color. * Using the adjacent color would result in virtually adjacent addresses * mapping into the same spot in the cache. So, if we stumble across * an empty bin, skip a bunch before looking. After the first skip, * then just look one bin at a time so we don't miss our cache on * every look. Be sure to check every bin. Page_create() will panic * if we miss a page. * * This also explains the `<=' in the for loops in both page_get_freelist() * and page_get_cachelist(). Since we checked the target bin, skipped * a bunch, then continued one a time, we wind up checking the target bin * twice to make sure we get all of them bins. */ #define BIN_STEP 19 #ifdef VM_STATS struct vmm_vmstats_str { ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ ulong_t pgf_allocok[MMU_PAGE_SIZES]; ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; ulong_t pgf_allocdeferred; ulong_t pgf_allocretry[MMU_PAGE_SIZES]; ulong_t pgc_alloc; /* page_get_cachelist */ ulong_t pgc_allocok; ulong_t pgc_allocokrem; ulong_t pgc_allocokdeferred; ulong_t pgc_allocfailed; ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; ulong_t pgcp_allocok[MMU_PAGE_SIZES]; ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; ulong_t ptcpfailszc[MMU_PAGE_SIZES]; ulong_t ptcpfailcage[MMU_PAGE_SIZES]; ulong_t ptcpok[MMU_PAGE_SIZES]; ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; ulong_t pgmf_allocok[MMU_PAGE_SIZES]; ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ ulong_t pgmc_allocfailed; ulong_t pgmc_allocempty; ulong_t pgmc_allocok; ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ ulong_t plsub_free[MMU_PAGE_SIZES]; ulong_t pladd_cache; ulong_t plsub_cache; ulong_t plsubpages_szcbig; ulong_t plsubpages_szc0; ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ ulong_t pfs_demote[MMU_PAGE_SIZES]; ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; ulong_t ppr_relocok[MMU_PAGE_SIZES]; ulong_t ppr_copyfail; /* page coalesce counter */ ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; /* candidates useful */ ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; /* ctrs changed after locking */ ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; /* page_freelist_coalesce failed */ ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ ulong_t restrict4gcnt; ulong_t unrestrict16mcnt; /* non-DMA 16m allocs allowed */ ulong_t pgpanicalloc; /* PG_PANIC allocation */ ulong_t pcf_deny[MMU_PAGE_SIZES]; /* page_chk_freelist */ ulong_t pcf_allow[MMU_PAGE_SIZES]; }; extern struct vmm_vmstats_str vmm_vmstats; #endif /* VM_STATS */ extern size_t page_ctrs_sz(void); extern caddr_t page_ctrs_alloc(caddr_t); extern void page_ctr_sub(int, int, page_t *, int); extern page_t *page_freelist_split(uchar_t, uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *); extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int, pfn_t); extern void page_freelist_coalesce_all(int); extern uint_t page_get_pagecolors(uint_t); extern void pfnzero(pfn_t, uint_t, uint_t); #ifdef __cplusplus } #endif #endif /* _VM_DEP_H */