/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _VM_HTABLE_H #define _VM_HTABLE_H #pragma ident "%Z%%M% %I% %E% SMI" #ifdef __cplusplus extern "C" { #endif #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) #include #endif extern void atomic_andb(uint8_t *addr, uint8_t value); extern void atomic_orb(uint8_t *addr, uint8_t value); extern void atomic_inc16(uint16_t *addr); extern void atomic_dec16(uint16_t *addr); extern void mmu_tlbflush_entry(caddr_t addr); /* * Each hardware page table has an htable_t describing it. * * We use a reference counter mechanism to detect when we can free an htable. * In the implmentation the reference count is split into 2 separate counters: * * ht_busy is a traditional reference count of uses of the htable pointer * * ht_valid_cnt is a count of how references are implied by valid PTE/PTP * entries in the pagetable * * ht_busy is only incremented by htable_lookup() or htable_create() * while holding the appropriate hash_table mutex. While installing a new * valid PTE or PTP, in order to increment ht_valid_cnt a thread must have * done an htable_lookup() or htable_create() but not the htable_release yet. * * htable_release(), while holding the mutex, can know that if * busy == 1 and valid_cnt == 0, the htable can be free'd. * * The fields have been ordered to make htable_lookup() fast. Hence, * ht_hat, ht_vaddr, ht_level and ht_next need to be clustered together. */ struct htable { struct htable *ht_next; /* forward link for hash table */ struct hat *ht_hat; /* hat this mapping comes from */ uintptr_t ht_vaddr; /* virt addr at start of this table */ level_t ht_level; /* page table level: 0=4K, 1=2M, ... */ uint16_t ht_flags; /* see below */ int16_t ht_busy; /* implements locking protocol */ uint16_t ht_num_ptes; /* # of PTEs in page table */ int16_t ht_valid_cnt; /* # of valid entries in this table */ uint32_t ht_lock_cnt; /* # of locked entries in this table */ /* never used for kernel hat */ pfn_t ht_pfn; /* pfn of page of the pagetable */ struct htable *ht_prev; /* backward link for hash table */ struct htable *ht_parent; /* htable that points to this htable */ struct htable *ht_shares; /* for HTABLE_SHARED_PFN only */ }; typedef struct htable htable_t; /* * Flags values for htable ht_flags field: * * HTABLE_VLP - this is the top level htable of a VLP HAT. * * HTABLE_SHARED_PFN - this htable had it's PFN assigned from sharing another * htable. Used by hat_share() for ISM. */ #define HTABLE_VLP (0x0001) #define HTABLE_SHARED_PFN (0x0002) /* * The htable hash table hashing function. The 28 is so that high * order bits are include in the hash index to skew the wrap * around of addresses. Even though the hash buckets are stored per * hat we include the value of hat pointer in the hash function so * that the secondary hash for the htable mutex winds up begin different in * every address space. */ #define HTABLE_HASH(hat, va, lvl) \ ((((va) >> LEVEL_SHIFT(1)) + ((va) >> 28) + (lvl) + \ ((uintptr_t)(hat) >> 4)) & ((hat)->hat_num_hash - 1)) /* * For 32 bit, access to page table entries is done via the page table's PFN and * the index of the PTE. We use a CPU specific mapping (a la ppcopy) to map * in page tables on an "as needed" basis. * * 64 bit kernels will use seg_kpm style mappings and avoid any overhead. * * The code uses compare and swap instructions to read/write PTE's to * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. * Again this can be optimized on 64 bit systems, since aligned load/store * will naturally be atomic. * * Each CPU gets a unique hat_cpu_info structure in cpu_hat_info. */ struct hat_cpu_info { pfn_t hci_mapped_pfn; /* pfn of currently mapped page table */ x86pte_t *hci_pagetable_va; /* VA to use for mappings */ x86pte_t *hci_kernel_pte; /* kernel PTE for cpu_pagetable_va */ kmutex_t hci_mutex; /* mutex to ensure sequential usage */ #if defined(__amd64) pfn_t hci_vlp_pfn; /* pfn of hci_vlp_l3ptes */ x86pte_t *hci_vlp_l3ptes; /* VLP Level==3 pagetable (top) */ x86pte_t *hci_vlp_l2ptes; /* VLP Level==2 pagetable */ #endif /* __amd64 */ }; /* * Compute the last page aligned VA mapped by an htable. * * Given a va and a level, compute the virtual address of the start of the * next page at that level. * * XX64 - The check for the VA hole needs to be better generalized. */ #if defined(__amd64) #define HTABLE_LAST_PAGE(ht) \ ((ht)->ht_level == mmu.max_level ? ((uintptr_t)0UL - MMU_PAGESIZE) :\ ((ht)->ht_vaddr - MMU_PAGESIZE + \ ((uintptr_t)((ht)->ht_num_ptes) << LEVEL_SHIFT((ht)->ht_level)))) #define NEXT_ENTRY_VA(va, l) \ ((va & LEVEL_MASK(l)) + LEVEL_SIZE(l) == mmu.hole_start ? \ mmu.hole_end : (va & LEVEL_MASK(l)) + LEVEL_SIZE(l)) #elif defined(__i386) #define HTABLE_LAST_PAGE(ht) ((ht)->ht_vaddr - MMU_PAGESIZE + \ ((uintptr_t)((ht)->ht_num_ptes) << LEVEL_SHIFT((ht)->ht_level))) #define NEXT_ENTRY_VA(va, l) ((va & LEVEL_MASK(l)) + LEVEL_SIZE(l)) #endif #if defined(_KERNEL) /* * initialization function called from hat_init() */ extern void htable_init(void); /* * Functions to lookup, or "lookup and create", the htable corresponding * to the virtual address "vaddr" in the "hat" at the given "level" of * page tables. htable_lookup() may return NULL if no such entry exists. * * On return the given htable is marked busy (a shared lock) - this prevents * the htable from being stolen or freed) until htable_release() is called. * * If kalloc_flag is set on an htable_create() we can't call kmem allocation * routines for this htable, since it's for the kernel hat itself. * * htable_acquire() is used when an htable pointer has been extracted from * an hment and we need to get a reference to the htable. */ extern htable_t *htable_lookup(struct hat *hat, uintptr_t vaddr, level_t level); extern htable_t *htable_create(struct hat *hat, uintptr_t vaddr, level_t level, htable_t *shared); extern void htable_acquire(htable_t *); extern void htable_release(htable_t *ht); /* * Code to free all remaining htables for a hat. Called after the hat is no * longer in use by any thread. */ extern void htable_purge_hat(struct hat *hat); /* * Find the htable, page table entry index, and PTE of the given virtual * address. If not found returns NULL. When found, returns the htable_t *, * sets entry, and has a hold on the htable. */ extern htable_t *htable_getpte(struct hat *, uintptr_t, uint_t *, x86pte_t *, level_t); /* * Similar to hat_getpte(), except that this only succeeds if a valid * page mapping is present. */ extern htable_t *htable_getpage(struct hat *hat, uintptr_t va, uint_t *entry); /* * Called to allocate initial/additional htables for reserve. */ extern void htable_initial_reserve(uint_t); extern void htable_reserve(uint_t); /* * Used to readjust the htable reserve after the reserve list has been used. * Also called after boot to release left over boot reserves. */ extern void htable_adjust_reserve(void); /* * Routine to find the next populated htable at or above a given virtual * address. Can specify an upper limit, or HTABLE_WALK_TO_END to indicate * that it should search the entire address space. Similar to * hat_getpte(), but used for walking through address ranges. It can be * used like this: * * va = ... * ht = NULL; * while (va < end_va) { * pte = htable_walk(hat, &ht, &va, end_va); * if (!pte) * break; * * ... code to operate on page at va ... * * va += LEVEL_SIZE(ht->ht_level); * } * if (ht) * htable_release(ht); * */ extern x86pte_t htable_walk(struct hat *hat, htable_t **ht, uintptr_t *va, uintptr_t eaddr); #define HTABLE_WALK_TO_END ((uintptr_t)-1) /* * Utilities convert between virtual addresses and page table entry indeces. */ extern uint_t htable_va2entry(uintptr_t va, htable_t *ht); extern uintptr_t htable_e2va(htable_t *ht, uint_t entry); /* * Interfaces that provide access to page table entries via the htable. * * Note that all accesses except x86pte_copy() and x86pte_zero() are atomic. */ extern void x86pte_cpu_init(cpu_t *, void *); extern x86pte_t x86pte_get(htable_t *, uint_t entry); extern x86pte_t x86pte_set(htable_t *, uint_t entry, x86pte_t new, void *); extern x86pte_t x86pte_invalidate_pfn(htable_t *ht, uint_t entry, pfn_t pfn, void *pte_ptr); extern x86pte_t x86pte_update(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new); extern void x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t cnt); extern void x86pte_zero(htable_t *ht, uint_t entry, uint_t cnt); /* * these are actually inlines for "lock; incw", "lock; decw", etc. instructions. */ #define HTABLE_INC(x) atomic_inc16((uint16_t *)&x) #define HTABLE_DEC(x) atomic_dec16((uint16_t *)&x) #define HTABLE_LOCK_INC(ht) atomic_add_32(&(ht)->ht_lock_cnt, 1) #define HTABLE_LOCK_DEC(ht) atomic_add_32(&(ht)->ht_lock_cnt, -1) #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _VM_HTABLE_H */