/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright 2018 Joyent, Inc. All rights reserved. * Copyright (c) 2014, 2015 by Delphix. All rights reserved. */ /* * VM - Hardware Address Translation management for i386 and amd64 * * Implementation of the interfaces described in * * Nearly all the details of how the hardware is managed should not be * visible outside this layer except for misc. machine specific functions * that work in conjunction with this code. * * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. */ /* * amd64 HAT Design * * ---------- * Background * ---------- * * On x86, the address space is shared between a user process and the kernel. * This is different from SPARC. Conventionally, the kernel lives at the top of * the address space and the user process gets to enjoy the rest of it. If you * look at the image of the address map in uts/i86pc/os/startup.c, you'll get a * rough sense of how the address space is laid out and used. * * Every unique address space is represented by an instance of a HAT structure * called a 'hat_t'. In addition to a hat_t structure for each process, there is * also one that is used for the kernel (kas.a_hat), and each CPU ultimately * also has a HAT. * * Each HAT contains a pointer to its root page table. This root page table is * what we call an L3 page table in illumos and Intel calls the PML4. It is the * physical address of the L3 table that we place in the %cr3 register which the * processor uses. * * Each of the many layers of the page table is represented by a structure * called an htable_t. The htable_t manages a set of 512 8-byte entries. The * number of entries in a given page table is constant across all different * level page tables. Note, this is only true on amd64. This has not always been * the case on x86. * * Each entry in a page table, generally referred to as a PTE, may refer to * another page table or a memory location, depending on the level of the page * table and the use of large pages. Importantly, the top-level L3 page table * (PML4) only supports linking to further page tables. This is also true on * systems which support a 5th level page table (which we do not currently * support). * * Historically, on x86, when a process was running on CPU, the root of the page * table was inserted into %cr3 on each CPU on which it was currently running. * When processes would switch (by calling hat_switch()), then the value in %cr3 * on that CPU would change to that of the new HAT. While this behavior is still * maintained in the xpv kernel, this is not what is done today. * * ------------------- * Per-CPU Page Tables * ------------------- * * Throughout the system the 64-bit kernel has a notion of what it calls a * per-CPU page table or PCP. The notion of a per-CPU page table was originally * introduced as part of the original work to support x86 PAE. On the 64-bit * kernel, it was originally used for 32-bit processes running on the 64-bit * kernel. The rationale behind this was that each 32-bit process could have all * of its memory represented in a single L2 page table as each L2 page table * entry represents 1 GbE of memory. * * Following on from this, the idea was that given that all of the L3 page table * entries for 32-bit processes are basically going to be identical with the * exception of the first entry in the page table, why not share those page * table entries. This gave rise to the idea of a per-CPU page table. * * The way this works is that we have a member in the machcpu_t called the * mcpu_hat_info. That structure contains two different 4k pages: one that * represents the L3 page table and one that represents an L2 page table. When * the CPU starts up, the L3 page table entries are copied in from the kernel's * page table. The L3 kernel entries do not change throughout the lifetime of * the kernel. The kernel portion of these L3 pages for each CPU have the same * records, meaning that they point to the same L2 page tables and thus see a * consistent view of the world. * * When a 32-bit process is loaded into this world, we copy the 32-bit process's * four top-level page table entries into the CPU's L2 page table and then set * the CPU's first L3 page table entry to point to the CPU's L2 page. * Specifically, in hat_pcp_update(), we're copying from the process's * HAT_COPIED_32 HAT into the page tables specific to this CPU. * * As part of the implementation of kernel page table isolation, this was also * extended to 64-bit processes. When a 64-bit process runs, we'll copy their L3 * PTEs across into the current CPU's L3 page table. (As we can't do the * first-L3-entry trick for 64-bit processes, ->hci_pcp_l2ptes is unused in this * case.) * * The use of per-CPU page tables has a lot of implementation ramifications. A * HAT that runs a user process will be flagged with the HAT_COPIED flag to * indicate that it is using the per-CPU page table functionality. In tandem * with the HAT, the top-level htable_t will be flagged with the HTABLE_COPIED * flag. If the HAT represents a 32-bit process, then we will also set the * HAT_COPIED_32 flag on that hat_t. * * These two flags work together. The top-level htable_t when using per-CPU page * tables is 'virtual'. We never allocate a ptable for this htable_t (i.e. * ht->ht_pfn is PFN_INVALID). Instead, when we need to modify a PTE in an * HTABLE_COPIED ptable, x86pte_access_pagetable() will redirect any accesses to * ht_hat->hat_copied_ptes. * * Of course, such a modification won't actually modify the HAT_PCP page tables * that were copied from the HAT_COPIED htable. When we change the top level * page table entries (L2 PTEs for a 32-bit process and L3 PTEs for a 64-bit * process), we need to make sure to trigger hat_pcp_update() on all CPUs that * are currently tied to this HAT (including the current CPU). * * To do this, PCP piggy-backs on TLB invalidation, specifically via the * hat_tlb_inval() path from link_ptp() and unlink_ptp(). * * (Importantly, in all such cases, when this is in operation, the top-level * entry should not be able to refer to an actual page table entry that can be * changed and consolidated into a large page. If large page consolidation is * required here, then there will be much that needs to be reconsidered.) * * ----------------------------------------------- * Kernel Page Table Isolation and the Per-CPU HAT * ----------------------------------------------- * * All Intel CPUs that support speculative execution and paging are subject to a * series of bugs that have been termed 'Meltdown'. These exploits allow a user * process to read kernel memory through cache side channels and speculative * execution. To mitigate this on vulnerable CPUs, we need to use a technique * called kernel page table isolation. What this requires is that we have two * different page table roots. When executing in kernel mode, we will use a %cr3 * value that has both the user and kernel pages. However when executing in user * mode, we will need to have a %cr3 that has all of the user pages; however, * only a subset of the kernel pages required to operate. * * These kernel pages that we need mapped are: * * o Kernel Text that allows us to switch between the cr3 values. * o The current global descriptor table (GDT) * o The current interrupt descriptor table (IDT) * o The current task switching state (TSS) * o The current local descriptor table (LDT) * o Stacks and scratch space used by the interrupt handlers * * For more information on the stack switching techniques, construction of the * trampolines, and more, please see i86pc/ml/kpti_trampolines.s. The most * important part of these mappings are the following two constraints: * * o The mappings are all per-CPU (except for read-only text) * o The mappings are static. They are all established before the CPU is * started (with the exception of the boot CPU). * * To facilitate the kernel page table isolation we employ our per-CPU * page tables discussed in the previous section and add the notion of a per-CPU * HAT. Fundamentally we have a second page table root. There is both a kernel * page table (hci_pcp_l3ptes), and a user L3 page table (hci_user_l3ptes). * Both will have the user page table entries copied into them, the same way * that we discussed in the section 'Per-CPU Page Tables'. * * The complex part of this is how do we construct the set of kernel mappings * that should be present when running with the user page table. To answer that, * we add the notion of a per-CPU HAT. This HAT functions like a normal HAT, * except that it's not really associated with an address space the same way * that other HATs are. * * This HAT lives off of the 'struct hat_cpu_info' which is a member of the * machcpu in the member hci_user_hat. We use this per-CPU HAT to create the set * of kernel mappings that should be present on this CPU. The kernel mappings * are added to the per-CPU HAT through the function hati_cpu_punchin(). Once a * mapping has been punched in, it may not be punched out. The reason that we * opt to leverage a HAT structure is that it knows how to allocate and manage * all of the lower level page tables as required. * * Because all of the mappings are present at the beginning of time for this CPU * and none of the mappings are in the kernel pageable segment, we don't have to * worry about faulting on these HAT structures and thus the notion of the * current HAT that we're using is always the appropriate HAT for the process * (usually a user HAT or the kernel's HAT). * * A further constraint we place on the system with these per-CPU HATs is that * they are not subject to htable_steal(). Because each CPU will have a rather * fixed number of page tables, the same way that we don't steal from the * kernel's HAT, it was determined that we should not steal from this HAT due to * the complications involved and somewhat criminal nature of htable_steal(). * * The per-CPU HAT is initialized in hat_pcp_setup() which is called as part of * onlining the CPU, but before the CPU is actually started. The per-CPU HAT is * removed in hat_pcp_teardown() which is called when a CPU is being offlined to * be removed from the system (which is different from what psradm usually * does). * * Finally, once the CPU has been onlined, the set of mappings in the per-CPU * HAT must not change. The HAT related functions that we call are not meant to * be called when we're switching between processes. For example, it is quite * possible that if they were, they would try to grab an htable mutex which * another thread might have. One needs to treat hat_switch() as though they * were above LOCK_LEVEL and therefore _must not_ block under any circumstance. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __xpv #include #endif #include #include #include /* * Basic parameters for hat operation. */ struct hat_mmu_info mmu; /* * The page that is the kernel's top level pagetable. * * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries * on this 4K page for its top level page table. The remaining groups of * 4 entries are used for per processor copies of user PCP pagetables for * running threads. See hat_switch() and reload_pae32() for details. * * pcp_page[0..3] - level==2 PTEs for kernel HAT * pcp_page[4..7] - level==2 PTEs for user thread on cpu 0 * pcp_page[8..11] - level==2 PTE for user thread on cpu 1 * etc... * * On the 64-bit kernel, this is the normal root of the page table and there is * nothing special about it when used for other CPUs. */ static x86pte_t *pcp_page; /* * forward declaration of internal utility routines */ static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new); /* * The kernel address space exists in all non-HAT_COPIED HATs. To implement this * the kernel reserves a fixed number of entries in the topmost level(s) of page * tables. The values are setup during startup and then copied to every user hat * created by hat_alloc(). This means that kernelbase must be: * * 4Meg aligned for 32 bit kernels * 512Gig aligned for x86_64 64 bit kernel * * The hat_kernel_range_ts describe what needs to be copied from kernel hat * to each user hat. */ typedef struct hat_kernel_range { level_t hkr_level; uintptr_t hkr_start_va; uintptr_t hkr_end_va; /* zero means to end of memory */ } hat_kernel_range_t; #define NUM_KERNEL_RANGE 2 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; static int num_kernel_ranges; uint_t use_boot_reserve = 1; /* cleared after early boot process */ uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ /* * enable_1gpg: controls 1g page support for user applications. * By default, 1g pages are exported to user applications. enable_1gpg can * be set to 0 to not export. */ int enable_1gpg = 1; /* * AMD shanghai processors provide better management of 1gb ptes in its tlb. * By default, 1g page support will be disabled for pre-shanghai AMD * processors that don't have optimal tlb support for the 1g page size. * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal * processors. */ int chk_optimal_1gtlb = 1; #ifdef DEBUG uint_t map1gcnt; #endif /* * A cpuset for all cpus. This is used for kernel address cross calls, since * the kernel addresses apply to all cpus. */ cpuset_t khat_cpuset; /* * management stuff for hat structures */ kmutex_t hat_list_lock; kcondvar_t hat_list_cv; kmem_cache_t *hat_cache; kmem_cache_t *hat_hash_cache; kmem_cache_t *hat32_hash_cache; /* * Simple statistics */ struct hatstats hatstat; /* * Some earlier hypervisor versions do not emulate cmpxchg of PTEs * correctly. For such hypervisors we must set PT_USER for kernel * entries ourselves (normally the emulation would set PT_USER for * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is * thus set appropriately. Note that dboot/kbm is OK, as only the full * HAT uses cmpxchg() and the other paths (hypercall etc.) were never * incorrect. */ int pt_kern; #ifndef __xpv extern pfn_t memseg_get_start(struct memseg *); #endif #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) #define PP_ISREF(pp) PP_GETRM(pp, P_REF) #define PP_ISRO(pp) PP_GETRM(pp, P_RO) #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) #define PP_SETREF(pp) PP_SETRM(pp, P_REF) #define PP_SETRO(pp) PP_SETRM(pp, P_RO) #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) /* * kmem cache constructor for struct hat */ /*ARGSUSED*/ static int hati_constructor(void *buf, void *handle, int kmflags) { hat_t *hat = buf; mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); bzero(hat->hat_pages_mapped, sizeof (pgcnt_t) * (mmu.max_page_level + 1)); hat->hat_ism_pgcnt = 0; hat->hat_stats = 0; hat->hat_flags = 0; CPUSET_ZERO(hat->hat_cpus); hat->hat_htable = NULL; hat->hat_ht_hash = NULL; return (0); } /* * Put it at the start of the global list of all hats (used by stealing) * * kas.a_hat is not in the list but is instead used to find the * first and last items in the list. * * - kas.a_hat->hat_next points to the start of the user hats. * The list ends where hat->hat_next == NULL * * - kas.a_hat->hat_prev points to the last of the user hats. * The list begins where hat->hat_prev == NULL */ static void hat_list_append(hat_t *hat) { mutex_enter(&hat_list_lock); hat->hat_prev = NULL; hat->hat_next = kas.a_hat->hat_next; if (hat->hat_next) hat->hat_next->hat_prev = hat; else kas.a_hat->hat_prev = hat; kas.a_hat->hat_next = hat; mutex_exit(&hat_list_lock); } /* * Allocate a hat structure for as. We also create the top level * htable and initialize it to contain the kernel hat entries. */ hat_t * hat_alloc(struct as *as) { hat_t *hat; htable_t *ht; /* top level htable */ uint_t use_copied; uint_t r; hat_kernel_range_t *rp; uintptr_t va; uintptr_t eva; uint_t start; uint_t cnt; htable_t *src; boolean_t use_hat32_cache; /* * Once we start creating user process HATs we can enable * the htable_steal() code. */ if (can_steal_post_boot == 0) can_steal_post_boot = 1; ASSERT(AS_WRITE_HELD(as)); hat = kmem_cache_alloc(hat_cache, KM_SLEEP); hat->hat_as = as; mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); ASSERT(hat->hat_flags == 0); #if defined(__xpv) /* * No PCP stuff on the hypervisor due to the 64-bit split top level * page tables. On 32-bit it's not needed as the hypervisor takes * care of copying the top level PTEs to a below 4Gig page. */ use_copied = 0; use_hat32_cache = B_FALSE; hat->hat_max_level = mmu.max_level; hat->hat_num_copied = 0; hat->hat_flags = 0; #else /* __xpv */ /* * All processes use HAT_COPIED on the 64-bit kernel if KPTI is * turned on. */ if (ttoproc(curthread)->p_model == DATAMODEL_ILP32) { use_copied = 1; hat->hat_max_level = mmu.max_level32; hat->hat_num_copied = mmu.num_copied_ents32; use_hat32_cache = B_TRUE; hat->hat_flags |= HAT_COPIED_32; HATSTAT_INC(hs_hat_copied32); } else if (kpti_enable == 1) { use_copied = 1; hat->hat_max_level = mmu.max_level; hat->hat_num_copied = mmu.num_copied_ents; use_hat32_cache = B_FALSE; HATSTAT_INC(hs_hat_copied64); } else { use_copied = 0; use_hat32_cache = B_FALSE; hat->hat_max_level = mmu.max_level; hat->hat_num_copied = 0; hat->hat_flags = 0; HATSTAT_INC(hs_hat_normal64); } #endif /* __xpv */ if (use_copied) { hat->hat_flags |= HAT_COPIED; bzero(hat->hat_copied_ptes, sizeof (hat->hat_copied_ptes)); } /* * Allocate the htable hash. For 32-bit PCP processes we use the * hat32_hash_cache. However, for 64-bit PCP processes we do not as the * number of entries that they have to handle is closer to * hat_hash_cache in count (though there will be more wastage when we * have more DRAM in the system and thus push down the user address * range). */ if (use_hat32_cache) { hat->hat_num_hash = mmu.hat32_hash_cnt; hat->hat_ht_hash = kmem_cache_alloc(hat32_hash_cache, KM_SLEEP); } else { hat->hat_num_hash = mmu.hash_cnt; hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); } bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); /* * Initialize Kernel HAT entries at the top of the top level page * tables for the new hat. */ hat->hat_htable = NULL; hat->hat_ht_cached = NULL; XPV_DISALLOW_MIGRATE(); ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); hat->hat_htable = ht; if (hat->hat_flags & HAT_COPIED) goto init_done; for (r = 0; r < num_kernel_ranges; ++r) { rp = &kernel_ranges[r]; for (va = rp->hkr_start_va; va != rp->hkr_end_va; va += cnt * LEVEL_SIZE(rp->hkr_level)) { if (rp->hkr_level == TOP_LEVEL(hat)) ht = hat->hat_htable; else ht = htable_create(hat, va, rp->hkr_level, NULL); start = htable_va2entry(va, ht); cnt = HTABLE_NUM_PTES(ht) - start; eva = va + ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); if (rp->hkr_end_va != 0 && (eva > rp->hkr_end_va || eva == 0)) cnt = htable_va2entry(rp->hkr_end_va, ht) - start; src = htable_lookup(kas.a_hat, va, rp->hkr_level); ASSERT(src != NULL); x86pte_copy(src, ht, start, cnt); htable_release(src); } } init_done: #if defined(__xpv) /* * Pin top level page tables after initializing them */ xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); xen_pin(hat->hat_user_ptable, mmu.max_level); #endif XPV_ALLOW_MIGRATE(); hat_list_append(hat); return (hat); } #if !defined(__xpv) /* * Cons up a HAT for a CPU. This represents the user mappings. This will have * various kernel pages punched into it manually. Importantly, this hat is * ineligible for stealing. We really don't want to deal with this ever * faulting and figuring out that this is happening, much like we don't with * kas. */ static hat_t * hat_cpu_alloc(cpu_t *cpu) { hat_t *hat; htable_t *ht; hat = kmem_cache_alloc(hat_cache, KM_SLEEP); hat->hat_as = NULL; mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); hat->hat_max_level = mmu.max_level; hat->hat_num_copied = 0; hat->hat_flags = HAT_PCP; hat->hat_num_hash = mmu.hash_cnt; hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); hat->hat_next = hat->hat_prev = NULL; /* * Because this HAT will only ever be used by the current CPU, we'll go * ahead and set the CPUSET up to only point to the CPU in question. */ CPUSET_ADD(hat->hat_cpus, cpu->cpu_id); hat->hat_htable = NULL; hat->hat_ht_cached = NULL; ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); hat->hat_htable = ht; hat_list_append(hat); return (hat); } #endif /* !__xpv */ /* * process has finished executing but as has not been cleaned up yet. */ /*ARGSUSED*/ void hat_free_start(hat_t *hat) { ASSERT(AS_WRITE_HELD(hat->hat_as)); /* * If the hat is currently a stealing victim, wait for the stealing * to finish. Once we mark it as HAT_FREEING, htable_steal() * won't look at its pagetables anymore. */ mutex_enter(&hat_list_lock); while (hat->hat_flags & HAT_VICTIM) cv_wait(&hat_list_cv, &hat_list_lock); hat->hat_flags |= HAT_FREEING; mutex_exit(&hat_list_lock); } /* * An address space is being destroyed, so we destroy the associated hat. */ void hat_free_end(hat_t *hat) { kmem_cache_t *cache; ASSERT(hat->hat_flags & HAT_FREEING); /* * must not be running on the given hat */ ASSERT(CPU->cpu_current_hat != hat); /* * Remove it from the list of HATs */ mutex_enter(&hat_list_lock); if (hat->hat_prev) hat->hat_prev->hat_next = hat->hat_next; else kas.a_hat->hat_next = hat->hat_next; if (hat->hat_next) hat->hat_next->hat_prev = hat->hat_prev; else kas.a_hat->hat_prev = hat->hat_prev; mutex_exit(&hat_list_lock); hat->hat_next = hat->hat_prev = NULL; #if defined(__xpv) /* * On the hypervisor, unpin top level page table(s) */ VERIFY3U(hat->hat_flags & HAT_PCP, ==, 0); xen_unpin(hat->hat_htable->ht_pfn); xen_unpin(hat->hat_user_ptable); #endif /* * Make a pass through the htables freeing them all up. */ htable_purge_hat(hat); /* * Decide which kmem cache the hash table came from, then free it. */ if (hat->hat_flags & HAT_COPIED) { if (hat->hat_flags & HAT_COPIED_32) { cache = hat32_hash_cache; } else { cache = hat_hash_cache; } } else { cache = hat_hash_cache; } kmem_cache_free(cache, hat->hat_ht_hash); hat->hat_ht_hash = NULL; hat->hat_flags = 0; hat->hat_max_level = 0; hat->hat_num_copied = 0; kmem_cache_free(hat_cache, hat); } /* * round kernelbase down to a supported value to use for _userlimit * * userlimit must be aligned down to an entry in the top level htable. * The one exception is for 32 bit HAT's running PAE. */ uintptr_t hat_kernelbase(uintptr_t va) { if (IN_VA_HOLE(va)) panic("_userlimit %p will fall in VA hole\n", (void *)va); return (va); } /* * */ static void set_max_page_level() { level_t lvl; if (!kbm_largepage_support) { lvl = 0; } else { if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { lvl = 2; if (chk_optimal_1gtlb && cpuid_opteron_erratum(CPU, 6671130)) { lvl = 1; } if (plat_mnode_xcheck(LEVEL_SIZE(2) >> LEVEL_SHIFT(0))) { lvl = 1; } } else { lvl = 1; } } mmu.max_page_level = lvl; if ((lvl == 2) && (enable_1gpg == 0)) mmu.umax_page_level = 1; else mmu.umax_page_level = lvl; } /* * Determine the number of slots that are in used in the top-most level page * table for user memory. This is based on _userlimit. In effect this is similar * to htable_va2entry, but without the convenience of having an htable. */ void mmu_calc_user_slots(void) { uint_t ent, nptes; uintptr_t shift; nptes = mmu.top_level_count; shift = _userlimit >> mmu.level_shift[mmu.max_level]; ent = shift & (nptes - 1); /* * Ent tells us the slot that the page for _userlimit would fit in. We * need to add one to this to cover the total number of entries. */ mmu.top_level_uslots = ent + 1; /* * When running 32-bit compatability processes on a 64-bit kernel, we * will only need to use one slot. */ mmu.top_level_uslots32 = 1; /* * Record the number of PCP page table entries that we'll need to copy * around. For 64-bit processes this is the number of user slots. For * 32-bit proceses, this is 4 1 GiB pages. */ mmu.num_copied_ents = mmu.top_level_uslots; mmu.num_copied_ents32 = 4; } /* * Initialize hat data structures based on processor MMU information. */ void mmu_init(void) { uint_t max_htables; uint_t pa_bits; uint_t va_bits; int i; /* * If CPU enabled the page table global bit, use it for the kernel * This is bit 7 in CR4 (PGE - Page Global Enable). */ if (is_x86_feature(x86_featureset, X86FSET_PGE) && (getcr4() & CR4_PGE) != 0) mmu.pt_global = PT_GLOBAL; #if !defined(__xpv) /* * The 64-bit x86 kernel has split user/kernel page tables. As such we * cannot have the global bit set. The simplest way for us to deal with * this is to just say that pt_global is zero, so the global bit isn't * present. */ if (kpti_enable == 1) mmu.pt_global = 0; #endif /* * Detect NX and PAE usage. */ mmu.pae_hat = kbm_pae_support; if (kbm_nx_support) mmu.pt_nx = PT_NX; else mmu.pt_nx = 0; /* * Use CPU info to set various MMU parameters */ cpuid_get_addrsize(CPU, &pa_bits, &va_bits); if (va_bits < sizeof (void *) * NBBY) { mmu.hole_start = (1ul << (va_bits - 1)); mmu.hole_end = 0ul - mmu.hole_start - 1; } else { mmu.hole_end = 0; mmu.hole_start = mmu.hole_end - 1; } #if defined(OPTERON_ERRATUM_121) /* * If erratum 121 has already been detected at this time, hole_start * contains the value to be subtracted from mmu.hole_start. */ ASSERT(hole_start == 0 || opteron_erratum_121 != 0); hole_start = mmu.hole_start - hole_start; #else hole_start = mmu.hole_start; #endif hole_end = mmu.hole_end; mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); if (mmu.pae_hat == 0 && pa_bits > 32) mmu.highest_pfn = PFN_4G - 1; if (mmu.pae_hat) { mmu.pte_size = 8; /* 8 byte PTEs */ mmu.pte_size_shift = 3; } else { mmu.pte_size = 4; /* 4 byte PTEs */ mmu.pte_size_shift = 2; } if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) panic("Processor does not support PAE"); if (!is_x86_feature(x86_featureset, X86FSET_CX8)) panic("Processor does not support cmpxchg8b instruction"); mmu.num_level = 4; mmu.max_level = 3; mmu.ptes_per_table = 512; mmu.top_level_count = 512; /* * 32-bit processes only use 1 GB ptes. */ mmu.max_level32 = 2; mmu.level_shift[0] = 12; mmu.level_shift[1] = 21; mmu.level_shift[2] = 30; mmu.level_shift[3] = 39; for (i = 0; i < mmu.num_level; ++i) { mmu.level_size[i] = 1UL << mmu.level_shift[i]; mmu.level_offset[i] = mmu.level_size[i] - 1; mmu.level_mask[i] = ~mmu.level_offset[i]; } set_max_page_level(); mmu_calc_user_slots(); mmu_page_sizes = mmu.max_page_level + 1; mmu_exported_page_sizes = mmu.umax_page_level + 1; /* restrict legacy applications from using pagesizes 1g and above */ mmu_legacy_page_sizes = (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; for (i = 0; i <= mmu.max_page_level; ++i) { mmu.pte_bits[i] = PT_VALID | pt_kern; if (i > 0) mmu.pte_bits[i] |= PT_PAGESIZE; } /* * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. */ for (i = 1; i < mmu.num_level; ++i) mmu.ptp_bits[i] = PT_PTPBITS; /* * Compute how many hash table entries to have per process for htables. * We start with 1 page's worth of entries. * * If physical memory is small, reduce the amount need to cover it. */ max_htables = physmax / mmu.ptes_per_table; mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) mmu.hash_cnt >>= 1; mmu.hat32_hash_cnt = mmu.hash_cnt; /* * If running in 64 bits and physical memory is large, * increase the size of the cache to cover all of memory for * a 64 bit process. */ #define HASH_MAX_LENGTH 4 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) mmu.hash_cnt <<= 1; } /* * initialize hat data structures */ void hat_init() { cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); /* * initialize kmem caches */ htable_init(); hment_init(); hat_cache = kmem_cache_create("hat_t", sizeof (hat_t), 0, hati_constructor, NULL, NULL, NULL, 0, 0); hat_hash_cache = kmem_cache_create("HatHash", mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, NULL, 0, 0); /* * 32-bit PCP hats can use a smaller hash table size on large memory * machines */ if (mmu.hash_cnt == mmu.hat32_hash_cnt) { hat32_hash_cache = hat_hash_cache; } else { hat32_hash_cache = kmem_cache_create("Hat32Hash", mmu.hat32_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, NULL, 0, 0); } /* * Set up the kernel's hat */ AS_LOCK_ENTER(&kas, RW_WRITER); kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); kas.a_hat->hat_as = &kas; kas.a_hat->hat_flags = 0; AS_LOCK_EXIT(&kas); CPUSET_ZERO(khat_cpuset); CPUSET_ADD(khat_cpuset, CPU->cpu_id); /* * The kernel HAT doesn't use PCP regardless of architectures. */ ASSERT3U(mmu.max_level, >, 0); kas.a_hat->hat_max_level = mmu.max_level; kas.a_hat->hat_num_copied = 0; /* * The kernel hat's next pointer serves as the head of the hat list . * The kernel hat's prev pointer tracks the last hat on the list for * htable_steal() to use. */ kas.a_hat->hat_next = NULL; kas.a_hat->hat_prev = NULL; /* * Allocate an htable hash bucket for the kernel * XX64 - tune for 64 bit procs */ kas.a_hat->hat_num_hash = mmu.hash_cnt; kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); /* * zero out the top level and cached htable pointers */ kas.a_hat->hat_ht_cached = NULL; kas.a_hat->hat_htable = NULL; /* * Pre-allocate hrm_hashtab before enabling the collection of * refmod statistics. Allocating on the fly would mean us * running the risk of suffering recursive mutex enters or * deadlocks. */ hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), KM_SLEEP); } extern void kpti_tramp_start(); extern void kpti_tramp_end(); extern void kdi_isr_start(); extern void kdi_isr_end(); extern gate_desc_t kdi_idt[NIDT]; /* * Prepare per-CPU pagetables for all processes on the 64 bit kernel. * * Each CPU has a set of 2 pagetables that are reused for any 32 bit * process it runs. They are the top level pagetable, hci_pcp_l3ptes, and * the next to top level table for the bottom 512 Gig, hci_pcp_l2ptes. */ /*ARGSUSED*/ static void hat_pcp_setup(struct cpu *cpu) { #if !defined(__xpv) struct hat_cpu_info *hci = cpu->cpu_hat_info; uintptr_t va; size_t len; /* * allocate the level==2 page table for the bottom most * 512Gig of address space (this is where 32 bit apps live) */ ASSERT(hci != NULL); hci->hci_pcp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); /* * Allocate a top level pagetable and copy the kernel's * entries into it. Then link in hci_pcp_l2ptes in the 1st entry. */ hci->hci_pcp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); hci->hci_pcp_l3pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l3ptes); ASSERT3U(hci->hci_pcp_l3pfn, !=, PFN_INVALID); bcopy(pcp_page, hci->hci_pcp_l3ptes, MMU_PAGESIZE); hci->hci_pcp_l2pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l2ptes); ASSERT3U(hci->hci_pcp_l2pfn, !=, PFN_INVALID); /* * Now go through and allocate the user version of these structures. * Unlike with the kernel version, we allocate a hat to represent the * top-level page table as that will make it much simpler when we need * to patch through user entries. */ hci->hci_user_hat = hat_cpu_alloc(cpu); hci->hci_user_l3pfn = hci->hci_user_hat->hat_htable->ht_pfn; ASSERT3U(hci->hci_user_l3pfn, !=, PFN_INVALID); hci->hci_user_l3ptes = (x86pte_t *)hat_kpm_mapin_pfn(hci->hci_user_l3pfn); /* Skip the rest of this if KPTI is switched off at boot. */ if (kpti_enable != 1) return; /* * OK, now that we have this we need to go through and punch the normal * holes in the CPU's hat for this. At this point we'll punch in the * following: * * o GDT * o IDT * o LDT * o Trampoline Code * o machcpu KPTI page * o kmdb ISR code page (just trampolines) * * If this is cpu0, then we also can initialize the following because * they'll have already been allocated. * * o TSS for CPU 0 * o Double Fault for CPU 0 * * The following items have yet to be allocated and have not been * punched in yet. They will be punched in later: * * o TSS (mach_cpucontext_alloc_tables()) * o Double Fault Stack (mach_cpucontext_alloc_tables()) */ hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_gdt, PROT_READ); hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_idt, PROT_READ); /* * As the KDI IDT is only active during kmdb sessions (including single * stepping), typically we don't actually need this punched in (we * consider the routines that switch to the user cr3 to be toxic). But * if we ever accidentally end up on the user cr3 while on this IDT, * we'd prefer not to triple fault. */ hati_cpu_punchin(cpu, (uintptr_t)&kdi_idt, PROT_READ); CTASSERT(((uintptr_t)&kpti_tramp_start % MMU_PAGESIZE) == 0); CTASSERT(((uintptr_t)&kpti_tramp_end % MMU_PAGESIZE) == 0); for (va = (uintptr_t)&kpti_tramp_start; va < (uintptr_t)&kpti_tramp_end; va += MMU_PAGESIZE) { hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC); } VERIFY3U(((uintptr_t)cpu->cpu_m.mcpu_ldt) % MMU_PAGESIZE, ==, 0); for (va = (uintptr_t)cpu->cpu_m.mcpu_ldt, len = LDT_CPU_SIZE; len >= MMU_PAGESIZE; va += MMU_PAGESIZE, len -= MMU_PAGESIZE) { hati_cpu_punchin(cpu, va, PROT_READ); } /* mcpu_pad2 is the start of the page containing the kpti_frames. */ hati_cpu_punchin(cpu, (uintptr_t)&cpu->cpu_m.mcpu_pad2[0], PROT_READ | PROT_WRITE); if (cpu == &cpus[0]) { /* * CPU0 uses a global for its double fault stack to deal with * the chicken and egg problem. We need to punch it into its * user HAT. */ extern char dblfault_stack0[]; hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_m.mcpu_tss, PROT_READ); for (va = (uintptr_t)dblfault_stack0, len = DEFAULTSTKSZ; len >= MMU_PAGESIZE; va += MMU_PAGESIZE, len -= MMU_PAGESIZE) { hati_cpu_punchin(cpu, va, PROT_READ | PROT_WRITE); } } CTASSERT(((uintptr_t)&kdi_isr_start % MMU_PAGESIZE) == 0); CTASSERT(((uintptr_t)&kdi_isr_end % MMU_PAGESIZE) == 0); for (va = (uintptr_t)&kdi_isr_start; va < (uintptr_t)&kdi_isr_end; va += MMU_PAGESIZE) { hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC); } #endif /* !__xpv */ } /*ARGSUSED*/ static void hat_pcp_teardown(cpu_t *cpu) { #if !defined(__xpv) struct hat_cpu_info *hci; if ((hci = cpu->cpu_hat_info) == NULL) return; if (hci->hci_pcp_l2ptes != NULL) kmem_free(hci->hci_pcp_l2ptes, MMU_PAGESIZE); if (hci->hci_pcp_l3ptes != NULL) kmem_free(hci->hci_pcp_l3ptes, MMU_PAGESIZE); if (hci->hci_user_hat != NULL) { hat_free_start(hci->hci_user_hat); hat_free_end(hci->hci_user_hat); } #endif } #define NEXT_HKR(r, l, s, e) { \ kernel_ranges[r].hkr_level = l; \ kernel_ranges[r].hkr_start_va = s; \ kernel_ranges[r].hkr_end_va = e; \ ++r; \ } /* * Finish filling in the kernel hat. * Pre fill in all top level kernel page table entries for the kernel's * part of the address range. From this point on we can't use any new * kernel large pages if they need PTE's at max_level * * create the kmap mappings. */ void hat_init_finish(void) { size_t size; uint_t r = 0; uintptr_t va; hat_kernel_range_t *rp; /* * We are now effectively running on the kernel hat. * Clearing use_boot_reserve shuts off using the pre-allocated boot * reserve for all HAT allocations. From here on, the reserves are * only used when avoiding recursion in kmem_alloc(). */ use_boot_reserve = 0; htable_adjust_reserve(); /* * User HATs are initialized with copies of all kernel mappings in * higher level page tables. Ensure that those entries exist. */ NEXT_HKR(r, 3, kernelbase, 0); #if defined(__xpv) NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); #endif num_kernel_ranges = r; /* * Create all the kernel pagetables that will have entries * shared to user HATs. */ for (r = 0; r < num_kernel_ranges; ++r) { rp = &kernel_ranges[r]; for (va = rp->hkr_start_va; va != rp->hkr_end_va; va += LEVEL_SIZE(rp->hkr_level)) { htable_t *ht; if (IN_HYPERVISOR_VA(va)) continue; /* can/must skip if a page mapping already exists */ if (rp->hkr_level <= mmu.max_page_level && (ht = htable_getpage(kas.a_hat, va, NULL)) != NULL) { htable_release(ht); continue; } (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, NULL); } } /* * 32 bit PAE metal kernels use only 4 of the 512 entries in the * page holding the top level pagetable. We use the remainder for * the "per CPU" page tables for PCP processes. * Map the top level kernel pagetable into the kernel to make * it easy to use bcopy access these tables. * * PAE is required for the 64-bit kernel which uses this as well to * perform the per-CPU pagetables. See the big theory statement. */ if (mmu.pae_hat) { pcp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); hat_devload(kas.a_hat, (caddr_t)pcp_page, MMU_PAGESIZE, kas.a_hat->hat_htable->ht_pfn, #if !defined(__xpv) PROT_WRITE | #endif PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, HAT_LOAD | HAT_LOAD_NOCONSIST); } hat_pcp_setup(CPU); /* * Create kmap (cached mappings of kernel PTEs) * for 32 bit we map from segmap_start .. ekernelheap * for 64 bit we map from segmap_start .. segmap_start + segmapsize; */ size = segmapsize; hat_kmap_init((uintptr_t)segmap_start, size); #if !defined(__xpv) ASSERT3U(kas.a_hat->hat_htable->ht_pfn, !=, PFN_INVALID); ASSERT3U(kpti_safe_cr3, ==, MAKECR3(kas.a_hat->hat_htable->ht_pfn, PCID_KERNEL)); #endif } /* * Update the PCP data on the CPU cpu to the one on the hat. If this is a 32-bit * process, then we must update the L2 pages and then the L3. If this is a * 64-bit process then we must update the L3 entries. */ static void hat_pcp_update(cpu_t *cpu, const hat_t *hat) { ASSERT3U(hat->hat_flags & HAT_COPIED, !=, 0); if ((hat->hat_flags & HAT_COPIED_32) != 0) { const x86pte_t *l2src; x86pte_t *l2dst, *l3ptes, *l3uptes; /* * This is a 32-bit process. To set this up, we need to do the * following: * * - Copy the 4 L2 PTEs into the dedicated L2 table * - Zero the user L3 PTEs in the user and kernel page table * - Set the first L3 PTE to point to the CPU L2 table */ l2src = hat->hat_copied_ptes; l2dst = cpu->cpu_hat_info->hci_pcp_l2ptes; l3ptes = cpu->cpu_hat_info->hci_pcp_l3ptes; l3uptes = cpu->cpu_hat_info->hci_user_l3ptes; l2dst[0] = l2src[0]; l2dst[1] = l2src[1]; l2dst[2] = l2src[2]; l2dst[3] = l2src[3]; /* * Make sure to use the mmu to get the number of slots. The * number of PLP entries that this has will always be less as * it's a 32-bit process. */ bzero(l3ptes, sizeof (x86pte_t) * mmu.top_level_uslots); l3ptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2); bzero(l3uptes, sizeof (x86pte_t) * mmu.top_level_uslots); l3uptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2); } else { /* * This is a 64-bit process. To set this up, we need to do the * following: * * - Zero the 4 L2 PTEs in the CPU structure for safety * - Copy over the new user L3 PTEs into the kernel page table * - Copy over the new user L3 PTEs into the user page table */ ASSERT3S(kpti_enable, ==, 1); bzero(cpu->cpu_hat_info->hci_pcp_l2ptes, sizeof (x86pte_t) * 4); bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_pcp_l3ptes, sizeof (x86pte_t) * mmu.top_level_uslots); bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_user_l3ptes, sizeof (x86pte_t) * mmu.top_level_uslots); } } static void reset_kpti(struct kpti_frame *fr, uint64_t kcr3, uint64_t ucr3) { ASSERT3U(fr->kf_tr_flag, ==, 0); #if DEBUG if (fr->kf_kernel_cr3 != 0) { ASSERT3U(fr->kf_lower_redzone, ==, 0xdeadbeefdeadbeef); ASSERT3U(fr->kf_middle_redzone, ==, 0xdeadbeefdeadbeef); ASSERT3U(fr->kf_upper_redzone, ==, 0xdeadbeefdeadbeef); } #endif bzero(fr, offsetof(struct kpti_frame, kf_kernel_cr3)); bzero(&fr->kf_unused, sizeof (struct kpti_frame) - offsetof(struct kpti_frame, kf_unused)); fr->kf_kernel_cr3 = kcr3; fr->kf_user_cr3 = ucr3; fr->kf_tr_ret_rsp = (uintptr_t)&fr->kf_tr_rsp; fr->kf_lower_redzone = 0xdeadbeefdeadbeef; fr->kf_middle_redzone = 0xdeadbeefdeadbeef; fr->kf_upper_redzone = 0xdeadbeefdeadbeef; } #ifdef __xpv static void hat_switch_xen(hat_t *hat) { struct mmuext_op t[2]; uint_t retcnt; uint_t opcnt = 1; uint64_t newcr3; ASSERT(!(hat->hat_flags & HAT_COPIED)); ASSERT(!(getcr4() & CR4_PCIDE)); newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn, PCID_NONE); t[0].cmd = MMUEXT_NEW_BASEPTR; t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); /* * There's an interesting problem here, as to what to actually specify * when switching to the kernel hat. For now we'll reuse the kernel hat * again. */ t[1].cmd = MMUEXT_NEW_USER_BASEPTR; if (hat == kas.a_hat) t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); else t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); ++opcnt; if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) panic("HYPERVISOR_mmu_update() failed"); ASSERT(retcnt == opcnt); } #endif /* __xpv */ /* * Switch to a new active hat, maintaining bit masks to track active CPUs. * * With KPTI, all our HATs except kas should be using PCP. Thus, to switch * HATs, we need to copy over the new user PTEs, then set our trampoline context * as appropriate. * * If lacking PCID, we then load our new cr3, which will flush the TLB: we may * have established userspace TLB entries via kernel accesses, and these are no * longer valid. We have to do this eagerly, as we just deleted this CPU from * ->hat_cpus, so would no longer see any TLB shootdowns. * * With PCID enabled, things get a little more complicated. We would like to * keep TLB context around when entering and exiting the kernel, and to do this, * we partition the TLB into two different spaces: * * PCID_KERNEL is defined as zero, and used both by kas and all other address * spaces while in the kernel (post-trampoline). * * PCID_USER is used while in userspace. Therefore, userspace cannot use any * lingering PCID_KERNEL entries to kernel addresses it should not be able to * read. * * The trampoline cr3s are set not to invalidate on a mov to %cr3. This means if * we take a journey through the kernel without switching HATs, we have some * hope of keeping our TLB state around. * * On a hat switch, rather than deal with any necessary flushes on the way out * of the trampolines, we do them upfront here. If we're switching from kas, we * shouldn't need any invalidation. * * Otherwise, we can have stale userspace entries for both PCID_USER (what * happened before we move onto the kcr3) and PCID_KERNEL (any subsequent * userspace accesses such as ddi_copyin()). Since setcr3() won't do these * flushes on its own in PCIDE, we'll do a non-flushing load and then * invalidate everything. */ void hat_switch(hat_t *hat) { cpu_t *cpu = CPU; hat_t *old = cpu->cpu_current_hat; /* * set up this information first, so we don't miss any cross calls */ if (old != NULL) { if (old == hat) return; if (old != kas.a_hat) CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); } /* * Add this CPU to the active set for this HAT. */ if (hat != kas.a_hat) { CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); } cpu->cpu_current_hat = hat; #if defined(__xpv) hat_switch_xen(hat); #else struct hat_cpu_info *info = cpu->cpu_m.mcpu_hat_info; uint64_t pcide = getcr4() & CR4_PCIDE; uint64_t kcr3, ucr3; pfn_t tl_kpfn; ulong_t flag; EQUIV(kpti_enable, !mmu.pt_global); if (hat->hat_flags & HAT_COPIED) { hat_pcp_update(cpu, hat); tl_kpfn = info->hci_pcp_l3pfn; } else { IMPLY(kpti_enable, hat == kas.a_hat); tl_kpfn = hat->hat_htable->ht_pfn; } if (pcide) { ASSERT(kpti_enable); kcr3 = MAKECR3(tl_kpfn, PCID_KERNEL) | CR3_NOINVL_BIT; ucr3 = MAKECR3(info->hci_user_l3pfn, PCID_USER) | CR3_NOINVL_BIT; setcr3(kcr3); if (old != kas.a_hat) mmu_flush_tlb(FLUSH_TLB_ALL, NULL); } else { kcr3 = MAKECR3(tl_kpfn, PCID_NONE); ucr3 = kpti_enable ? MAKECR3(info->hci_user_l3pfn, PCID_NONE) : 0; setcr3(kcr3); } /* * We will already be taking shootdowns for our new HAT, and as KPTI * invpcid emulation needs to use kf_user_cr3, make sure we don't get * any cross calls while we're inconsistent. Note that it's harmless to * have a *stale* kf_user_cr3 (we just did a FLUSH_TLB_ALL), but a * *zero* kf_user_cr3 is not going to go very well. */ if (pcide) flag = intr_clear(); reset_kpti(&cpu->cpu_m.mcpu_kpti, kcr3, ucr3); reset_kpti(&cpu->cpu_m.mcpu_kpti_flt, kcr3, ucr3); reset_kpti(&cpu->cpu_m.mcpu_kpti_dbg, kcr3, ucr3); if (pcide) intr_restore(flag); #endif /* !__xpv */ ASSERT(cpu == CPU); } /* * Utility to return a valid x86pte_t from protections, pfn, and level number */ static x86pte_t hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) { x86pte_t pte; uint_t cache_attr = attr & HAT_ORDER_MASK; pte = MAKEPTE(pfn, level); if (attr & PROT_WRITE) PTE_SET(pte, PT_WRITABLE); if (attr & PROT_USER) PTE_SET(pte, PT_USER); if (!(attr & PROT_EXEC)) PTE_SET(pte, mmu.pt_nx); /* * Set the software bits used track ref/mod sync's and hments. * If not using REF/MOD, set them to avoid h/w rewriting PTEs. */ if (flags & HAT_LOAD_NOCONSIST) PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); else if (attr & HAT_NOSYNC) PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); /* * Set the caching attributes in the PTE. The combination * of attributes are poorly defined, so we pay attention * to them in the given order. * * The test for HAT_STRICTORDER is different because it's defined * as "0" - which was a stupid thing to do, but is too late to change! */ if (cache_attr == HAT_STRICTORDER) { PTE_SET(pte, PT_NOCACHE); /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { /* nothing to set */; } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { PTE_SET(pte, PT_NOCACHE); if (is_x86_feature(x86_featureset, X86FSET_PAT)) PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); else PTE_SET(pte, PT_WRITETHRU); } else { panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); } return (pte); } /* * Duplicate address translations of the parent to the child. * This function really isn't used anymore. */ /*ARGSUSED*/ int hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) { ASSERT((uintptr_t)addr < kernelbase); ASSERT(new != kas.a_hat); ASSERT(old != kas.a_hat); return (0); } /* * Allocate any hat resources required for a process being swapped in. */ /*ARGSUSED*/ void hat_swapin(hat_t *hat) { /* do nothing - we let everything fault back in */ } /* * Unload all translations associated with an address space of a process * that is being swapped out. */ void hat_swapout(hat_t *hat) { uintptr_t vaddr = (uintptr_t)0; uintptr_t eaddr = _userlimit; htable_t *ht = NULL; level_t l; XPV_DISALLOW_MIGRATE(); /* * We can't just call hat_unload(hat, 0, _userlimit...) here, because * seg_spt and shared pagetables can't be swapped out. * Take a look at segspt_shmswapout() - it's a big no-op. * * Instead we'll walk through all the address space and unload * any mappings which we are sure are not shared, not locked. */ ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(AS_LOCK_HELD(hat->hat_as)); if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) eaddr = (uintptr_t)hat->hat_as->a_userlimit; while (vaddr < eaddr) { (void) htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); /* * If the page table is shared skip its entire range. */ l = ht->ht_level; if (ht->ht_flags & HTABLE_SHARED_PFN) { vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); htable_release(ht); ht = NULL; continue; } /* * If the page table has no locked entries, unload this one. */ if (ht->ht_lock_cnt == 0) hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), HAT_UNLOAD_UNMAP); /* * If we have a level 0 page table with locked entries, * skip the entire page table, otherwise skip just one entry. */ if (ht->ht_lock_cnt > 0 && l == 0) vaddr = ht->ht_vaddr + LEVEL_SIZE(1); else vaddr += LEVEL_SIZE(l); } if (ht) htable_release(ht); /* * We're in swapout because the system is low on memory, so * go back and flush all the htables off the cached list. */ htable_purge_hat(hat); XPV_ALLOW_MIGRATE(); } /* * returns number of bytes that have valid mappings in hat. */ size_t hat_get_mapped_size(hat_t *hat) { size_t total = 0; int l; for (l = 0; l <= mmu.max_page_level; l++) total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); total += hat->hat_ism_pgcnt; return (total); } /* * enable/disable collection of stats for hat. */ int hat_stats_enable(hat_t *hat) { atomic_inc_32(&hat->hat_stats); return (1); } void hat_stats_disable(hat_t *hat) { atomic_dec_32(&hat->hat_stats); } /* * Utility to sync the ref/mod bits from a page table entry to the page_t * We must be holding the mapping list lock when this is called. */ static void hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) { uint_t rm = 0; pgcnt_t pgcnt; if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) return; if (PTE_GET(pte, PT_REF)) rm |= P_REF; if (PTE_GET(pte, PT_MOD)) rm |= P_MOD; if (rm == 0) return; /* * sync to all constituent pages of a large page */ ASSERT(x86_hm_held(pp)); pgcnt = page_get_pagecnt(level); ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); for (; pgcnt > 0; --pgcnt) { /* * hat_page_demote() can't decrease * pszc below this mapping size * since this large mapping existed after we * took mlist lock. */ ASSERT(pp->p_szc >= level); hat_page_setattr(pp, rm); ++pp; } } /* * This the set of PTE bits for PFN, permissions and caching * that are allowed to change on a HAT_LOAD_REMAP */ #define PT_REMAP_BITS \ (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) /* * Do the low-level work to get a mapping entered into a HAT's pagetables * and in the mapping list of the associated page_t. */ static int hati_pte_map( htable_t *ht, uint_t entry, page_t *pp, x86pte_t pte, int flags, void *pte_ptr) { hat_t *hat = ht->ht_hat; x86pte_t old_pte; level_t l = ht->ht_level; hment_t *hm; uint_t is_consist; uint_t is_locked; int rv = 0; /* * Is this a consistent (ie. need mapping list lock) mapping? */ is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); /* * Track locked mapping count in the htable. Do this first, * as we track locking even if there already is a mapping present. */ is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; if (is_locked) HTABLE_LOCK_INC(ht); /* * Acquire the page's mapping list lock and get an hment to use. * Note that hment_prepare() might return NULL. */ if (is_consist) { x86_hm_enter(pp); hm = hment_prepare(ht, entry, pp); } /* * Set the new pte, retrieving the old one at the same time. */ old_pte = x86pte_set(ht, entry, pte, pte_ptr); /* * Did we get a large page / page table collision? */ if (old_pte == LPAGE_ERROR) { if (is_locked) HTABLE_LOCK_DEC(ht); rv = -1; goto done; } /* * If the mapping didn't change there is nothing more to do. */ if (PTE_EQUIV(pte, old_pte)) goto done; /* * Install a new mapping in the page's mapping list */ if (!PTE_ISVALID(old_pte)) { if (is_consist) { hment_assign(ht, entry, pp, hm); x86_hm_exit(pp); } else { ASSERT(flags & HAT_LOAD_NOCONSIST); } if (ht->ht_flags & HTABLE_COPIED) { cpu_t *cpu = CPU; hat_pcp_update(cpu, hat); } HTABLE_INC(ht->ht_valid_cnt); PGCNT_INC(hat, l); return (rv); } /* * Remap's are more complicated: * - HAT_LOAD_REMAP must be specified if changing the pfn. * We also require that NOCONSIST be specified. * - Otherwise only permission or caching bits may change. */ if (!PTE_ISPAGE(old_pte, l)) panic("non-null/page mapping pte=" FMT_PTE, old_pte); if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { REMAPASSERT(flags & HAT_LOAD_REMAP); REMAPASSERT(flags & HAT_LOAD_NOCONSIST); REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == pf_is_memory(PTE2PFN(pte, l))); REMAPASSERT(!is_consist); } /* * We only let remaps change the certain bits in the PTE. */ if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", old_pte, pte); /* * We don't create any mapping list entries on a remap, so release * any allocated hment after we drop the mapping list lock. */ done: if (is_consist) { x86_hm_exit(pp); if (hm != NULL) hment_free(hm); } return (rv); } /* * Internal routine to load a single page table entry. This only fails if * we attempt to overwrite a page table link with a large page. */ static int hati_load_common( hat_t *hat, uintptr_t va, page_t *pp, uint_t attr, uint_t flags, level_t level, pfn_t pfn) { htable_t *ht; uint_t entry; x86pte_t pte; int rv = 0; /* * The number 16 is arbitrary and here to catch a recursion problem * early before we blow out the kernel stack. */ ++curthread->t_hatdepth; ASSERT(curthread->t_hatdepth < 16); ASSERT(hat == kas.a_hat || (hat->hat_flags & HAT_PCP) != 0 || AS_LOCK_HELD(hat->hat_as)); if (flags & HAT_LOAD_SHARE) hat->hat_flags |= HAT_SHARED; /* * Find the page table that maps this page if it already exists. */ ht = htable_lookup(hat, va, level); /* * We must have HAT_LOAD_NOCONSIST if page_t is NULL. */ if (pp == NULL) flags |= HAT_LOAD_NOCONSIST; if (ht == NULL) { ht = htable_create(hat, va, level, NULL); ASSERT(ht != NULL); } /* * htable_va2entry checks this condition as well, but it won't include * much useful info in the panic. So we do it in advance here to include * all the context. */ if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) { panic("hati_load_common: bad htable: va=%p, last page=%p, " "ht->ht_vaddr=%p, ht->ht_level=%d", (void *)va, (void *)HTABLE_LAST_PAGE(ht), (void *)ht->ht_vaddr, (int)ht->ht_level); } entry = htable_va2entry(va, ht); /* * a bunch of paranoid error checking */ ASSERT(ht->ht_busy > 0); ASSERT(ht->ht_level == level); /* * construct the new PTE */ if (hat == kas.a_hat) attr &= ~PROT_USER; pte = hati_mkpte(pfn, attr, level, flags); if (hat == kas.a_hat && va >= kernelbase) PTE_SET(pte, mmu.pt_global); /* * establish the mapping */ rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); /* * release the htable and any reserves */ htable_release(ht); --curthread->t_hatdepth; return (rv); } /* * special case of hat_memload to deal with some kernel addrs for performance */ static void hat_kmap_load( caddr_t addr, page_t *pp, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; x86pte_t pte; pfn_t pfn = page_pptonum(pp); pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); htable_t *ht; uint_t entry; void *pte_ptr; /* * construct the requested PTE */ attr &= ~PROT_USER; attr |= HAT_STORECACHING_OK; pte = hati_mkpte(pfn, attr, 0, flags); PTE_SET(pte, mmu.pt_global); /* * Figure out the pte_ptr and htable and use common code to finish up */ if (mmu.pae_hat) pte_ptr = mmu.kmap_ptes + pg_off; else pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> LEVEL_SHIFT(1)]; entry = htable_va2entry(va, ht); ++curthread->t_hatdepth; ASSERT(curthread->t_hatdepth < 16); (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); --curthread->t_hatdepth; } /* * hat_memload() - load a translation to the given page struct * * Flags for hat_memload/hat_devload/hat_*attr. * * HAT_LOAD Default flags to load a translation to the page. * * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), * and hat_devload(). * * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. * sets PT_NOCONSIST * * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables * that map some user pages (not kas) is shared by more * than one process (eg. ISM). * * HAT_LOAD_REMAP Reload a valid pte with a different page frame. * * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this * point, it's setting up mapping to allocate internal * hat layer data structures. This flag forces hat layer * to tap its reserves in order to prevent infinite * recursion. * * The following is a protection attribute (like PROT_READ, etc.) * * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits * are never cleared. * * Installing new valid PTE's and creation of the mapping list * entry are controlled under the same lock. It's derived from the * page_t being mapped. */ static uint_t supported_memload_flags = HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; void hat_memload( hat_t *hat, caddr_t addr, page_t *pp, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; level_t level = 0; pfn_t pfn = page_pptonum(pp); XPV_DISALLOW_MIGRATE(); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || va < _userlimit); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); ASSERT((flags & supported_memload_flags) == flags); ASSERT(!IN_VA_HOLE(va)); ASSERT(!PP_ISFREE(pp)); /* * kernel address special case for performance. */ if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { ASSERT(hat == kas.a_hat); hat_kmap_load(addr, pp, attr, flags); XPV_ALLOW_MIGRATE(); return; } /* * This is used for memory with normal caching enabled, so * always set HAT_STORECACHING_OK. */ attr |= HAT_STORECACHING_OK; if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) panic("unexpected hati_load_common() failure"); XPV_ALLOW_MIGRATE(); } /* ARGSUSED */ void hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, uint_t attr, uint_t flags, hat_region_cookie_t rcookie) { hat_memload(hat, addr, pp, attr, flags); } /* * Load the given array of page structs using large pages when possible */ void hat_memload_array( hat_t *hat, caddr_t addr, size_t len, page_t **pages, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; uintptr_t eaddr = va + len; level_t level; size_t pgsize; pgcnt_t pgindx = 0; pfn_t pfn; pgcnt_t i; XPV_DISALLOW_MIGRATE(); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || va + len <= _userlimit); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); ASSERT((flags & supported_memload_flags) == flags); /* * memload is used for memory with full caching enabled, so * set HAT_STORECACHING_OK. */ attr |= HAT_STORECACHING_OK; /* * handle all pages using largest possible pagesize */ while (va < eaddr) { /* * decide what level mapping to use (ie. pagesize) */ pfn = page_pptonum(pages[pgindx]); for (level = mmu.max_page_level; ; --level) { pgsize = LEVEL_SIZE(level); if (level == 0) break; if (!IS_P2ALIGNED(va, pgsize) || (eaddr - va) < pgsize || !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) continue; /* * To use a large mapping of this size, all the * pages we are passed must be sequential subpages * of the large page. * hat_page_demote() can't change p_szc because * all pages are locked. */ if (pages[pgindx]->p_szc >= level) { for (i = 0; i < mmu_btop(pgsize); ++i) { if (pfn + i != page_pptonum(pages[pgindx + i])) break; ASSERT(pages[pgindx + i]->p_szc >= level); ASSERT(pages[pgindx] + i == pages[pgindx + i]); } if (i == mmu_btop(pgsize)) { #ifdef DEBUG if (level == 2) map1gcnt++; #endif break; } } } /* * Load this page mapping. If the load fails, try a smaller * pagesize. */ ASSERT(!IN_VA_HOLE(va)); while (hati_load_common(hat, va, pages[pgindx], attr, flags, level, pfn) != 0) { if (level == 0) panic("unexpected hati_load_common() failure"); --level; pgsize = LEVEL_SIZE(level); } /* * move to next page */ va += pgsize; pgindx += mmu_btop(pgsize); } XPV_ALLOW_MIGRATE(); } /* ARGSUSED */ void hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, struct page **pps, uint_t attr, uint_t flags, hat_region_cookie_t rcookie) { hat_memload_array(hat, addr, len, pps, attr, flags); } /* * void hat_devload(hat, addr, len, pf, attr, flags) * load/lock the given page frame number * * Advisory ordering attributes. Apply only to device mappings. * * HAT_STRICTORDER: the CPU must issue the references in order, as the * programmer specified. This is the default. * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds * of reordering; store or load with store or load). * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores * to consecutive locations (for example, turn two consecutive byte * stores into one halfword store), and it may batch individual loads * (for example, turn two consecutive byte loads into one halfword load). * This also implies re-ordering. * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it * until another store occurs. The default is to fetch new data * on every load. This also implies merging. * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to * the device (perhaps with other data) at a later time. The default is * to push the data right away. This also implies load caching. * * Equivalent of hat_memload(), but can be used for device memory where * there are no page_t's and we support additional flags (write merging, etc). * Note that we can have large page mappings with this interface. */ int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; void hat_devload( hat_t *hat, caddr_t addr, size_t len, pfn_t pfn, uint_t attr, int flags) { uintptr_t va = ALIGN2PAGE(addr); uintptr_t eva = va + len; level_t level; size_t pgsize; page_t *pp; int f; /* per PTE copy of flags - maybe modified */ uint_t a; /* per PTE copy of attr */ XPV_DISALLOW_MIGRATE(); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || eva <= _userlimit); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); ASSERT((flags & supported_devload_flags) == flags); /* * handle all pages */ while (va < eva) { /* * decide what level mapping to use (ie. pagesize) */ for (level = mmu.max_page_level; ; --level) { pgsize = LEVEL_SIZE(level); if (level == 0) break; if (IS_P2ALIGNED(va, pgsize) && (eva - va) >= pgsize && IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { #ifdef DEBUG if (level == 2) map1gcnt++; #endif break; } } /* * If this is just memory then allow caching (this happens * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used * to override that. If we don't have a page_t then make sure * NOCONSIST is set. */ a = attr; f = flags; if (!pf_is_memory(pfn)) f |= HAT_LOAD_NOCONSIST; else if (!(a & HAT_PLAT_NOCACHE)) a |= HAT_STORECACHING_OK; if (f & HAT_LOAD_NOCONSIST) pp = NULL; else pp = page_numtopp_nolock(pfn); /* * Check to make sure we are really trying to map a valid * memory page. The caller wishing to intentionally map * free memory pages will have passed the HAT_LOAD_NOCONSIST * flag, then pp will be NULL. */ if (pp != NULL) { if (PP_ISFREE(pp)) { panic("hat_devload: loading " "a mapping to free page %p", (void *)pp); } if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { panic("hat_devload: loading a mapping " "to an unlocked page %p", (void *)pp); } } /* * load this page mapping */ ASSERT(!IN_VA_HOLE(va)); while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { if (level == 0) panic("unexpected hati_load_common() failure"); --level; pgsize = LEVEL_SIZE(level); } /* * move to next page */ va += pgsize; pfn += mmu_btop(pgsize); } XPV_ALLOW_MIGRATE(); } /* * void hat_unlock(hat, addr, len) * unlock the mappings to a given range of addresses * * Locks are tracked by ht_lock_cnt in the htable. */ void hat_unlock(hat_t *hat, caddr_t addr, size_t len) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; /* * kernel entries are always locked, we don't track lock counts */ ASSERT(hat == kas.a_hat || eaddr <= _userlimit); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); if (hat == kas.a_hat) return; if (eaddr > _userlimit) panic("hat_unlock() address out of range - above _userlimit"); XPV_DISALLOW_MIGRATE(); ASSERT(AS_LOCK_HELD(hat->hat_as)); while (vaddr < eaddr) { (void) htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); if (ht->ht_lock_cnt < 1) panic("hat_unlock(): lock_cnt < 1, " "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); HTABLE_LOCK_DEC(ht); vaddr += LEVEL_SIZE(ht->ht_level); } if (ht) htable_release(ht); XPV_ALLOW_MIGRATE(); } /* ARGSUSED */ void hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, hat_region_cookie_t rcookie) { panic("No shared region support on x86"); } #if !defined(__xpv) /* * Cross call service routine to demap a range of virtual * pages on the current CPU or flush all mappings in TLB. */ static int hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) { _NOTE(ARGUNUSED(a3)); hat_t *hat = (hat_t *)a1; tlb_range_t *range = (tlb_range_t *)a2; /* * If the target hat isn't the kernel and this CPU isn't operating * in the target hat, we can ignore the cross call. */ if (hat != kas.a_hat && hat != CPU->cpu_current_hat) return (0); if (range->tr_va != DEMAP_ALL_ADDR) { mmu_flush_tlb(FLUSH_TLB_RANGE, range); return (0); } /* * We are flushing all of userspace. * * When using PCP, we first need to update this CPU's idea of the PCP * PTEs. */ if (hat->hat_flags & HAT_COPIED) { hat_pcp_update(CPU, hat); } mmu_flush_tlb(FLUSH_TLB_NONGLOBAL, NULL); return (0); } #define TLBIDLE_CPU_HALTED (0x1UL) #define TLBIDLE_INVAL_ALL (0x2UL) #define CAS_TLB_INFO(cpu, old, new) \ atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) /* * Record that a CPU is going idle */ void tlb_going_idle(void) { atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLBIDLE_CPU_HALTED); } /* * Service a delayed TLB flush if coming out of being idle. * It will be called from cpu idle notification with interrupt disabled. */ void tlb_service(void) { ulong_t tlb_info; ulong_t found; /* * We only have to do something if coming out of being idle. */ tlb_info = CPU->cpu_m.mcpu_tlb_info; if (tlb_info & TLBIDLE_CPU_HALTED) { ASSERT(CPU->cpu_current_hat == kas.a_hat); /* * Atomic clear and fetch of old state. */ while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { ASSERT(found & TLBIDLE_CPU_HALTED); tlb_info = found; SMT_PAUSE(); } if (tlb_info & TLBIDLE_INVAL_ALL) mmu_flush_tlb(FLUSH_TLB_ALL, NULL); } } #endif /* !__xpv */ /* * Internal routine to do cross calls to invalidate a range of pages on * all CPUs using a given hat. */ void hat_tlb_inval_range(hat_t *hat, tlb_range_t *in_range) { extern int flushes_require_xcalls; /* from mp_startup.c */ cpuset_t justme; cpuset_t cpus_to_shootdown; tlb_range_t range = *in_range; #ifndef __xpv cpuset_t check_cpus; cpu_t *cpup; int c; #endif /* * If the hat is being destroyed, there are no more users, so * demap need not do anything. */ if (hat->hat_flags & HAT_FREEING) return; /* * If demapping from a shared pagetable, we best demap the * entire set of user TLBs, since we don't know what addresses * these were shared at. */ if (hat->hat_flags & HAT_SHARED) { hat = kas.a_hat; range.tr_va = DEMAP_ALL_ADDR; } /* * if not running with multiple CPUs, don't use cross calls */ if (panicstr || !flushes_require_xcalls) { #ifdef __xpv if (range.tr_va == DEMAP_ALL_ADDR) { xen_flush_tlb(); } else { for (size_t i = 0; i < TLB_RANGE_LEN(&range); i += MMU_PAGESIZE) { xen_flush_va((caddr_t)(range.tr_va + i)); } } #else (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0); #endif return; } /* * Determine CPUs to shootdown. Kernel changes always do all CPUs. * Otherwise it's just CPUs currently executing in this hat. */ kpreempt_disable(); CPUSET_ONLY(justme, CPU->cpu_id); if (hat == kas.a_hat) cpus_to_shootdown = khat_cpuset; else cpus_to_shootdown = hat->hat_cpus; #ifndef __xpv /* * If any CPUs in the set are idle, just request a delayed flush * and avoid waking them up. */ check_cpus = cpus_to_shootdown; for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { ulong_t tlb_info; if (!CPU_IN_SET(check_cpus, c)) continue; CPUSET_DEL(check_cpus, c); cpup = cpu[c]; if (cpup == NULL) continue; tlb_info = cpup->cpu_m.mcpu_tlb_info; while (tlb_info == TLBIDLE_CPU_HALTED) { (void) CAS_TLB_INFO(cpup, TLBIDLE_CPU_HALTED, TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL); SMT_PAUSE(); tlb_info = cpup->cpu_m.mcpu_tlb_info; } if (tlb_info == (TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL)) { HATSTAT_INC(hs_tlb_inval_delayed); CPUSET_DEL(cpus_to_shootdown, c); } } #endif if (CPUSET_ISNULL(cpus_to_shootdown) || CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { #ifdef __xpv if (range.tr_va == DEMAP_ALL_ADDR) { xen_flush_tlb(); } else { for (size_t i = 0; i < TLB_RANGE_LEN(&range); i += MMU_PAGESIZE) { xen_flush_va((caddr_t)(range.tr_va + i)); } } #else (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0); #endif } else { CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); #ifdef __xpv if (range.tr_va == DEMAP_ALL_ADDR) { xen_gflush_tlb(cpus_to_shootdown); } else { for (size_t i = 0; i < TLB_RANGE_LEN(&range); i += MMU_PAGESIZE) { xen_gflush_va((caddr_t)(range.tr_va + i), cpus_to_shootdown); } } #else xc_call((xc_arg_t)hat, (xc_arg_t)&range, 0, CPUSET2BV(cpus_to_shootdown), hati_demap_func); #endif } kpreempt_enable(); } void hat_tlb_inval(hat_t *hat, uintptr_t va) { /* * Create range for a single page. */ tlb_range_t range; range.tr_va = va; range.tr_cnt = 1; /* one page */ range.tr_level = MIN_PAGE_LEVEL; /* pages are MMU_PAGESIZE */ hat_tlb_inval_range(hat, &range); } /* * Interior routine for HAT_UNLOADs from hat_unload_callback(), * hat_kmap_unload() OR from hat_steal() code. This routine doesn't * handle releasing of the htables. */ void hat_pte_unmap( htable_t *ht, uint_t entry, uint_t flags, x86pte_t old_pte, void *pte_ptr, boolean_t tlb) { hat_t *hat = ht->ht_hat; hment_t *hm = NULL; page_t *pp = NULL; level_t l = ht->ht_level; pfn_t pfn; /* * We always track the locking counts, even if nothing is unmapped */ if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { ASSERT(ht->ht_lock_cnt > 0); HTABLE_LOCK_DEC(ht); } /* * Figure out which page's mapping list lock to acquire using the PFN * passed in "old" PTE. We then attempt to invalidate the PTE. * If another thread, probably a hat_pageunload, has asynchronously * unmapped/remapped this address we'll loop here. */ ASSERT(ht->ht_busy > 0); while (PTE_ISVALID(old_pte)) { pfn = PTE2PFN(old_pte, l); if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { pp = NULL; } else { #ifdef __xpv if (pfn == PFN_INVALID) panic("Invalid PFN, but not PT_NOCONSIST"); #endif pp = page_numtopp_nolock(pfn); if (pp == NULL) { panic("no page_t, not NOCONSIST: old_pte=" FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", old_pte, (uintptr_t)ht, entry, (uintptr_t)pte_ptr); } x86_hm_enter(pp); } old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb); /* * If the page hadn't changed we've unmapped it and can proceed */ if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) break; /* * Otherwise, we'll have to retry with the current old_pte. * Drop the hment lock, since the pfn may have changed. */ if (pp != NULL) { x86_hm_exit(pp); pp = NULL; } else { ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); } } /* * If the old mapping wasn't valid, there's nothing more to do */ if (!PTE_ISVALID(old_pte)) { if (pp != NULL) x86_hm_exit(pp); return; } /* * Take care of syncing any MOD/REF bits and removing the hment. */ if (pp != NULL) { if (!(flags & HAT_UNLOAD_NOSYNC)) hati_sync_pte_to_page(pp, old_pte, l); hm = hment_remove(pp, ht, entry); x86_hm_exit(pp); if (hm != NULL) hment_free(hm); } /* * Handle book keeping in the htable and hat */ ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(hat, l); } /* * very cheap unload implementation to special case some kernel addresses */ static void hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) { uintptr_t va = (uintptr_t)addr; uintptr_t eva = va + len; pgcnt_t pg_index; htable_t *ht; uint_t entry; x86pte_t *pte_ptr; x86pte_t old_pte; for (; va < eva; va += MMU_PAGESIZE) { /* * Get the PTE */ pg_index = mmu_btop(va - mmu.kmap_addr); pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); old_pte = GET_PTE(pte_ptr); /* * get the htable / entry */ ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> LEVEL_SHIFT(1)]; entry = htable_va2entry(va, ht); /* * use mostly common code to unmap it. */ hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE); } } /* * unload a range of virtual address space (no callback) */ void hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { uintptr_t va = (uintptr_t)addr; XPV_DISALLOW_MIGRATE(); ASSERT(hat == kas.a_hat || va + len <= _userlimit); /* * special case for performance. */ if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { ASSERT(hat == kas.a_hat); hat_kmap_unload(addr, len, flags); } else { hat_unload_callback(hat, addr, len, flags, NULL); } XPV_ALLOW_MIGRATE(); } /* * Invalidate the TLB, and perform the callback to the upper level VM system, * for the specified ranges of contiguous pages. */ static void handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, tlb_range_t *range) { while (cnt > 0) { --cnt; hat_tlb_inval_range(hat, &range[cnt]); if (cb != NULL) { cb->hcb_start_addr = (caddr_t)range[cnt].tr_va; cb->hcb_end_addr = cb->hcb_start_addr; cb->hcb_end_addr += range[cnt].tr_cnt << LEVEL_SHIFT(range[cnt].tr_level); cb->hcb_function(cb); } } } /* * Unload a given range of addresses (has optional callback) * * Flags: * define HAT_UNLOAD 0x00 * define HAT_UNLOAD_NOSYNC 0x02 * define HAT_UNLOAD_UNLOCK 0x04 * define HAT_UNLOAD_OTHER 0x08 - not used * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD */ #define MAX_UNLOAD_CNT (8) void hat_unload_callback( hat_t *hat, caddr_t addr, size_t len, uint_t flags, hat_callback_t *cb) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t entry; uintptr_t contig_va = (uintptr_t)-1L; tlb_range_t r[MAX_UNLOAD_CNT]; uint_t r_cnt = 0; x86pte_t old_pte; XPV_DISALLOW_MIGRATE(); ASSERT(hat == kas.a_hat || eaddr <= _userlimit); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); /* * Special case a single page being unloaded for speed. This happens * quite frequently, COW faults after a fork() for example. */ if (cb == NULL && len == MMU_PAGESIZE) { ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); if (ht != NULL) { if (PTE_ISVALID(old_pte)) { hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_TRUE); } htable_release(ht); } XPV_ALLOW_MIGRATE(); return; } while (vaddr < eaddr) { old_pte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); if (vaddr < (uintptr_t)addr) panic("hat_unload_callback(): unmap inside large page"); /* * We'll do the call backs for contiguous ranges */ if (vaddr != contig_va || (r_cnt > 0 && r[r_cnt - 1].tr_level != ht->ht_level)) { if (r_cnt == MAX_UNLOAD_CNT) { handle_ranges(hat, cb, r_cnt, r); r_cnt = 0; } r[r_cnt].tr_va = vaddr; r[r_cnt].tr_cnt = 0; r[r_cnt].tr_level = ht->ht_level; ++r_cnt; } /* * Unload one mapping (for a single page) from the page tables. * Note that we do not remove the mapping from the TLB yet, * as indicated by the tlb=FALSE argument to hat_pte_unmap(). * handle_ranges() will clear the TLB entries with one call to * hat_tlb_inval_range() per contiguous range. This is * safe because the page can not be reused until the * callback is made (or we return). */ entry = htable_va2entry(vaddr, ht); hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE); ASSERT(ht->ht_level <= mmu.max_page_level); vaddr += LEVEL_SIZE(ht->ht_level); contig_va = vaddr; ++r[r_cnt - 1].tr_cnt; } if (ht) htable_release(ht); /* * handle last range for callbacks */ if (r_cnt > 0) handle_ranges(hat, cb, r_cnt, r); XPV_ALLOW_MIGRATE(); } /* * Invalidate a virtual address translation on a slave CPU during * panic() dumps. */ void hat_flush_range(hat_t *hat, caddr_t va, size_t size) { ssize_t sz; caddr_t endva = va + size; while (va < endva) { sz = hat_getpagesize(hat, va); if (sz < 0) { #ifdef __xpv xen_flush_tlb(); #else mmu_flush_tlb(FLUSH_TLB_ALL, NULL); #endif break; } #ifdef __xpv xen_flush_va(va); #else mmu_flush_tlb_kpage((uintptr_t)va); #endif va += sz; } } /* * synchronize mapping with software data structures * * This interface is currently only used by the working set monitor * driver. */ /*ARGSUSED*/ void hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t entry; x86pte_t pte; x86pte_t save_pte; x86pte_t new; page_t *pp; ASSERT(!IN_VA_HOLE(vaddr)); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(hat == kas.a_hat || eaddr <= _userlimit); XPV_DISALLOW_MIGRATE(); for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { try_again: pte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; entry = htable_va2entry(vaddr, ht); if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || PTE_GET(pte, PT_REF | PT_MOD) == 0) continue; /* * We need to acquire the mapping list lock to protect * against hat_pageunload(), hat_unload(), etc. */ pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); if (pp == NULL) break; x86_hm_enter(pp); save_pte = pte; pte = x86pte_get(ht, entry); if (pte != save_pte) { x86_hm_exit(pp); goto try_again; } if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || PTE_GET(pte, PT_REF | PT_MOD) == 0) { x86_hm_exit(pp); continue; } /* * Need to clear ref or mod bits. We may compete with * hardware updating the R/M bits and have to try again. */ if (flags == HAT_SYNC_ZERORM) { new = pte; PTE_CLR(new, PT_REF | PT_MOD); pte = hati_update_pte(ht, entry, pte, new); if (pte != 0) { x86_hm_exit(pp); goto try_again; } } else { /* * sync the PTE to the page_t */ hati_sync_pte_to_page(pp, save_pte, ht->ht_level); } x86_hm_exit(pp); } if (ht) htable_release(ht); XPV_ALLOW_MIGRATE(); } /* * void hat_map(hat, addr, len, flags) */ /*ARGSUSED*/ void hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { /* does nothing */ } /* * uint_t hat_getattr(hat, addr, *attr) * returns attr for in *attr. returns 0 if there was a * mapping and *attr is valid, nonzero if there was no mapping and * *attr is not valid. */ uint_t hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht = NULL; x86pte_t pte; ASSERT(hat == kas.a_hat || vaddr <= _userlimit); if (IN_VA_HOLE(vaddr)) return ((uint_t)-1); ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); if (ht == NULL) return ((uint_t)-1); if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { htable_release(ht); return ((uint_t)-1); } *attr = PROT_READ; if (PTE_GET(pte, PT_WRITABLE)) *attr |= PROT_WRITE; if (PTE_GET(pte, PT_USER)) *attr |= PROT_USER; if (!PTE_GET(pte, mmu.pt_nx)) *attr |= PROT_EXEC; if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) *attr |= HAT_NOSYNC; htable_release(ht); return (0); } /* * hat_updateattr() applies the given attribute change to an existing mapping */ #define HAT_LOAD_ATTR 1 #define HAT_SET_ATTR 2 #define HAT_CLR_ATTR 3 static void hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = (uintptr_t)addr + len; htable_t *ht = NULL; uint_t entry; x86pte_t oldpte, newpte; page_t *pp; XPV_DISALLOW_MIGRATE(); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { try_again: oldpte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) continue; pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); if (pp == NULL) continue; x86_hm_enter(pp); newpte = oldpte; /* * We found a page table entry in the desired range, * figure out the new attributes. */ if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { if ((attr & PROT_WRITE) && !PTE_GET(oldpte, PT_WRITABLE)) newpte |= PT_WRITABLE; if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) newpte |= PT_NOSYNC; if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) newpte &= ~mmu.pt_nx; } if (what == HAT_LOAD_ATTR) { if (!(attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) newpte &= ~PT_WRITABLE; if (!(attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) newpte &= ~PT_SOFTWARE; if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) newpte |= mmu.pt_nx; } if (what == HAT_CLR_ATTR) { if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) newpte &= ~PT_WRITABLE; if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) newpte &= ~PT_SOFTWARE; if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) newpte |= mmu.pt_nx; } /* * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. * x86pte_set() depends on this. */ if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) newpte |= PT_REF | PT_MOD; /* * what about PROT_READ or others? this code only handles: * EXEC, WRITE, NOSYNC */ /* * If new PTE really changed, update the table. */ if (newpte != oldpte) { entry = htable_va2entry(vaddr, ht); oldpte = hati_update_pte(ht, entry, oldpte, newpte); if (oldpte != 0) { x86_hm_exit(pp); goto try_again; } } x86_hm_exit(pp); } if (ht) htable_release(ht); XPV_ALLOW_MIGRATE(); } /* * Various wrappers for hat_updateattr() */ void hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); } void hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); } void hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); } void hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); } /* * size_t hat_getpagesize(hat, addr) * returns pagesize in bytes for . returns -1 of there is * no mapping. This is an advisory call. */ ssize_t hat_getpagesize(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht; size_t pagesize; ASSERT(hat == kas.a_hat || vaddr <= _userlimit); if (IN_VA_HOLE(vaddr)) return (-1); ht = htable_getpage(hat, vaddr, NULL); if (ht == NULL) return (-1); pagesize = LEVEL_SIZE(ht->ht_level); htable_release(ht); return (pagesize); } /* * pfn_t hat_getpfnum(hat, addr) * returns pfn for or PFN_INVALID if mapping is invalid. */ pfn_t hat_getpfnum(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht; uint_t entry; pfn_t pfn = PFN_INVALID; ASSERT(hat == kas.a_hat || vaddr <= _userlimit); if (khat_running == 0) return (PFN_INVALID); if (IN_VA_HOLE(vaddr)) return (PFN_INVALID); XPV_DISALLOW_MIGRATE(); /* * A very common use of hat_getpfnum() is from the DDI for kernel pages. * Use the kmap_ptes (which also covers the 32 bit heap) to speed * this up. */ if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { x86pte_t pte; pgcnt_t pg_index; pg_index = mmu_btop(vaddr - mmu.kmap_addr); pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); if (PTE_ISVALID(pte)) /*LINTED [use of constant 0 causes a lint warning] */ pfn = PTE2PFN(pte, 0); XPV_ALLOW_MIGRATE(); return (pfn); } ht = htable_getpage(hat, vaddr, &entry); if (ht == NULL) { XPV_ALLOW_MIGRATE(); return (PFN_INVALID); } ASSERT(vaddr >= ht->ht_vaddr); ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); if (ht->ht_level > 0) pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); htable_release(ht); XPV_ALLOW_MIGRATE(); return (pfn); } /* * int hat_probe(hat, addr) * return 0 if no valid mapping is present. Faster version * of hat_getattr in certain architectures. */ int hat_probe(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); uint_t entry; htable_t *ht; pgcnt_t pg_off; ASSERT(hat == kas.a_hat || vaddr <= _userlimit); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); if (IN_VA_HOLE(vaddr)) return (0); /* * Most common use of hat_probe is from segmap. We special case it * for performance. */ if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { pg_off = mmu_btop(vaddr - mmu.kmap_addr); if (mmu.pae_hat) return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); else return (PTE_ISVALID( ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); } ht = htable_getpage(hat, vaddr, &entry); htable_release(ht); return (ht != NULL); } /* * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. */ static int is_it_dism(hat_t *hat, caddr_t va) { struct seg *seg; struct shm_data *shmd; struct spt_data *sptd; seg = as_findseg(hat->hat_as, va, 0); ASSERT(seg != NULL); ASSERT(seg->s_base <= va); shmd = (struct shm_data *)seg->s_data; ASSERT(shmd != NULL); sptd = (struct spt_data *)shmd->shm_sptseg->s_data; ASSERT(sptd != NULL); if (sptd->spt_flags & SHM_PAGEABLE) return (1); return (0); } /* * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), * except that we use the ism_hat's existing mappings to determine the pages * and protections to use for this hat. If we find a full properly aligned * and sized pagetable, we will attempt to share the pagetable itself. */ /*ARGSUSED*/ int hat_share( hat_t *hat, caddr_t addr, hat_t *ism_hat, caddr_t src_addr, size_t len, /* almost useless value, see below.. */ uint_t ismszc) { uintptr_t vaddr_start = (uintptr_t)addr; uintptr_t vaddr; uintptr_t eaddr = vaddr_start + len; uintptr_t ism_addr_start = (uintptr_t)src_addr; uintptr_t ism_addr = ism_addr_start; uintptr_t e_ism_addr = ism_addr + len; htable_t *ism_ht = NULL; htable_t *ht; x86pte_t pte; page_t *pp; pfn_t pfn; level_t l; pgcnt_t pgcnt; uint_t prot; int is_dism; int flags; /* * We might be asked to share an empty DISM hat by as_dup() */ ASSERT(hat != kas.a_hat); ASSERT(eaddr <= _userlimit); if (!(ism_hat->hat_flags & HAT_SHARED)) { ASSERT(hat_get_mapped_size(ism_hat) == 0); return (0); } XPV_DISALLOW_MIGRATE(); /* * The SPT segment driver often passes us a size larger than there are * valid mappings. That's because it rounds the segment size up to a * large pagesize, even if the actual memory mapped by ism_hat is less. */ ASSERT(IS_PAGEALIGNED(vaddr_start)); ASSERT(IS_PAGEALIGNED(ism_addr_start)); ASSERT(ism_hat->hat_flags & HAT_SHARED); is_dism = is_it_dism(hat, addr); while (ism_addr < e_ism_addr) { /* * use htable_walk to get the next valid ISM mapping */ pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); if (ism_ht == NULL) break; /* * First check to see if we already share the page table. */ l = ism_ht->ht_level; vaddr = vaddr_start + (ism_addr - ism_addr_start); ht = htable_lookup(hat, vaddr, l); if (ht != NULL) { if (ht->ht_flags & HTABLE_SHARED_PFN) goto shared; htable_release(ht); goto not_shared; } /* * Can't ever share top table. */ if (l == mmu.max_level) goto not_shared; /* * Avoid level mismatches later due to DISM faults. */ if (is_dism && l > 0) goto not_shared; /* * addresses and lengths must align * table must be fully populated * no lower level page tables */ if (ism_addr != ism_ht->ht_vaddr || (vaddr & LEVEL_OFFSET(l + 1)) != 0) goto not_shared; /* * The range of address space must cover a full table. */ if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) goto not_shared; /* * All entries in the ISM page table must be leaf PTEs. */ if (l > 0) { int e; /* * We know the 0th is from htable_walk() above. */ for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { x86pte_t pte; pte = x86pte_get(ism_ht, e); if (!PTE_ISPAGE(pte, l)) goto not_shared; } } /* * share the page table */ ht = htable_create(hat, vaddr, l, ism_ht); shared: ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); ASSERT(ht->ht_shares == ism_ht); hat->hat_ism_pgcnt += (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); ht->ht_valid_cnt = ism_ht->ht_valid_cnt; htable_release(ht); ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); htable_release(ism_ht); ism_ht = NULL; continue; not_shared: /* * Unable to share the page table. Instead we will * create new mappings from the values in the ISM mappings. * Figure out what level size mappings to use; */ for (l = ism_ht->ht_level; l > 0; --l) { if (LEVEL_SIZE(l) <= eaddr - vaddr && (vaddr & LEVEL_OFFSET(l)) == 0) break; } /* * The ISM mapping might be larger than the share area, * be careful to truncate it if needed. */ if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); } else { pgcnt = mmu_btop(eaddr - vaddr); l = 0; } pfn = PTE2PFN(pte, ism_ht->ht_level); ASSERT(pfn != PFN_INVALID); while (pgcnt > 0) { /* * Make a new pte for the PFN for this level. * Copy protections for the pte from the ISM pte. */ pp = page_numtopp_nolock(pfn); ASSERT(pp != NULL); prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; if (PTE_GET(pte, PT_WRITABLE)) prot |= PROT_WRITE; if (!PTE_GET(pte, PT_NX)) prot |= PROT_EXEC; flags = HAT_LOAD; if (!is_dism) flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; while (hati_load_common(hat, vaddr, pp, prot, flags, l, pfn) != 0) { if (l == 0) panic("hati_load_common() failure"); --l; } vaddr += LEVEL_SIZE(l); ism_addr += LEVEL_SIZE(l); pfn += mmu_btop(LEVEL_SIZE(l)); pgcnt -= mmu_btop(LEVEL_SIZE(l)); } } if (ism_ht != NULL) htable_release(ism_ht); XPV_ALLOW_MIGRATE(); return (0); } /* * hat_unshare() is similar to hat_unload_callback(), but * we have to look for empty shared pagetables. Note that * hat_unshare() is always invoked against an entire segment. */ /*ARGSUSED*/ void hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) { uint64_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t need_demaps = 0; int flags = HAT_UNLOAD_UNMAP; level_t l; ASSERT(hat != kas.a_hat); ASSERT(eaddr <= _userlimit); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); XPV_DISALLOW_MIGRATE(); /* * First go through and remove any shared pagetables. * * Note that it's ok to delay the TLB shootdown till the entire range is * finished, because if hat_pageunload() were to unload a shared * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. */ l = mmu.max_page_level; if (l == mmu.max_level) --l; for (; l >= 0; --l) { for (vaddr = (uintptr_t)addr; vaddr < eaddr; vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { ASSERT(!IN_VA_HOLE(vaddr)); /* * find a pagetable that maps the current address */ ht = htable_lookup(hat, vaddr, l); if (ht == NULL) continue; if (ht->ht_flags & HTABLE_SHARED_PFN) { /* * clear page count, set valid_cnt to 0, * let htable_release() finish the job */ hat->hat_ism_pgcnt -= ht->ht_valid_cnt << (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); ht->ht_valid_cnt = 0; need_demaps = 1; } htable_release(ht); } } /* * flush the TLBs - since we're probably dealing with MANY mappings * we just do a full invalidation. */ if (!(hat->hat_flags & HAT_FREEING) && need_demaps) hat_tlb_inval(hat, DEMAP_ALL_ADDR); /* * Now go back and clean up any unaligned mappings that * couldn't share pagetables. */ if (!is_it_dism(hat, addr)) flags |= HAT_UNLOAD_UNLOCK; hat_unload(hat, addr, len, flags); XPV_ALLOW_MIGRATE(); } /* * hat_reserve() does nothing */ /*ARGSUSED*/ void hat_reserve(struct as *as, caddr_t addr, size_t len) { } /* * Called when all mappings to a page should have write permission removed. * Mostly stolen from hat_pagesync() */ static void hati_page_clrwrt(struct page *pp) { hment_t *hm = NULL; htable_t *ht; uint_t entry; x86pte_t old; x86pte_t new; uint_t pszc = 0; XPV_DISALLOW_MIGRATE(); next_size: /* * walk thru the mapping list clearing write permission */ x86_hm_enter(pp); while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { if (ht->ht_level < pszc) continue; old = x86pte_get(ht, entry); for (;;) { /* * Is this mapping of interest? */ if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || PTE_GET(old, PT_WRITABLE) == 0) break; /* * Clear ref/mod writable bits. This requires cross * calls to ensure any executing TLBs see cleared bits. */ new = old; PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); old = hati_update_pte(ht, entry, old, new); if (old != 0) continue; break; } } x86_hm_exit(pp); while (pszc < pp->p_szc) { page_t *tpp; pszc++; tpp = PP_GROUPLEADER(pp, pszc); if (pp != tpp) { pp = tpp; goto next_size; } } XPV_ALLOW_MIGRATE(); } /* * void hat_page_setattr(pp, flag) * void hat_page_clrattr(pp, flag) * used to set/clr ref/mod bits. */ void hat_page_setattr(struct page *pp, uint_t flag) { vnode_t *vp = pp->p_vnode; kmutex_t *vphm = NULL; page_t **listp; int noshuffle; noshuffle = flag & P_NSH; flag &= ~P_NSH; if (PP_GETRM(pp, flag) == flag) return; if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && !noshuffle) { vphm = page_vnode_mutex(vp); mutex_enter(vphm); } PP_SETRM(pp, flag); if (vphm != NULL) { /* * Some File Systems examine v_pages for NULL w/o * grabbing the vphm mutex. Must not let it become NULL when * pp is the only page on the list. */ if (pp->p_vpnext != pp) { page_vpsub(&vp->v_pages, pp); if (vp->v_pages != NULL) listp = &vp->v_pages->p_vpprev->p_vpnext; else listp = &vp->v_pages; page_vpadd(listp, pp); } mutex_exit(vphm); } } void hat_page_clrattr(struct page *pp, uint_t flag) { vnode_t *vp = pp->p_vnode; ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); /* * Caller is expected to hold page's io lock for VMODSORT to work * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod * bit is cleared. * We don't have assert to avoid tripping some existing third party * code. The dirty page is moved back to top of the v_page list * after IO is done in pvn_write_done(). */ PP_CLRRM(pp, flag); if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { /* * VMODSORT works by removing write permissions and getting * a fault when a page is made dirty. At this point * we need to remove write permission from all mappings * to this page. */ hati_page_clrwrt(pp); } } /* * If flag is specified, returns 0 if attribute is disabled * and non zero if enabled. If flag specifes multiple attributes * then returns 0 if ALL attributes are disabled. This is an advisory * call. */ uint_t hat_page_getattr(struct page *pp, uint_t flag) { return (PP_GETRM(pp, flag)); } /* * common code used by hat_pageunload() and hment_steal() */ hment_t * hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) { x86pte_t old_pte; pfn_t pfn = pp->p_pagenum; hment_t *hm; /* * We need to acquire a hold on the htable in order to * do the invalidate. We know the htable must exist, since * unmap's don't release the htable until after removing any * hment. Having x86_hm_enter() keeps that from proceeding. */ htable_acquire(ht); /* * Invalidate the PTE and remove the hment. */ old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE); if (PTE2PFN(old_pte, ht->ht_level) != pfn) { panic("x86pte_inval() failure found PTE = " FMT_PTE " pfn being unmapped is %lx ht=0x%lx entry=0x%x", old_pte, pfn, (uintptr_t)ht, entry); } /* * Clean up all the htable information for this mapping */ ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(ht->ht_hat, ht->ht_level); /* * sync ref/mod bits to the page_t */ if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) hati_sync_pte_to_page(pp, old_pte, ht->ht_level); /* * Remove the mapping list entry for this page. */ hm = hment_remove(pp, ht, entry); /* * drop the mapping list lock so that we might free the * hment and htable. */ x86_hm_exit(pp); htable_release(ht); return (hm); } extern int vpm_enable; /* * Unload all translations to a page. If the page is a subpage of a large * page, the large page mappings are also removed. * * The forceflags are unused. */ /*ARGSUSED*/ static int hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) { page_t *cur_pp = pp; hment_t *hm; hment_t *prev; htable_t *ht; uint_t entry; level_t level; XPV_DISALLOW_MIGRATE(); /* * prevent recursion due to kmem_free() */ ++curthread->t_hatdepth; ASSERT(curthread->t_hatdepth < 16); /* * clear the vpm ref. */ if (vpm_enable) { pp->p_vpmref = 0; } /* * The loop with next_size handles pages with multiple pagesize mappings */ next_size: for (;;) { /* * Get a mapping list entry */ x86_hm_enter(cur_pp); for (prev = NULL; ; prev = hm) { hm = hment_walk(cur_pp, &ht, &entry, prev); if (hm == NULL) { x86_hm_exit(cur_pp); /* * If not part of a larger page, we're done. */ if (cur_pp->p_szc <= pg_szcd) { ASSERT(curthread->t_hatdepth > 0); --curthread->t_hatdepth; XPV_ALLOW_MIGRATE(); return (0); } /* * Else check the next larger page size. * hat_page_demote() may decrease p_szc * but that's ok we'll just take an extra * trip discover there're no larger mappings * and return. */ ++pg_szcd; cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); goto next_size; } /* * If this mapping size matches, remove it. */ level = ht->ht_level; if (level == pg_szcd) break; } /* * Remove the mapping list entry for this page. * Note this does the x86_hm_exit() for us. */ hm = hati_page_unmap(cur_pp, ht, entry); if (hm != NULL) hment_free(hm); } } int hat_pageunload(struct page *pp, uint_t forceflag) { ASSERT(PAGE_EXCL(pp)); return (hati_pageunload(pp, 0, forceflag)); } /* * Unload all large mappings to pp and reduce by 1 p_szc field of every large * page level that included pp. * * pp must be locked EXCL. Even though no other constituent pages are locked * it's legal to unload large mappings to pp because all constituent pages of * large locked mappings have to be locked SHARED. therefore if we have EXCL * lock on one of constituent pages none of the large mappings to pp are * locked. * * Change (always decrease) p_szc field starting from the last constituent * page and ending with root constituent page so that root's pszc always shows * the area where hat_page_demote() may be active. * * This mechanism is only used for file system pages where it's not always * possible to get EXCL locks on all constituent pages to demote the size code * (as is done for anonymous or kernel large pages). */ void hat_page_demote(page_t *pp) { uint_t pszc; uint_t rszc; uint_t szc; page_t *rootpp; page_t *firstpp; page_t *lastpp; pgcnt_t pgcnt; ASSERT(PAGE_EXCL(pp)); ASSERT(!PP_ISFREE(pp)); ASSERT(page_szc_lock_assert(pp)); if (pp->p_szc == 0) return; rootpp = PP_GROUPLEADER(pp, 1); (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); /* * all large mappings to pp are gone * and no new can be setup since pp is locked exclusively. * * Lock the root to make sure there's only one hat_page_demote() * outstanding within the area of this root's pszc. * * Second potential hat_page_demote() is already eliminated by upper * VM layer via page_szc_lock() but we don't rely on it and use our * own locking (so that upper layer locking can be changed without * assumptions that hat depends on upper layer VM to prevent multiple * hat_page_demote() to be issued simultaneously to the same large * page). */ again: pszc = pp->p_szc; if (pszc == 0) return; rootpp = PP_GROUPLEADER(pp, pszc); x86_hm_enter(rootpp); /* * If root's p_szc is different from pszc we raced with another * hat_page_demote(). Drop the lock and try to find the root again. * If root's p_szc is greater than pszc previous hat_page_demote() is * not done yet. Take and release mlist lock of root's root to wait * for previous hat_page_demote() to complete. */ if ((rszc = rootpp->p_szc) != pszc) { x86_hm_exit(rootpp); if (rszc > pszc) { /* p_szc of a locked non free page can't increase */ ASSERT(pp != rootpp); rootpp = PP_GROUPLEADER(rootpp, rszc); x86_hm_enter(rootpp); x86_hm_exit(rootpp); } goto again; } ASSERT(pp->p_szc == pszc); /* * Decrement by 1 p_szc of every constituent page of a region that * covered pp. For example if original szc is 3 it gets changed to 2 * everywhere except in region 2 that covered pp. Region 2 that * covered pp gets demoted to 1 everywhere except in region 1 that * covered pp. The region 1 that covered pp is demoted to region * 0. It's done this way because from region 3 we removed level 3 * mappings, from region 2 that covered pp we removed level 2 mappings * and from region 1 that covered pp we removed level 1 mappings. All * changes are done from from high pfn's to low pfn's so that roots * are changed last allowing one to know the largest region where * hat_page_demote() is stil active by only looking at the root page. * * This algorithm is implemented in 2 while loops. First loop changes * p_szc of pages to the right of pp's level 1 region and second * loop changes p_szc of pages of level 1 region that covers pp * and all pages to the left of level 1 region that covers pp. * In the first loop p_szc keeps dropping with every iteration * and in the second loop it keeps increasing with every iteration. * * First loop description: Demote pages to the right of pp outside of * level 1 region that covers pp. In every iteration of the while * loop below find the last page of szc region and the first page of * (szc - 1) region that is immediately to the right of (szc - 1) * region that covers pp. From last such page to first such page * change every page's szc to szc - 1. Decrement szc and continue * looping until szc is 1. If pp belongs to the last (szc - 1) region * of szc region skip to the next iteration. */ szc = pszc; while (szc > 1) { lastpp = PP_GROUPLEADER(pp, szc); pgcnt = page_get_pagecnt(szc); lastpp += pgcnt - 1; firstpp = PP_GROUPLEADER(pp, (szc - 1)); pgcnt = page_get_pagecnt(szc - 1); if (lastpp - firstpp < pgcnt) { szc--; continue; } firstpp += pgcnt; while (lastpp != firstpp) { ASSERT(lastpp->p_szc == pszc); lastpp->p_szc = szc - 1; lastpp--; } firstpp->p_szc = szc - 1; szc--; } /* * Second loop description: * First iteration changes p_szc to 0 of every * page of level 1 region that covers pp. * Subsequent iterations find last page of szc region * immediately to the left of szc region that covered pp * and first page of (szc + 1) region that covers pp. * From last to first page change p_szc of every page to szc. * Increment szc and continue looping until szc is pszc. * If pp belongs to the fist szc region of (szc + 1) region * skip to the next iteration. * */ szc = 0; while (szc < pszc) { firstpp = PP_GROUPLEADER(pp, (szc + 1)); if (szc == 0) { pgcnt = page_get_pagecnt(1); lastpp = firstpp + (pgcnt - 1); } else { lastpp = PP_GROUPLEADER(pp, szc); if (firstpp == lastpp) { szc++; continue; } lastpp--; pgcnt = page_get_pagecnt(szc); } while (lastpp != firstpp) { ASSERT(lastpp->p_szc == pszc); lastpp->p_szc = szc; lastpp--; } firstpp->p_szc = szc; if (firstpp == rootpp) break; szc++; } x86_hm_exit(rootpp); } /* * get hw stats from hardware into page struct and reset hw stats * returns attributes of page * Flags for hat_pagesync, hat_getstat, hat_sync * * define HAT_SYNC_ZERORM 0x01 * * Additional flags for hat_pagesync * * define HAT_SYNC_STOPON_REF 0x02 * define HAT_SYNC_STOPON_MOD 0x04 * define HAT_SYNC_STOPON_RM 0x06 * define HAT_SYNC_STOPON_SHARED 0x08 */ uint_t hat_pagesync(struct page *pp, uint_t flags) { hment_t *hm = NULL; htable_t *ht; uint_t entry; x86pte_t old, save_old; x86pte_t new; uchar_t nrmbits = P_REF|P_MOD|P_RO; extern ulong_t po_share; page_t *save_pp = pp; uint_t pszc = 0; ASSERT(PAGE_LOCKED(pp) || panicstr); if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_ZERORM) == 0) { if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && hat_page_getshare(pp) > po_share) { if (PP_ISRO(pp)) PP_SETREF(pp); return (pp->p_nrm & nrmbits); } } XPV_DISALLOW_MIGRATE(); next_size: /* * walk thru the mapping list syncing (and clearing) ref/mod bits. */ x86_hm_enter(pp); while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { if (ht->ht_level < pszc) continue; old = x86pte_get(ht, entry); try_again: ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); if (PTE_GET(old, PT_REF | PT_MOD) == 0) continue; save_old = old; if ((flags & HAT_SYNC_ZERORM) != 0) { /* * Need to clear ref or mod bits. Need to demap * to make sure any executing TLBs see cleared bits. */ new = old; PTE_CLR(new, PT_REF | PT_MOD); old = hati_update_pte(ht, entry, old, new); if (old != 0) goto try_again; old = save_old; } /* * Sync the PTE */ if (!(flags & HAT_SYNC_ZERORM) && PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) hati_sync_pte_to_page(pp, old, ht->ht_level); /* * can stop short if we found a ref'd or mod'd page */ if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { x86_hm_exit(pp); goto done; } } x86_hm_exit(pp); while (pszc < pp->p_szc) { page_t *tpp; pszc++; tpp = PP_GROUPLEADER(pp, pszc); if (pp != tpp) { pp = tpp; goto next_size; } } done: XPV_ALLOW_MIGRATE(); return (save_pp->p_nrm & nrmbits); } /* * returns approx number of mappings to this pp. A return of 0 implies * there are no mappings to the page. */ ulong_t hat_page_getshare(page_t *pp) { uint_t cnt; cnt = hment_mapcnt(pp); if (vpm_enable && pp->p_vpmref) { cnt += 1; } return (cnt); } /* * Return 1 the number of mappings exceeds sh_thresh. Return 0 * otherwise. */ int hat_page_checkshare(page_t *pp, ulong_t sh_thresh) { return (hat_page_getshare(pp) > sh_thresh); } /* * hat_softlock isn't supported anymore */ /*ARGSUSED*/ faultcode_t hat_softlock( hat_t *hat, caddr_t addr, size_t *len, struct page **page_array, uint_t flags) { return (FC_NOSUPPORT); } /* * Routine to expose supported HAT features to platform independent code. */ /*ARGSUSED*/ int hat_supported(enum hat_features feature, void *arg) { switch (feature) { case HAT_SHARED_PT: /* this is really ISM */ return (1); case HAT_DYNAMIC_ISM_UNMAP: return (0); case HAT_VMODSORT: return (1); case HAT_SHARED_REGIONS: return (0); default: panic("hat_supported() - unknown feature"); } return (0); } /* * Called when a thread is exiting and has been switched to the kernel AS */ void hat_thread_exit(kthread_t *thd) { ASSERT(thd->t_procp->p_as == &kas); XPV_DISALLOW_MIGRATE(); hat_switch(thd->t_procp->p_as->a_hat); XPV_ALLOW_MIGRATE(); } /* * Setup the given brand new hat structure as the new HAT on this cpu's mmu. */ /*ARGSUSED*/ void hat_setup(hat_t *hat, int flags) { XPV_DISALLOW_MIGRATE(); kpreempt_disable(); hat_switch(hat); kpreempt_enable(); XPV_ALLOW_MIGRATE(); } /* * Prepare for a CPU private mapping for the given address. * * The address can only be used from a single CPU and can be remapped * using hat_mempte_remap(). Return the address of the PTE. * * We do the htable_create() if necessary and increment the valid count so * the htable can't disappear. We also hat_devload() the page table into * kernel so that the PTE is quickly accessed. */ hat_mempte_t hat_mempte_setup(caddr_t addr) { uintptr_t va = (uintptr_t)addr; htable_t *ht; uint_t entry; x86pte_t oldpte; hat_mempte_t p; ASSERT(IS_PAGEALIGNED(va)); ASSERT(!IN_VA_HOLE(va)); ++curthread->t_hatdepth; XPV_DISALLOW_MIGRATE(); ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); if (ht == NULL) { ht = htable_create(kas.a_hat, va, 0, NULL); entry = htable_va2entry(va, ht); ASSERT(ht->ht_level == 0); oldpte = x86pte_get(ht, entry); } if (PTE_ISVALID(oldpte)) panic("hat_mempte_setup(): address already mapped" "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); /* * increment ht_valid_cnt so that the pagetable can't disappear */ HTABLE_INC(ht->ht_valid_cnt); /* * return the PTE physical address to the caller. */ htable_release(ht); XPV_ALLOW_MIGRATE(); p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); --curthread->t_hatdepth; return (p); } /* * Release a CPU private mapping for the given address. * We decrement the htable valid count so it might be destroyed. */ /*ARGSUSED1*/ void hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) { htable_t *ht; XPV_DISALLOW_MIGRATE(); /* * invalidate any left over mapping and decrement the htable valid count */ #ifdef __xpv if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, UVMF_INVLPG | UVMF_LOCAL)) panic("HYPERVISOR_update_va_mapping() failed"); #else { x86pte_t *pteptr; pteptr = x86pte_mapin(mmu_btop(pte_pa), (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); if (mmu.pae_hat) *pteptr = 0; else *(x86pte32_t *)pteptr = 0; mmu_flush_tlb_kpage((uintptr_t)addr); x86pte_mapout(); } #endif ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); if (ht == NULL) panic("hat_mempte_release(): invalid address"); ASSERT(ht->ht_level == 0); HTABLE_DEC(ht->ht_valid_cnt); htable_release(ht); XPV_ALLOW_MIGRATE(); } /* * Apply a temporary CPU private mapping to a page. We flush the TLB only * on this CPU, so this ought to have been called with preemption disabled. */ void hat_mempte_remap( pfn_t pfn, caddr_t addr, hat_mempte_t pte_pa, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; x86pte_t pte; /* * Remap the given PTE to the new page's PFN. Invalidate only * on this CPU. */ #ifdef DEBUG htable_t *ht; uint_t entry; ASSERT(IS_PAGEALIGNED(va)); ASSERT(!IN_VA_HOLE(va)); ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); ASSERT(ht != NULL); ASSERT(ht->ht_level == 0); ASSERT(ht->ht_valid_cnt > 0); ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); htable_release(ht); #endif XPV_DISALLOW_MIGRATE(); pte = hati_mkpte(pfn, attr, 0, flags); #ifdef __xpv if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) panic("HYPERVISOR_update_va_mapping() failed"); #else { x86pte_t *pteptr; pteptr = x86pte_mapin(mmu_btop(pte_pa), (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); if (mmu.pae_hat) *(x86pte_t *)pteptr = pte; else *(x86pte32_t *)pteptr = (x86pte32_t)pte; mmu_flush_tlb_kpage((uintptr_t)addr); x86pte_mapout(); } #endif XPV_ALLOW_MIGRATE(); } /* * Hat locking functions * XXX - these two functions are currently being used by hatstats * they can be removed by using a per-as mutex for hatstats. */ void hat_enter(hat_t *hat) { mutex_enter(&hat->hat_mutex); } void hat_exit(hat_t *hat) { mutex_exit(&hat->hat_mutex); } /* * HAT part of cpu initialization. */ void hat_cpu_online(struct cpu *cpup) { if (cpup != CPU) { x86pte_cpu_init(cpup); hat_pcp_setup(cpup); } CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); } /* * HAT part of cpu deletion. * (currently, we only call this after the cpu is safely passivated.) */ void hat_cpu_offline(struct cpu *cpup) { ASSERT(cpup != CPU); CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); hat_pcp_teardown(cpup); x86pte_cpu_fini(cpup); } /* * Function called after all CPUs are brought online. * Used to remove low address boot mappings. */ void clear_boot_mappings(uintptr_t low, uintptr_t high) { uintptr_t vaddr = low; htable_t *ht = NULL; level_t level; uint_t entry; x86pte_t pte; /* * On 1st CPU we can unload the prom mappings, basically we blow away * all virtual mappings under _userlimit. */ while (vaddr < high) { pte = htable_walk(kas.a_hat, &ht, &vaddr, high); if (ht == NULL) break; level = ht->ht_level; entry = htable_va2entry(vaddr, ht); ASSERT(level <= mmu.max_page_level); ASSERT(PTE_ISPAGE(pte, level)); /* * Unload the mapping from the page tables. */ (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE); ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(ht->ht_hat, ht->ht_level); vaddr += LEVEL_SIZE(ht->ht_level); } if (ht) htable_release(ht); } /* * Atomically update a new translation for a single page. If the * currently installed PTE doesn't match the value we expect to find, * it's not updated and we return the PTE we found. * * If activating nosync or NOWRITE and the page was modified we need to sync * with the page_t. Also sync with page_t if clearing ref/mod bits. */ static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) { page_t *pp; uint_t rm = 0; x86pte_t replaced; if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && PTE_GET(expected, PT_MOD | PT_REF) && (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || !PTE_GET(new, PT_MOD | PT_REF))) { ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); ASSERT(pp != NULL); if (PTE_GET(expected, PT_MOD)) rm |= P_MOD; if (PTE_GET(expected, PT_REF)) rm |= P_REF; PTE_CLR(new, PT_MOD | PT_REF); } replaced = x86pte_update(ht, entry, expected, new); if (replaced != expected) return (replaced); if (rm) { /* * sync to all constituent pages of a large page */ pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); while (pgcnt-- > 0) { /* * hat_page_demote() can't decrease * pszc below this mapping size * since large mapping existed after we * took mlist lock. */ ASSERT(pp->p_szc >= ht->ht_level); hat_page_setattr(pp, rm); ++pp; } } return (0); } /* ARGSUSED */ void hat_join_srd(struct hat *hat, vnode_t *evp) { } /* ARGSUSED */ hat_region_cookie_t hat_join_region(struct hat *hat, caddr_t r_saddr, size_t r_size, void *r_obj, u_offset_t r_objoff, uchar_t r_perm, uchar_t r_pgszc, hat_rgn_cb_func_t r_cb_function, uint_t flags) { panic("No shared region support on x86"); return (HAT_INVALID_REGION_COOKIE); } /* ARGSUSED */ void hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) { panic("No shared region support on x86"); } /* ARGSUSED */ void hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) { panic("No shared region support on x86"); } /* * Kernel Physical Mapping (kpm) facility * * Most of the routines needed to support segkpm are almost no-ops on the * x86 platform. We map in the entire segment when it is created and leave * it mapped in, so there is no additional work required to set up and tear * down individual mappings. All of these routines were created to support * SPARC platforms that have to avoid aliasing in their virtually indexed * caches. * * Most of the routines have sanity checks in them (e.g. verifying that the * passed-in page is locked). We don't actually care about most of these * checks on x86, but we leave them in place to identify problems in the * upper levels. */ /* * Map in a locked page and return the vaddr. */ /*ARGSUSED*/ caddr_t hat_kpm_mapin(struct page *pp, struct kpme *kpme) { caddr_t vaddr; #ifdef DEBUG if (kpm_enable == 0) { cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); return ((caddr_t)NULL); } if (pp == NULL || PAGE_LOCKED(pp) == 0) { cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); return ((caddr_t)NULL); } #endif vaddr = hat_kpm_page2va(pp, 1); return (vaddr); } /* * Mapout a locked page. */ /*ARGSUSED*/ void hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) { #ifdef DEBUG if (kpm_enable == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); return; } if (IS_KPM_ADDR(vaddr) == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); return; } if (pp == NULL || PAGE_LOCKED(pp) == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); return; } #endif } /* * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical * memory addresses that are not described by a page_t. It can * also be used for normal pages that are not locked, but beware * this is dangerous - no locking is performed, so the identity of * the page could change. hat_kpm_mapin_pfn is not supported when * vac_colors > 1, because the chosen va depends on the page identity, * which could change. * The caller must only pass pfn's for valid physical addresses; violation * of this rule will cause panic. */ caddr_t hat_kpm_mapin_pfn(pfn_t pfn) { caddr_t paddr, vaddr; if (kpm_enable == 0) return ((caddr_t)NULL); paddr = (caddr_t)ptob(pfn); vaddr = (uintptr_t)kpm_vbase + paddr; return ((caddr_t)vaddr); } /*ARGSUSED*/ void hat_kpm_mapout_pfn(pfn_t pfn) { /* empty */ } /* * Return the kpm virtual address for a specific pfn */ caddr_t hat_kpm_pfn2va(pfn_t pfn) { uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); ASSERT(!pfn_is_foreign(pfn)); return ((caddr_t)vaddr); } /* * Return the kpm virtual address for the page at pp. */ /*ARGSUSED*/ caddr_t hat_kpm_page2va(struct page *pp, int checkswap) { return (hat_kpm_pfn2va(pp->p_pagenum)); } /* * Return the page frame number for the kpm virtual address vaddr. */ pfn_t hat_kpm_va2pfn(caddr_t vaddr) { pfn_t pfn; ASSERT(IS_KPM_ADDR(vaddr)); pfn = (pfn_t)btop(vaddr - kpm_vbase); return (pfn); } /* * Return the page for the kpm virtual address vaddr. */ page_t * hat_kpm_vaddr2page(caddr_t vaddr) { pfn_t pfn; ASSERT(IS_KPM_ADDR(vaddr)); pfn = hat_kpm_va2pfn(vaddr); return (page_numtopp_nolock(pfn)); } /* * hat_kpm_fault is called from segkpm_fault when we take a page fault on a * KPM page. This should never happen on x86 */ int hat_kpm_fault(hat_t *hat, caddr_t vaddr) { panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", (void *)hat, (void *)vaddr); return (0); } /*ARGSUSED*/ void hat_kpm_mseghash_clear(int nentries) {} /*ARGSUSED*/ void hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) {} #ifndef __xpv void hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, offset_t kpm_pages_off) { _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); pfn_t base, end; /* * kphysm_add_memory_dynamic() does not set nkpmpgs * when page_t memory is externally allocated. That * code must properly calculate nkpmpgs in all cases * if nkpmpgs needs to be used at some point. */ /* * The meta (page_t) pages for dynamically added memory are allocated * either from the incoming memory itself or from existing memory. * In the former case the base of the incoming pages will be different * than the base of the dynamic segment so call memseg_get_start() to * get the actual base of the incoming memory for each case. */ base = memseg_get_start(msp); end = msp->pages_end; hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); } void hat_kpm_addmem_mseg_insert(struct memseg *msp) { _NOTE(ARGUNUSED(msp)); } void hat_kpm_addmem_memsegs_update(struct memseg *msp) { _NOTE(ARGUNUSED(msp)); } /* * Return end of metadata for an already setup memseg. * X86 platforms don't need per-page meta data to support kpm. */ caddr_t hat_kpm_mseg_reuse(struct memseg *msp) { return ((caddr_t)msp->epages); } void hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) { _NOTE(ARGUNUSED(msp, mspp)); ASSERT(0); } void hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, struct memseg *lo, struct memseg *mid, struct memseg *hi) { _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); ASSERT(0); } /* * Walk the memsegs chain, applying func to each memseg span. */ void hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) { pfn_t pbase, pend; void *base; size_t size; struct memseg *msp; for (msp = memsegs; msp; msp = msp->next) { pbase = msp->pages_base; pend = msp->pages_end; base = ptob(pbase) + kpm_vbase; size = ptob(pend - pbase); func(arg, base, size); } } #else /* __xpv */ /* * There are specific Hypervisor calls to establish and remove mappings * to grant table references and the privcmd driver. We have to ensure * that a page table actually exists. */ void hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) { maddr_t base_ma; htable_t *ht; uint_t entry; ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); XPV_DISALLOW_MIGRATE(); ht = htable_create(hat, (uintptr_t)addr, 0, NULL); /* * if an address for pte_ma is passed in, return the MA of the pte * for this specific address. This address is only valid as long * as the htable stays locked. */ if (pte_ma != NULL) { entry = htable_va2entry((uintptr_t)addr, ht); base_ma = pa_to_ma(ptob(ht->ht_pfn)); *pte_ma = base_ma + (entry << mmu.pte_size_shift); } XPV_ALLOW_MIGRATE(); } void hat_release_mapping(hat_t *hat, caddr_t addr) { htable_t *ht; ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); XPV_DISALLOW_MIGRATE(); ht = htable_lookup(hat, (uintptr_t)addr, 0); ASSERT(ht != NULL); ASSERT(ht->ht_busy >= 2); htable_release(ht); htable_release(ht); XPV_ALLOW_MIGRATE(); } #endif /* __xpv */ /* * Helper function to punch in a mapping that we need with the specified * attributes. */ void hati_cpu_punchin(cpu_t *cpu, uintptr_t va, uint_t attrs) { int ret; pfn_t pfn; hat_t *cpu_hat = cpu->cpu_hat_info->hci_user_hat; ASSERT3S(kpti_enable, ==, 1); ASSERT3P(cpu_hat, !=, NULL); ASSERT3U(cpu_hat->hat_flags & HAT_PCP, ==, HAT_PCP); ASSERT3U(va & MMU_PAGEOFFSET, ==, 0); pfn = hat_getpfnum(kas.a_hat, (caddr_t)va); VERIFY3U(pfn, !=, PFN_INVALID); /* * We purposefully don't try to find the page_t. This means that this * will be marked PT_NOCONSIST; however, given that this is pretty much * a static mapping that we're using we should be relatively OK. */ attrs |= HAT_STORECACHING_OK; ret = hati_load_common(cpu_hat, va, NULL, attrs, 0, 0, pfn); VERIFY3S(ret, ==, 0); }