/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. * Copyright 2020 Joyent, Inc. * Copyright (c) 2015 by Delphix. All rights reserved. * Copyright 2020 Oxide Computer Company * Copyright (c) 2020 Carlos Neira */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __xpv #include #include #include #include #include #include #include extern void xen_late_startup(void); struct xen_evt_data cpu0_evt_data; #else /* __xpv */ #include extern void mem_config_init(void); #endif /* __xpv */ extern void progressbar_init(void); extern void brand_init(void); extern void pcf_init(void); extern void pg_init(void); extern void ssp_init(void); extern int size_pse_array(pgcnt_t, int); #if defined(_SOFT_HOSTID) static int32_t set_soft_hostid(void); static char hostid_file[] = "/etc/hostid"; #endif void *gfx_devinfo_list; #if !defined(__xpv) extern void immu_startup(void); #endif /* * XXX make declaration below "static" when drivers no longer use this * interface. */ extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ /* * segkp */ extern int segkp_fromheap; static void kvm_init(void); static void startup_init(void); static void startup_memlist(void); static void startup_kmem(void); static void startup_modules(void); static void startup_vm(void); #ifndef __xpv static void startup_tsc(void); #endif static void startup_end(void); static void layout_kernel_va(void); /* * Declare these as initialized data so we can patch them. */ /* * For now we can handle memory with physical addresses up to about * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly * half the VA space for seg_kpm. When systems get bigger than 64TB this * code will need revisiting. There is an implicit assumption that there * are no *huge* holes in the physical address space too. */ #define TERABYTE (1ul << 40) #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) #define PHYSMEM PHYSMEM_MAX64 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul pgcnt_t physmem = PHYSMEM; pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ extern char *kobj_file_buf; extern int kobj_file_bufsize; /* set in /etc/system */ /* Global variables for MP support. Used in mp_startup */ caddr_t rm_platter_va = 0; uint32_t rm_platter_pa; int auto_lpg_disable = 1; /* * Some CPUs have holes in the middle of the 64-bit virtual address range. */ uintptr_t hole_start, hole_end; /* * kpm mapping window */ caddr_t kpm_vbase; size_t kpm_size; static int kpm_desired; static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; /* * Configuration parameters set at boot time. */ caddr_t econtig; /* end of first block of contiguous kernel */ struct bootops *bootops = 0; /* passed in from boot */ struct bootops **bootopsp; struct boot_syscalls *sysp; /* passed in from boot */ char bootblock_fstype[16]; char kern_bootargs[OBP_MAXPATHLEN]; char kern_bootfile[OBP_MAXPATHLEN]; /* * ZFS zio segment. This allows us to exclude large portions of ZFS data that * gets cached in kmem caches on the heap. If this is set to zero, we allocate * zio buffers from their own segment, otherwise they are allocated from the * heap. The optimization of allocating zio buffers from their own segment is * only valid on 64-bit kernels. */ int segzio_fromheap = 0; /* * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work * post-boot. */ int disable_smap = 0; /* * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this * depends on number of BOP_ALLOC calls made and requested size, memory size * combination and whether boot.bin memory needs to be freed. */ #define POSS_NEW_FRAGMENTS 12 /* * VM data structures */ long page_hashsz; /* Size of page hash table (power of two) */ unsigned int page_hashsz_shift; /* log2(page_hashsz) */ struct page *pp_base; /* Base of initial system page struct array */ struct page **page_hash; /* Page hash table */ pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ int pse_shift; /* log2(pse_table_size) */ struct seg ktextseg; /* Segment used for kernel executable image */ struct seg kvalloc; /* Segment used for "valloc" mapping */ struct seg kpseg; /* Segment used for pageable kernel virt mem */ struct seg kmapseg; /* Segment used for generic kernel mappings */ struct seg kdebugseg; /* Segment used for the kernel debugger */ struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ static struct seg *segmap = &kmapseg; /* easier to use name for in here */ struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ extern struct seg kvseg_core; /* Segment used for the core heap */ struct seg kpmseg; /* Segment used for physical mapping */ struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ caddr_t segkp_base; /* Base address of segkp */ caddr_t segzio_base; /* Base address of segzio */ pgcnt_t segkpsize; /* size of segkp segment in pages */ caddr_t segkvmm_base; pgcnt_t segkvmmsize; pgcnt_t segziosize; /* * A static DR page_t VA map is reserved that can map the page structures * for a domain's entire RA space. The pages that back this space are * dynamically allocated and need not be physically contiguous. The DR * map size is derived from KPM size. * This mechanism isn't used by x86 yet, so just stubs here. */ int ppvm_enable = 0; /* Static virtual map for page structs */ page_t *ppvm_base = NULL; /* Base of page struct map */ pgcnt_t ppvm_size = 0; /* Size of page struct map */ /* * VA range available to the debugger */ const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; const size_t kdi_segdebugsize = SEGDEBUGSIZE; struct memseg *memseg_base; struct vnode unused_pages_vp; #define FOURGB 0x100000000LL struct memlist *memlist; caddr_t s_text; /* start of kernel text segment */ caddr_t e_text; /* end of kernel text segment */ caddr_t s_data; /* start of kernel data segment */ caddr_t e_data; /* end of kernel data segment */ caddr_t modtext; /* start of loadable module text reserved */ caddr_t e_modtext; /* end of loadable module text reserved */ caddr_t moddata; /* start of loadable module data reserved */ caddr_t e_moddata; /* end of loadable module data reserved */ struct memlist *phys_install; /* Total installed physical memory */ struct memlist *phys_avail; /* Total available physical memory */ struct memlist *bios_rsvd; /* Bios reserved memory */ /* * kphysm_init returns the number of pages that were processed */ static pgcnt_t kphysm_init(page_t *, pgcnt_t); #define IO_PROP_SIZE 64 /* device property size */ /* * a couple useful roundup macros */ #define ROUND_UP_PAGE(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) #define ROUND_UP_LPAGE(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) #define ROUND_UP_4MEG(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) #define ROUND_UP_TOPLEVEL(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) /* * 32-bit Kernel's Virtual memory layout. * +-----------------------+ * | | * 0xFFC00000 -|-----------------------|- ARGSBASE * | debugger | * 0xFF800000 -|-----------------------|- SEGDEBUGBASE * | Kernel Data | * 0xFEC00000 -|-----------------------| * | Kernel Text | * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) * |--- GDT ---|- GDT page (GDT_VA) * |--- debug info ---|- debug info (DEBUG_INFO_VA) * | | * | page_t structures | * | memsegs, memlists, | * | page hash, etc. | * --- -|-----------------------|- ekernelheap, valloc_base (floating) * | | (segkp is just an arena in the heap) * | | * | kvseg | * | | * | | * --- -|-----------------------|- kernelheap (floating) * | Segkmap | * 0xC3002000 -|-----------------------|- segmap_start (floating) * | Red Zone | * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) * | | || * | Shared objects | \/ * | | * : : * | user data | * |-----------------------| * | user text | * 0x08048000 -|-----------------------| * | user stack | * : : * | invalid | * 0x00000000 +-----------------------+ * * * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) * +-----------------------+ * | | * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE * | debugger (?) | * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE * | unused | * +-----------------------+ * | Kernel Data | * 0xFFFFFFFF.FBC00000 |-----------------------| * | Kernel Text | * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT * |--- debug info ---|- debug info (DEBUG_INFO_VA) * |--- GDT ---|- GDT page (GDT_VA) * |--- IDT ---|- IDT page (IDT_VA) * |--- LDT ---|- LDT pages (LDT_VA) * | | * | Core heap | (used for loadable modules) * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap * | Kernel | * | heap | * | | * | | * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) * | segmap | * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) * | device mappings | * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) * | segzio | * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) * | segkvmm | * | | * | | * | | * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating) * | segkp | * |-----------------------|- segkp_base (floating) * | page_t structures | valloc_base + valloc_sz * | memsegs, memlists, | * | page hash, etc. | * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB) * | segkpm | * | | * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB) * | Red Zone | * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB) * | User stack |- User space memory * | | * | shared objects, etc | (grows downwards) * : : * | | * 0xFFFF8000.00000000 |-----------------------| * | | * | VA Hole / unused | * | | * 0x00008000.00000000 |-----------------------| * | | * | | * : : * | user heap | (grows upwards) * | | * | user data | * |-----------------------| * | user text | * 0x00000000.04000000 |-----------------------| * | invalid | * 0x00000000.00000000 +-----------------------+ * * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit * kernel, except that userlimit is raised to 0xfe000000 * * Floating values: * * valloc_base: start of the kernel's memory management/tracking data * structures. This region contains page_t structures for * physical memory, memsegs, memlists, and the page hash. * * core_base: start of the kernel's "core" heap area on 64-bit systems. * This area is intended to be used for global data as well as for module * text/data that does not fit into the nucleus pages. The core heap is * restricted to a 2GB range, allowing every address within it to be * accessed using rip-relative addressing * * ekernelheap: end of kernelheap and start of segmap. * * kernelheap: start of kernel heap. On 32-bit systems, this starts right * above a red zone that separates the user's address space from the * kernel's. On 64-bit systems, it sits above segkp and segkpm. * * segmap_start: start of segmap. The length of segmap can be modified * through eeprom. The default length is 16MB on 32-bit systems and 64MB * on 64-bit systems. * * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be * decreased by 2X the size required for page_t. This allows the kernel * heap to grow in size with physical memory. With sizeof(page_t) == 80 * bytes, the following shows the values of kernelbase and kernel heap * sizes for different memory configurations (assuming default segmap and * segkp sizes). * * mem size for kernelbase kernel heap * size page_t's size * ---- --------- ---------- ----------- * 1gb 0x01400000 0xd1800000 684MB * 2gb 0x02800000 0xcf000000 704MB * 4gb 0x05000000 0xca000000 744MB * 6gb 0x07800000 0xc5000000 784MB * 8gb 0x0a000000 0xc0000000 824MB * 16gb 0x14000000 0xac000000 984MB * 32gb 0x28000000 0x84000000 1304MB * 64gb 0x50000000 0x34000000 1944MB (*) * * kernelbase is less than the abi minimum of 0xc0000000 for memory * configurations above 8gb. * * (*) support for memory configurations above 32gb will require manual tuning * of kernelbase to balance out the need of user applications. */ /* real-time-clock initialization parameters */ extern time_t process_rtc_config_file(void); uintptr_t kernelbase; uintptr_t postbootkernelbase; /* not set till boot loader is gone */ uintptr_t eprom_kernelbase; size_t segmapsize; uintptr_t segmap_start; int segmapfreelists; pgcnt_t npages; pgcnt_t orig_npages; size_t core_size; /* size of "core" heap */ uintptr_t core_base; /* base address of "core" heap */ /* * List of bootstrap pages. We mark these as allocated in startup. * release_bootstrap() will free them when we're completely done with * the bootstrap. */ static page_t *bootpages; /* * boot time pages that have a vnode from the ramdisk will keep that forever. */ static page_t *rd_pages; /* * Lower 64K */ static page_t *lower_pages = NULL; static int lower_pages_count = 0; struct system_hardware system_hardware; /* * Enable some debugging messages concerning memory usage... */ static void print_memlist(char *title, struct memlist *mp) { prom_printf("MEMLIST: %s:\n", title); while (mp != NULL) { prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", mp->ml_address, mp->ml_size); mp = mp->ml_next; } } /* * XX64 need a comment here.. are these just default values, surely * we read the "cpuid" type information to figure this out. */ int l2cache_sz = 0x80000; int l2cache_linesz = 0x40; int l2cache_assoc = 1; static size_t textrepl_min_gb = 10; /* * on 64 bit we use a predifined VA range for mapping devices in the kernel * on 32 bit the mappings are intermixed in the heap, so we use a bit map */ vmem_t *device_arena; uintptr_t toxic_addr = (uintptr_t)NULL; size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ int prom_debug; /* * This structure is used to keep track of the intial allocations * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. */ #define NUM_ALLOCATIONS 8 int num_allocations = 0; struct { void **al_ptr; size_t al_size; } allocations[NUM_ALLOCATIONS]; size_t valloc_sz = 0; uintptr_t valloc_base; #define ADD_TO_ALLOCATIONS(ptr, size) { \ size = ROUND_UP_PAGE(size); \ if (num_allocations == NUM_ALLOCATIONS) \ panic("too many ADD_TO_ALLOCATIONS()"); \ allocations[num_allocations].al_ptr = (void**)&ptr; \ allocations[num_allocations].al_size = size; \ valloc_sz += size; \ ++num_allocations; \ } /* * Allocate all the initial memory needed by the page allocator. */ static void perform_allocations(void) { caddr_t mem; int i; int valloc_align; PRM_DEBUG(valloc_base); PRM_DEBUG(valloc_sz); valloc_align = mmu.level_size[mmu.max_page_level > 0]; mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); if (mem != (caddr_t)valloc_base) panic("BOP_ALLOC() failed"); bzero(mem, valloc_sz); for (i = 0; i < num_allocations; ++i) { *allocations[i].al_ptr = (void *)mem; mem += allocations[i].al_size; } } /* * Set up and enable SMAP now before we start other CPUs, but after the kernel's * VM has been set up so we can use hot_patch_kernel_text(). * * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we * replace the four byte word at the patch point. See uts/intel/ml/copy.s * for more information on what's going on here. */ static void startup_smap(void) { int i; uint32_t inst; uint8_t *instp; char sym[128]; struct modctl *modp; extern int _smap_enable_patch_count; extern int _smap_disable_patch_count; if (disable_smap != 0) remove_x86_feature(x86_featureset, X86FSET_SMAP); if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) return; for (i = 0; i < _smap_enable_patch_count; i++) { int sizep; VERIFY3U(i, <, _smap_enable_patch_count); VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < sizeof (sym)); instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); VERIFY(instp != 0); inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); hot_patch_kernel_text((caddr_t)instp, inst, 4); } for (i = 0; i < _smap_disable_patch_count; i++) { int sizep; VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", i) < sizeof (sym)); instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); VERIFY(instp != 0); inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); hot_patch_kernel_text((caddr_t)instp, inst, 4); } /* * Hotinline calls to smap_enable and smap_disable within * unix module. Hotinlines in other modules are done on * mod_load(). */ modp = mod_hold_by_name("unix"); do_hotinlines(modp->mod_mp); mod_release_mod(modp); setcr4(getcr4() | CR4_SMAP); smap_enable(); } /* * Our world looks like this at startup time. * * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those * addresses are fixed in the binary at link time. * * On the text page: * unix/genunix/krtld/module text loads. * * On the data page: * unix/genunix/krtld/module data loads. * * Machine-dependent startup code */ void startup(void) { #if !defined(__xpv) extern void startup_pci_bios(void); #endif extern cpuset_t cpu_ready_set; /* * Make sure that nobody tries to use sekpm until we have * initialized it properly. */ kpm_desired = 1; kpm_enable = 0; CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ #if defined(__xpv) /* XXPV fix me! */ { extern int segvn_use_regions; segvn_use_regions = 0; } #endif ssp_init(); progressbar_init(); startup_init(); #if defined(__xpv) startup_xen_version(); #endif startup_memlist(); startup_kmem(); startup_vm(); #if !defined(__xpv) /* * Up until this point, we cannot use any time delay functions * (e.g. tenmicrosec()). Once the TSC is setup, we can. This is * purposely done after the VM system as been setup to allow * calibration sources which might require mapping for access * (e.g. the HPET), but still early enough to allow the rest of * the startup code to make use of the TSC (via tenmicrosec() or * the default TSC-based gethrtime()) as required. */ startup_tsc(); /* * Note we need to do this even on fast reboot in order to access * the irq routing table (used for pci labels). */ startup_pci_bios(); startup_smap(); #endif #if defined(__xpv) startup_xen_mca(); #endif startup_modules(); startup_end(); } static void startup_init() { PRM_POINT("startup_init() starting..."); /* * Complete the extraction of cpuid data */ cpuid_pass2(CPU); (void) check_boot_version(BOP_GETVERSION(bootops)); /* * Check for prom_debug in boot environment */ if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { ++prom_debug; PRM_POINT("prom_debug found in boot enviroment"); } /* * Collect node, cpu and memory configuration information. */ get_system_configuration(); /* * Halt if this is an unsupported processor. */ if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { printf("\n486 processor (\"%s\") detected.\n", CPU->cpu_brandstr); halt("This processor is not supported by this release " "of Solaris."); } PRM_POINT("startup_init() done"); } /* * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it * also filters out physical page zero. There is some reliance on the * boot loader allocating only a few contiguous physical memory chunks. */ static void avail_filter(uint64_t *addr, uint64_t *size) { uintptr_t va; uintptr_t next_va; pfn_t pfn; uint64_t pfn_addr; uint64_t pfn_eaddr; uint_t prot; size_t len; uint_t change; if (prom_debug) prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); /* * page zero is required for BIOS.. never make it available */ if (*addr == 0) { *addr += MMU_PAGESIZE; *size -= MMU_PAGESIZE; } /* * First we trim from the front of the range. Since kbm_probe() * walks ranges in virtual order, but addr/size are physical, we need * to the list until no changes are seen. This deals with the case * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w * but w < v. */ do { change = 0; for (va = KERNEL_TEXT; *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; va = next_va) { next_va = va + len; pfn_addr = pfn_to_pa(pfn); pfn_eaddr = pfn_addr + len; if (pfn_addr <= *addr && pfn_eaddr > *addr) { change = 1; while (*size > 0 && len > 0) { *addr += MMU_PAGESIZE; *size -= MMU_PAGESIZE; len -= MMU_PAGESIZE; } } } if (change && prom_debug) prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); } while (change); /* * Trim pages from the end of the range. */ for (va = KERNEL_TEXT; *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; va = next_va) { next_va = va + len; pfn_addr = pfn_to_pa(pfn); if (pfn_addr >= *addr && pfn_addr < *addr + *size) *size = pfn_addr - *addr; } if (prom_debug) prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); } static void kpm_init() { struct segkpm_crargs b; /* * These variables were all designed for sfmmu in which segkpm is * mapped using a single pagesize - either 8KB or 4MB. On x86, we * might use 2+ page sizes on a single machine, so none of these * variables have a single correct value. They are set up as if we * always use a 4KB pagesize, which should do no harm. In the long * run, we should get rid of KPM's assumption that only a single * pagesize is used. */ kpm_pgshft = MMU_PAGESHIFT; kpm_pgsz = MMU_PAGESIZE; kpm_pgoff = MMU_PAGEOFFSET; kpmp2pshft = 0; kpmpnpgs = 1; ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); PRM_POINT("about to create segkpm"); rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) panic("cannot attach segkpm"); b.prot = PROT_READ | PROT_WRITE; b.nvcolors = 1; if (segkpm_create(segkpm, (caddr_t)&b) != 0) panic("segkpm_create segkpm"); rw_exit(&kas.a_lock); kpm_enable = 1; /* * As the KPM was disabled while setting up the system, go back and fix * CPU zero's access to its user page table. This is a bit gross, but * we have a chicken and egg problem otherwise. */ ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); CPU->cpu_hat_info->hci_user_l3ptes = (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); } /* * The debug info page provides enough information to allow external * inspectors (e.g. when running under a hypervisor) to bootstrap * themselves into allowing full-blown kernel debugging. */ static void init_debug_info(void) { caddr_t mem; debug_info_t *di; #ifndef __lint ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); #endif mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, MMU_PAGESIZE); if (mem != (caddr_t)DEBUG_INFO_VA) panic("BOP_ALLOC() failed"); bzero(mem, MMU_PAGESIZE); di = (debug_info_t *)mem; di->di_magic = DEBUG_INFO_MAGIC; di->di_version = DEBUG_INFO_VERSION; di->di_modules = (uintptr_t)&modules; di->di_s_text = (uintptr_t)s_text; di->di_e_text = (uintptr_t)e_text; di->di_s_data = (uintptr_t)s_data; di->di_e_data = (uintptr_t)e_data; di->di_hat_htable_off = offsetof(hat_t, hat_htable); di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); } /* * Build the memlists and other kernel essential memory system data structures. * This is everything at valloc_base. */ static void startup_memlist(void) { size_t memlist_sz; size_t memseg_sz; size_t pagehash_sz; size_t pp_sz; uintptr_t va; size_t len; uint_t prot; pfn_t pfn; int memblocks; pfn_t rsvd_high_pfn; pgcnt_t rsvd_pgcnt; size_t rsvdmemlist_sz; int rsvdmemblocks; caddr_t pagecolor_mem; size_t pagecolor_memsz; caddr_t page_ctrs_mem; size_t page_ctrs_size; size_t pse_table_alloc_size; struct memlist *current; extern void startup_build_mem_nodes(struct memlist *); /* XX64 fix these - they should be in include files */ extern size_t page_coloring_init(uint_t, int, int); extern void page_coloring_setup(caddr_t); PRM_POINT("startup_memlist() starting..."); /* * Use leftover large page nucleus text/data space for loadable modules. * Use at most MODTEXT/MODDATA. */ len = kbm_nucleus_size; ASSERT(len > MMU_PAGESIZE); moddata = (caddr_t)ROUND_UP_PAGE(e_data); e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); if (e_moddata - moddata > MODDATA) e_moddata = moddata + MODDATA; modtext = (caddr_t)ROUND_UP_PAGE(e_text); e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); if (e_modtext - modtext > MODTEXT) e_modtext = modtext + MODTEXT; econtig = e_moddata; PRM_DEBUG(modtext); PRM_DEBUG(e_modtext); PRM_DEBUG(moddata); PRM_DEBUG(e_moddata); PRM_DEBUG(econtig); /* * Examine the boot loader physical memory map to find out: * - total memory in system - physinstalled * - the max physical address - physmax * - the number of discontiguous segments of memory. */ if (prom_debug) print_memlist("boot physinstalled", bootops->boot_mem->physinstalled); installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, &physinstalled, &memblocks); PRM_DEBUG(physmax); PRM_DEBUG(physinstalled); PRM_DEBUG(memblocks); /* * We no longer support any form of memory DR. */ plat_dr_physmax = 0; /* * Examine the bios reserved memory to find out: * - the number of discontiguous segments of memory. */ if (prom_debug) print_memlist("boot reserved mem", bootops->boot_mem->rsvdmem); installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, &rsvd_pgcnt, &rsvdmemblocks); PRM_DEBUG(rsvd_high_pfn); PRM_DEBUG(rsvd_pgcnt); PRM_DEBUG(rsvdmemblocks); /* * Initialize hat's mmu parameters. * Check for enforce-prot-exec in boot environment. It's used to * enable/disable support for the page table entry NX bit. * The default is to enforce PROT_EXEC on processors that support NX. * Boot seems to round up the "len", but 8 seems to be big enough. */ mmu_init(); startup_build_mem_nodes(bootops->boot_mem->physinstalled); if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); char value[8]; if (len < 8) (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); else (void) strcpy(value, ""); if (strcmp(value, "off") == 0) mmu.pt_nx = 0; } PRM_DEBUG(mmu.pt_nx); /* * We will need page_t's for every page in the system, except for * memory mapped at or above above the start of the kernel text segment. * * pages above e_modtext are attributed to kernel debugger (obp_pages) */ npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ obp_pages = 0; va = KERNEL_TEXT; while (kbm_probe(&va, &len, &pfn, &prot) != 0) { npages -= len >> MMU_PAGESHIFT; if (va >= (uintptr_t)e_moddata) obp_pages += len >> MMU_PAGESHIFT; va += len; } PRM_DEBUG(npages); PRM_DEBUG(obp_pages); /* * If physmem is patched to be non-zero, use it instead of the computed * value unless it is larger than the actual amount of memory on hand. */ if (physmem == 0 || physmem > npages) { physmem = npages; } else if (physmem < npages) { orig_npages = npages; npages = physmem; } PRM_DEBUG(physmem); /* * We now compute the sizes of all the initial allocations for * structures the kernel needs in order do kmem_alloc(). These * include: * memsegs * memlists * page hash table * page_t's * page coloring data structs */ memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); PRM_DEBUG(memseg_sz); /* * Reserve space for memlists. There's no real good way to know exactly * how much room we'll need, but this should be a good upper bound. */ memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * (memblocks + POSS_NEW_FRAGMENTS)); ADD_TO_ALLOCATIONS(memlist, memlist_sz); PRM_DEBUG(memlist_sz); /* * Reserve space for bios reserved memlists. */ rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * (rsvdmemblocks + POSS_NEW_FRAGMENTS)); ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); PRM_DEBUG(rsvdmemlist_sz); /* LINTED */ ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); /* * The page structure hash table size is a power of 2 * such that the average hash chain length is PAGE_HASHAVELEN. */ page_hashsz = npages / PAGE_HASHAVELEN; page_hashsz_shift = highbit(page_hashsz); page_hashsz = 1 << page_hashsz_shift; pagehash_sz = sizeof (struct page *) * page_hashsz; ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); PRM_DEBUG(pagehash_sz); /* * Set aside room for the page structures themselves. */ PRM_DEBUG(npages); pp_sz = sizeof (struct page) * npages; ADD_TO_ALLOCATIONS(pp_base, pp_sz); PRM_DEBUG(pp_sz); /* * determine l2 cache info and memory size for page coloring */ (void) getl2cacheinfo(CPU, &l2cache_sz, &l2cache_linesz, &l2cache_assoc); pagecolor_memsz = page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); PRM_DEBUG(pagecolor_memsz); page_ctrs_size = page_ctrs_sz(); ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); PRM_DEBUG(page_ctrs_size); /* * Allocate the array that protects pp->p_selock. */ pse_shift = size_pse_array(physmem, max_ncpus); pse_table_size = 1 << pse_shift; pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); valloc_sz = ROUND_UP_LPAGE(valloc_sz); valloc_base = VALLOC_BASE; /* * The signicant memory-sized regions are roughly sized as follows in * the default layout with max physmem: * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE) * segzio: 1.5x physmem * segkvmm: 4x physmem * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem * * The idea is that we leave enough room to avoid fragmentation issues, * so we would like the VA arenas to have some extra. * * Ignoring the loose change of segkp, valloc, and such, this means that * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to * about (2Tb / 7.0), rounded down to 256Gb in the check below. * * Note that KPM lives below VALLOC_BASE, but we want to include it in * adjustments, hence the 8 below. * * Beyond 256Gb, we push segkpm_base (and hence kernelbase and * _userlimit) down to accommodate the VA requirements above. */ if (physmax + 1 > mmu_btop(TERABYTE / 4)) { uint64_t physmem_bytes = mmu_ptob(physmax + 1); uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4)); PRM_DEBUG(adjustment); /* * segkpm_base is always aligned on a L3 PTE boundary. */ segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE); /* * But make sure we leave some space for user apps above hole. */ segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); ASSERT(segkpm_base <= SEGKPM_BASE); valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG); if (valloc_base < segkpm_base) panic("not enough kernel VA to support memory size"); } PRM_DEBUG(segkpm_base); PRM_DEBUG(valloc_base); /* * do all the initial allocations */ perform_allocations(); /* * Build phys_install and phys_avail in kernel memspace. * - phys_install should be all memory in the system. * - phys_avail is phys_install minus any memory mapped before this * point above KERNEL_TEXT. */ current = phys_install = memlist; copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); if ((caddr_t)current > (caddr_t)memlist + memlist_sz) panic("physinstalled was too big!"); if (prom_debug) print_memlist("phys_install", phys_install); phys_avail = current; PRM_POINT("Building phys_avail:\n"); copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, avail_filter); if ((caddr_t)current > (caddr_t)memlist + memlist_sz) panic("physavail was too big!"); if (prom_debug) print_memlist("phys_avail", phys_avail); #ifndef __xpv /* * Free unused memlist items, which may be used by memory DR driver * at runtime. */ if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { memlist_free_block((caddr_t)current, (caddr_t)memlist + memlist_sz - (caddr_t)current); } #endif /* * Build bios reserved memspace */ current = bios_rsvd; copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) panic("bios_rsvd was too big!"); if (prom_debug) print_memlist("bios_rsvd", bios_rsvd); #ifndef __xpv /* * Free unused memlist items, which may be used by memory DR driver * at runtime. */ if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { memlist_free_block((caddr_t)current, (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); } #endif /* * setup page coloring */ page_coloring_setup(pagecolor_mem); page_lock_init(); /* currently a no-op */ /* * free page list counters */ (void) page_ctrs_alloc(page_ctrs_mem); /* * Size the pcf array based on the number of cpus in the box at * boot time. */ pcf_init(); /* * Initialize the page structures from the memory lists. */ availrmem_initial = availrmem = freemem = 0; PRM_POINT("Calling kphysm_init()..."); npages = kphysm_init(pp_base, npages); PRM_POINT("kphysm_init() done"); PRM_DEBUG(npages); init_debug_info(); /* * Now that page_t's have been initialized, remove all the * initial allocation pages from the kernel free page lists. */ boot_mapin((caddr_t)valloc_base, valloc_sz); boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); PRM_POINT("startup_memlist() done"); PRM_DEBUG(valloc_sz); if ((availrmem >> (30 - MMU_PAGESHIFT)) >= textrepl_min_gb && l2cache_sz <= 2 << 20) { extern size_t textrepl_size_thresh; textrepl_size_thresh = (16 << 20) - 1; } } /* * Layout the kernel's part of address space and initialize kmem allocator. */ static void startup_kmem(void) { extern void page_set_colorequiv_arr(void); #if !defined(__xpv) extern uint64_t kpti_kbase; #endif PRM_POINT("startup_kmem() starting..."); if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " "systems."); kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; core_base = (uintptr_t)COREHEAP_BASE; core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; PRM_DEBUG(core_base); PRM_DEBUG(core_size); PRM_DEBUG(kernelbase); ekernelheap = (char *)core_base; PRM_DEBUG(ekernelheap); /* * Now that we know the real value of kernelbase, * update variables that were initialized with a value of * KERNELBASE (in common/conf/param.c). * * XXX The problem with this sort of hackery is that the * compiler just may feel like putting the const declarations * (in param.c) into the .text section. Perhaps they should * just be declared as variables there? */ *(uintptr_t *)&_kernelbase = kernelbase; *(uintptr_t *)&_userlimit = kernelbase; *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; #if !defined(__xpv) kpti_kbase = kernelbase; #endif PRM_DEBUG(_kernelbase); PRM_DEBUG(_userlimit); PRM_DEBUG(_userlimit32); /* We have to re-do this now that we've modified _userlimit. */ mmu_calc_user_slots(); layout_kernel_va(); /* * Initialize the kernel heap. Note 3rd argument must be > 1st. */ kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, (void *)core_base, (void *)(core_base + core_size)); #if defined(__xpv) /* * Link pending events struct into cpu struct */ CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; #endif /* * Initialize kernel memory allocator. */ kmem_init(); /* * Factor in colorequiv to check additional 'equivalent' bins */ page_set_colorequiv_arr(); /* * print this out early so that we know what's going on */ print_x86_featureset(x86_featureset); /* * Initialize bp_mapin(). */ bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); /* * orig_npages is non-zero if physmem has been configured for less * than the available memory. */ if (orig_npages) { cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", (npages == PHYSMEM ? "Due to virtual address space " : ""), npages, orig_npages); } #ifdef KERNELBASE_ABI_MIN if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " "i386 ABI compliant.", (uintptr_t)kernelbase); } #endif #ifndef __xpv if (plat_dr_support_memory()) { mem_config_init(); } #else /* __xpv */ /* * Some of the xen start information has to be relocated up * into the kernel's permanent address space. */ PRM_POINT("calling xen_relocate_start_info()"); xen_relocate_start_info(); PRM_POINT("xen_relocate_start_info() done"); /* * (Update the vcpu pointer in our cpu structure to point into * the relocated shared info.) */ CPU->cpu_m.mcpu_vcpu_info = &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; #endif /* __xpv */ PRM_POINT("startup_kmem() done"); } #ifndef __xpv /* * If we have detected that we are running in an HVM environment, we need * to prepend the PV driver directory to the module search path. */ #define HVM_MOD_DIR "/platform/i86hvm/kernel" static void update_default_path() { char *current, *newpath; int newlen; /* * We are about to resync with krtld. krtld will reset its * internal module search path iff Solaris has set default_path. * We want to be sure we're prepending this new directory to the * right search path. */ current = (default_path == NULL) ? kobj_module_path : default_path; newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; newpath = kmem_alloc(newlen, KM_SLEEP); (void) strcpy(newpath, HVM_MOD_DIR); (void) strcat(newpath, " "); (void) strcat(newpath, current); default_path = newpath; } #endif static void startup_modules(void) { int cnt; extern void prom_setup(void); int32_t v, h; char d[11]; char *cp; cmi_hdl_t hdl; PRM_POINT("startup_modules() starting..."); #ifndef __xpv if ((get_hwenv() & HW_XEN_HVM) != 0) update_default_path(); #endif /* * Read the GMT lag from /etc/rtc_config. */ sgmtl(process_rtc_config_file()); /* * Calculate default settings of system parameters based upon * maxusers, yet allow to be overridden via the /etc/system file. */ param_calc(0); mod_setup(); /* * Initialize system parameters. */ param_init(); /* * Initialize the default brands */ brand_init(); /* * maxmem is the amount of physical memory we're playing with. */ maxmem = physmem; /* * Initialize segment management stuff. */ seg_init(); if (modload("fs", "specfs") == -1) halt("Can't load specfs"); if (modload("fs", "devfs") == -1) halt("Can't load devfs"); if (modload("fs", "dev") == -1) halt("Can't load dev"); if (modload("fs", "procfs") == -1) halt("Can't load procfs"); (void) modloadonly("sys", "lbl_edition"); dispinit(); /* Read cluster configuration data. */ clconf_init(); #if defined(__xpv) (void) ec_init(); gnttab_init(); (void) xs_early_init(); #endif /* __xpv */ /* * Create a kernel device tree. First, create rootnex and * then invoke bus specific code to probe devices. */ setup_ddi(); #ifdef __xpv if (DOMAIN_IS_INITDOMAIN(xen_info)) #endif { id_t smid; smbios_system_t smsys; smbios_info_t sminfo; char *mfg; /* * Load the System Management BIOS into the global ksmbios * handle, if an SMBIOS is present on this system. * Also set "si-hw-provider" property, if not already set. */ ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); if (ksmbios != NULL && ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { mfg = (char *)sminfo.smbi_manufacturer; if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { extern char hw_provider[]; int i; for (i = 0; i < SYS_NMLN; i++) { if (isprint(mfg[i])) hw_provider[i] = mfg[i]; else { hw_provider[i] = '\0'; break; } } hw_provider[SYS_NMLN - 1] = '\0'; } } } /* * Originally clconf_init() apparently needed the hostid. But * this no longer appears to be true - it uses its own nodeid. * By placing the hostid logic here, we are able to make use of * the SMBIOS UUID. */ if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { cmn_err(CE_WARN, "Unable to set hostid"); } else { for (v = h, cnt = 0; cnt < 10; cnt++) { d[cnt] = (char)(v % 10); v /= 10; if (v == 0) break; } for (cp = hw_serial; cnt >= 0; cnt--) *cp++ = d[cnt] + '0'; *cp = 0; } /* * Set up the CPU module subsystem for the boot cpu in the native * case, and all physical cpu resource in the xpv dom0 case. * Modifies the device tree, so this must be done after * setup_ddi(). */ #ifdef __xpv /* * If paravirtualized and on dom0 then we initialize all physical * cpu handles now; if paravirtualized on a domU then do not * initialize. */ if (DOMAIN_IS_INITDOMAIN(xen_info)) { xen_mc_lcpu_cookie_t cpi; for (cpi = xen_physcpu_next(NULL); cpi != NULL; cpi = xen_physcpu_next(cpi)) { if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), xen_physcpu_strandid(cpi))) != NULL && is_x86_feature(x86_featureset, X86FSET_MCA)) cmi_mca_init(hdl); } } #else /* * Initialize a handle for the boot cpu - others will initialize * as they startup. */ if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { if (is_x86_feature(x86_featureset, X86FSET_MCA)) cmi_mca_init(hdl); CPU->cpu_m.mcpu_cmi_hdl = hdl; } #endif /* __xpv */ /* * Fake a prom tree such that /dev/openprom continues to work */ PRM_POINT("startup_modules: calling prom_setup..."); prom_setup(); PRM_POINT("startup_modules: done"); /* * Load all platform specific modules */ PRM_POINT("startup_modules: calling psm_modload..."); psm_modload(); PRM_POINT("startup_modules() done"); } /* * claim a "setaside" boot page for use in the kernel */ page_t * boot_claim_page(pfn_t pfn) { page_t *pp; pp = page_numtopp_nolock(pfn); ASSERT(pp != NULL); if (PP_ISBOOTPAGES(pp)) { if (pp->p_next != NULL) pp->p_next->p_prev = pp->p_prev; if (pp->p_prev == NULL) bootpages = pp->p_next; else pp->p_prev->p_next = pp->p_next; } else { /* * htable_attach() expects a base pagesize page */ if (pp->p_szc != 0) page_boot_demote(pp); pp = page_numtopp(pfn, SE_EXCL); } return (pp); } /* * Walk through the pagetables looking for pages mapped in by boot. If the * setaside flag is set the pages are expected to be returned to the * kernel later in boot, so we add them to the bootpages list. */ static void protect_boot_range(uintptr_t low, uintptr_t high, int setaside) { uintptr_t va = low; size_t len; uint_t prot; pfn_t pfn; page_t *pp; pgcnt_t boot_protect_cnt = 0; while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { if (va + len >= high) panic("0x%lx byte mapping at 0x%p exceeds boot's " "legal range.", len, (void *)va); while (len > 0) { pp = page_numtopp_alloc(pfn); if (pp != NULL) { if (setaside == 0) panic("Unexpected mapping by boot. " "addr=%p pfn=%lx\n", (void *)va, pfn); pp->p_next = bootpages; pp->p_prev = NULL; PP_SETBOOTPAGES(pp); if (bootpages != NULL) { bootpages->p_prev = pp; } bootpages = pp; ++boot_protect_cnt; } ++pfn; len -= MMU_PAGESIZE; va += MMU_PAGESIZE; } } PRM_DEBUG(boot_protect_cnt); } /* * Establish the final size of the kernel's heap, size of segmap, segkp, etc. */ static void layout_kernel_va(void) { const size_t physmem_size = mmu_ptob(physmem); size_t size; PRM_POINT("layout_kernel_va() starting..."); kpm_vbase = (caddr_t)segkpm_base; kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) panic("not enough room for kpm!"); PRM_DEBUG(kpm_size); PRM_DEBUG(kpm_vbase); segkp_base = (caddr_t)valloc_base + valloc_sz; if (!segkp_fromheap) { size = mmu_ptob(segkpsize); /* * Determine size of segkp * Users can change segkpsize through eeprom. */ if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) { size = SEGKPDEFSIZE; cmn_err(CE_WARN, "!Illegal value for segkpsize. " "segkpsize has been reset to %ld pages", mmu_btop(size)); } size = MIN(size, MAX(SEGKPMINSIZE, physmem_size)); segkpsize = mmu_btop(ROUND_UP_LPAGE(size)); } PRM_DEBUG(segkp_base); PRM_DEBUG(segkpsize); /* * segkvmm: backing for vmm guest memory. Like segzio, we have a * separate segment for two reasons: it makes it easy to skip our pages * on kernel crash dumps, and it helps avoid fragmentation. With this * segment, we're expecting significantly-sized allocations only; we'll * default to 4x the size of physmem. */ segkvmm_base = segkp_base + mmu_ptob(segkpsize); size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4); size = MAX(size, SEGVMMMINSIZE); segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size)); PRM_DEBUG(segkvmmsize); PRM_DEBUG(segkvmm_base); /* * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem. */ segzio_base = segkvmm_base + mmu_ptob(segkvmmsize); if (segzio_fromheap) { segziosize = 0; } else { size = (segziosize != 0) ? mmu_ptob(segziosize) : (physmem_size * 3) / 2; size = MAX(size, SEGZIOMINSIZE); segziosize = mmu_btop(ROUND_UP_LPAGE(size)); } PRM_DEBUG(segziosize); PRM_DEBUG(segzio_base); /* * Put the range of VA for device mappings next, kmdb knows to not * grep in this range of addresses. */ toxic_addr = ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); PRM_DEBUG(toxic_addr); segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); /* * Users can change segmapsize through eeprom. If the variable * is tuned through eeprom, there is no upper bound on the * size of segmap. */ segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); PRM_DEBUG(segmap_start); PRM_DEBUG(segmapsize); kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); PRM_DEBUG(kernelheap); PRM_POINT("layout_kernel_va() done..."); } /* * Finish initializing the VM system, now that we are no longer * relying on the boot time memory allocators. */ static void startup_vm(void) { struct segmap_crargs a; extern int use_brk_lpg, use_stk_lpg; PRM_POINT("startup_vm() starting..."); /* * Initialize the hat layer. */ hat_init(); /* * Do final allocations of HAT data structures that need to * be allocated before quiescing the boot loader. */ PRM_POINT("Calling hat_kern_alloc()..."); hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); PRM_POINT("hat_kern_alloc() done"); #ifndef __xpv /* * Setup Page Attribute Table */ pat_sync(); #endif /* * The next two loops are done in distinct steps in order * to be sure that any page that is doubly mapped (both above * KERNEL_TEXT and below kernelbase) is dealt with correctly. * Note this may never happen, but it might someday. */ bootpages = NULL; PRM_POINT("Protecting boot pages"); /* * Protect any pages mapped above KERNEL_TEXT that somehow have * page_t's. This can only happen if something weird allocated * in this range (like kadb/kmdb). */ protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); /* * Before we can take over memory allocation/mapping from the boot * loader we must remove from our free page lists any boot allocated * pages that stay mapped until release_bootstrap(). */ protect_boot_range(0, kernelbase, 1); /* * Switch to running on regular HAT (not boot_mmu) */ PRM_POINT("Calling hat_kern_setup()..."); hat_kern_setup(); /* * It is no longer safe to call BOP_ALLOC(), so make sure we don't. */ bop_no_more_mem(); PRM_POINT("hat_kern_setup() done"); hat_cpu_online(CPU); /* * Initialize VM system */ PRM_POINT("Calling kvm_init()..."); kvm_init(); PRM_POINT("kvm_init() done"); /* * Tell kmdb that the VM system is now working */ if (boothowto & RB_DEBUG) kdi_dvec_vmready(); #if defined(__xpv) /* * Populate the I/O pool on domain 0 */ if (DOMAIN_IS_INITDOMAIN(xen_info)) { extern long populate_io_pool(void); long init_io_pool_cnt; PRM_POINT("Populating reserve I/O page pool"); init_io_pool_cnt = populate_io_pool(); PRM_DEBUG(init_io_pool_cnt); } #endif /* * Mangle the brand string etc. */ cpuid_pass3(CPU); /* * Create the device arena for toxic (to dtrace/kmdb) mappings. */ device_arena = vmem_create("device", (void *)toxic_addr, toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); /* * Now that we've got more VA, as well as the ability to allocate from * it, tell the debugger. */ if (boothowto & RB_DEBUG) kdi_dvec_memavail(); #if !defined(__xpv) /* * Map page pfn=0 for drivers, such as kd, that need to pick up * parameters left there by controllers/BIOS. */ PRM_POINT("setup up p0_va"); p0_va = i86devmap(0, 1, PROT_READ); PRM_DEBUG(p0_va); #endif cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); /* * disable automatic large pages for small memory systems or * when the disable flag is set. * * Do not yet consider page sizes larger than 2m/4m. */ if (!auto_lpg_disable && mmu.max_page_level > 0) { max_uheap_lpsize = LEVEL_SIZE(1); max_ustack_lpsize = LEVEL_SIZE(1); max_privmap_lpsize = LEVEL_SIZE(1); max_uidata_lpsize = LEVEL_SIZE(1); max_utext_lpsize = LEVEL_SIZE(1); max_shm_lpsize = LEVEL_SIZE(1); } if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || auto_lpg_disable) { use_brk_lpg = 0; use_stk_lpg = 0; } mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); PRM_POINT("Calling hat_init_finish()..."); hat_init_finish(); PRM_POINT("hat_init_finish() done"); /* * Initialize the segkp segment type. */ rw_enter(&kas.a_lock, RW_WRITER); PRM_POINT("Attaching segkp"); if (segkp_fromheap) { segkp->s_as = &kas; } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), segkp) < 0) { panic("startup: cannot attach segkp"); /*NOTREACHED*/ } PRM_POINT("Doing segkp_create()"); if (segkp_create(segkp) != 0) { panic("startup: segkp_create failed"); /*NOTREACHED*/ } PRM_DEBUG(segkp); rw_exit(&kas.a_lock); /* * kpm segment */ segmap_kpm = 0; if (kpm_desired) kpm_init(); /* * Now create segmap segment. */ rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { panic("cannot attach segmap"); /*NOTREACHED*/ } PRM_DEBUG(segmap); a.prot = PROT_READ | PROT_WRITE; a.shmsize = 0; a.nfreelist = segmapfreelists; if (segmap_create(segmap, (caddr_t)&a) != 0) panic("segmap_create segmap"); rw_exit(&kas.a_lock); setup_vaddr_for_ppcopy(CPU); segdev_init(); #if defined(__xpv) if (DOMAIN_IS_INITDOMAIN(xen_info)) #endif pmem_init(); PRM_POINT("startup_vm() done"); } /* * Load a tod module for the non-standard tod part found on this system. */ static void load_tod_module(char *todmod) { if (modload("tod", todmod) == -1) halt("Can't load TOD module"); } #ifndef __xpv static void startup_tsc(void) { uint64_t tsc_freq; PRM_POINT("startup_tsc() starting..."); tsc_freq = tsc_calibrate(); PRM_DEBUG(tsc_freq); tsc_hrtimeinit(tsc_freq); } #endif static void startup_end(void) { int i; extern void setx86isalist(void); extern void cpu_event_init(void); PRM_POINT("startup_end() starting..."); /* * Perform tasks that get done after most of the VM * initialization has been done but before the clock * and other devices get started. */ kern_setup1(); /* * Perform CPC initialization for this CPU. */ kcpc_hw_init(CPU); /* * Initialize cpu event framework. */ cpu_event_init(); #if defined(OPTERON_WORKAROUND_6323525) if (opteron_workaround_6323525) patch_workaround_6323525(); #endif /* * If needed, load TOD module now so that ddi_get_time(9F) etc. work * (For now, "needed" is defined as set tod_module_name in /etc/system) */ if (tod_module_name != NULL) { PRM_POINT("load_tod_module()"); load_tod_module(tod_module_name); } #if defined(__xpv) /* * Forceload interposing TOD module for the hypervisor. */ PRM_POINT("load_tod_module()"); load_tod_module("xpvtod"); #endif /* * Configure the system. */ PRM_POINT("Calling configure()..."); configure(); /* set up devices */ PRM_POINT("configure() done"); /* * We can now setup for XSAVE because fpu_probe is done in configure(). */ if (fp_save_mech == FP_XSAVE) { PRM_POINT("xsave_setup_msr()"); xsave_setup_msr(CPU); } /* * Set the isa_list string to the defined instruction sets we * support. */ setx86isalist(); PRM_POINT("cpu_intr_alloc()"); cpu_intr_alloc(CPU, NINTR_THREADS); PRM_POINT("psm_install()"); psm_install(); /* * We're done with bootops. We don't unmap the bootstrap yet because * we're still using bootsvcs. */ PRM_POINT("NULLing out bootops"); *bootopsp = (struct bootops *)NULL; bootops = (struct bootops *)NULL; #if defined(__xpv) ec_init_debug_irq(); xs_domu_init(); #endif #if !defined(__xpv) /* * Intel IOMMU has been setup/initialized in ddi_impl.c * Start it up now. */ immu_startup(); /* * Now that we're no longer going to drop into real mode for a BIOS call * via bootops, we can enable PCID (which requires CR0.PG). */ enable_pcid(); #endif PRM_POINT("Enabling interrupts"); (*picinitf)(); sti(); #if defined(__xpv) ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); xen_late_startup(); #endif (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, "softlevel1", NULL, NULL); /* XXX to be moved later */ /* * Register software interrupt handlers for ddi_periodic_add(9F). * Software interrupts up to the level 10 are supported. */ for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", (caddr_t)(uintptr_t)i, NULL); } #if !defined(__xpv) if (modload("drv", "amd_iommu") < 0) { PRM_POINT("No AMD IOMMU present\n"); } else if (ddi_hold_installed_driver(ddi_name_to_major( "amd_iommu")) == NULL) { prom_printf("ERROR: failed to attach AMD IOMMU\n"); } #endif post_startup_cpu_fixups(); PRM_POINT("startup_end() done"); } /* * Don't remove the following 2 variables. They are necessary * for reading the hostid from the legacy file (/kernel/misc/sysinit). */ char *_hs1107 = hw_serial; ulong_t _bdhs34; void post_startup(void) { extern void cpupm_init(cpu_t *); extern void cpu_event_init_cpu(cpu_t *); /* * Set the system wide, processor-specific flags to be passed * to userland via the aux vector for performance hints and * instruction set extensions. */ bind_hwcap(); #ifdef __xpv if (DOMAIN_IS_INITDOMAIN(xen_info)) #endif { #if defined(__xpv) xpv_panic_init(); #else /* * Startup the memory scrubber. * XXPV This should be running somewhere .. */ if ((get_hwenv() & HW_VIRTUAL) == 0) memscrub_init(); #endif } /* * Complete CPU module initialization */ cmi_post_startup(); /* * Perform forceloading tasks for /etc/system. */ (void) mod_sysctl(SYS_FORCELOAD, NULL); /* * ON4.0: Force /proc module in until clock interrupt handle fixed * ON4.0: This must be fixed or restated in /etc/systems. */ (void) modload("fs", "procfs"); (void) i_ddi_attach_hw_nodes("pit_beep"); maxmem = freemem; cpu_event_init_cpu(CPU); cpupm_init(CPU); (void) mach_cpu_create_device_node(CPU, NULL); pg_init(); } static int pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) { return ((pp->p_pagenum >= btop(low_addr)) && (pp->p_pagenum < btopr(high_addr))); } static int pp_in_module(page_t *pp, const rd_existing_t *modranges) { uint_t i; for (i = 0; modranges[i].phys != 0; i++) { if (pp_in_range(pp, modranges[i].phys, modranges[i].phys + modranges[i].size)) return (1); } return (0); } void release_bootstrap(void) { int root_is_ramdisk; page_t *pp; extern void kobj_boot_unmountroot(void); extern dev_t rootdev; uint_t i; char propname[32]; rd_existing_t *modranges; #if !defined(__xpv) pfn_t pfn; #endif /* * Save the bootfs module ranges so that we can reserve them below * for the real bootfs. */ modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, KM_SLEEP); for (i = 0; ; i++) { uint64_t start, size; modranges[i].phys = 0; (void) snprintf(propname, sizeof (propname), "module-addr-%u", i); if (do_bsys_getproplen(NULL, propname) <= 0) break; (void) do_bsys_getprop(NULL, propname, &start); (void) snprintf(propname, sizeof (propname), "module-size-%u", i); if (do_bsys_getproplen(NULL, propname) <= 0) break; (void) do_bsys_getprop(NULL, propname, &size); modranges[i].phys = start; modranges[i].size = size; } /* unmount boot ramdisk and release kmem usage */ kobj_boot_unmountroot(); /* * We're finished using the boot loader so free its pages. */ PRM_POINT("Unmapping lower boot pages"); clear_boot_mappings(0, _userlimit); postbootkernelbase = kernelbase; /* * If root isn't on ramdisk, destroy the hardcoded * ramdisk node now and release the memory. Else, * ramdisk memory is kept in rd_pages. */ root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); if (!root_is_ramdisk) { dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); ndi_rele_devi(dip); /* held from ddi_find_devinfo */ (void) ddi_remove_child(dip, 0); } PRM_POINT("Releasing boot pages"); while (bootpages) { extern uint64_t ramdisk_start, ramdisk_end; pp = bootpages; bootpages = pp->p_next; /* Keep pages for the lower 64K */ if (pp_in_range(pp, 0, 0x40000)) { pp->p_next = lower_pages; lower_pages = pp; lower_pages_count++; continue; } if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, ramdisk_end) || pp_in_module(pp, modranges)) { pp->p_next = rd_pages; rd_pages = pp; continue; } pp->p_next = (struct page *)0; pp->p_prev = (struct page *)0; PP_CLRBOOTPAGES(pp); page_free(pp, 1); } PRM_POINT("Boot pages released"); kmem_free(modranges, sizeof (rd_existing_t) * 99); #if !defined(__xpv) /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ /* * Find 1 page below 1 MB so that other processors can boot up or * so that any processor can resume. * Make sure it has a kernel VA as well as a 1:1 mapping. * We should have just free'd one up. */ /* * 0x10 pages is 64K. Leave the bottom 64K alone * for BIOS. */ for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { if (page_numtopp_alloc(pfn) == NULL) continue; rm_platter_va = i86devmap(pfn, 1, PROT_READ | PROT_WRITE | PROT_EXEC); rm_platter_pa = ptob(pfn); break; } if (pfn == btop(1*1024*1024) && use_mp) panic("No page below 1M available for starting " "other processors or for resuming from system-suspend"); #endif /* !__xpv */ } /* * Initialize the platform-specific parts of a page_t. */ void add_physmem_cb(page_t *pp, pfn_t pnum) { pp->p_pagenum = pnum; pp->p_mapping = NULL; pp->p_embed = 0; pp->p_share = 0; pp->p_mlentry = 0; } /* * kphysm_init() initializes physical memory. */ static pgcnt_t kphysm_init(page_t *pp, pgcnt_t npages) { struct memlist *pmem; struct memseg *cur_memseg; pfn_t base_pfn; pfn_t end_pfn; pgcnt_t num; pgcnt_t pages_done = 0; uint64_t addr; uint64_t size; extern pfn_t ddiphysmin; extern int mnode_xwa; int ms = 0, me = 0; ASSERT(page_hash != NULL && page_hashsz != 0); cur_memseg = memseg_base; for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { /* * In a 32 bit kernel can't use higher memory if we're * not booting in PAE mode. This check takes care of that. */ addr = pmem->ml_address; size = pmem->ml_size; if (btop(addr) > physmax) continue; /* * align addr and size - they may not be at page boundaries */ if ((addr & MMU_PAGEOFFSET) != 0) { addr += MMU_PAGEOFFSET; addr &= ~(uint64_t)MMU_PAGEOFFSET; size -= addr - pmem->ml_address; } /* only process pages below or equal to physmax */ if ((btop(addr + size) - 1) > physmax) size = ptob(physmax - btop(addr) + 1); num = btop(size); if (num == 0) continue; if (num > npages) num = npages; npages -= num; pages_done += num; base_pfn = btop(addr); if (prom_debug) prom_printf("MEMSEG addr=0x%" PRIx64 " pgs=0x%lx pfn 0x%lx-0x%lx\n", addr, num, base_pfn, base_pfn + num); /* * Ignore pages below ddiphysmin to simplify ddi memory * allocation with non-zero addr_lo requests. */ if (base_pfn < ddiphysmin) { if (base_pfn + num <= ddiphysmin) continue; pp += (ddiphysmin - base_pfn); num -= (ddiphysmin - base_pfn); base_pfn = ddiphysmin; } /* * mnode_xwa is greater than 1 when large pages regions can * cross memory node boundaries. To prevent the formation * of these large pages, configure the memsegs based on the * memory node ranges which had been made non-contiguous. */ end_pfn = base_pfn + num - 1; if (mnode_xwa > 1) { ms = PFN_2_MEM_NODE(base_pfn); me = PFN_2_MEM_NODE(end_pfn); if (ms != me) { /* * current range spans more than 1 memory node. * Set num to only the pfn range in the start * memory node. */ num = mem_node_config[ms].physmax - base_pfn + 1; ASSERT(end_pfn > mem_node_config[ms].physmax); } } for (;;) { /* * Build the memsegs entry */ cur_memseg->pages = pp; cur_memseg->epages = pp + num; cur_memseg->pages_base = base_pfn; cur_memseg->pages_end = base_pfn + num; /* * Insert into memseg list in decreasing pfn range * order. Low memory is typically more fragmented such * that this ordering keeps the larger ranges at the * front of the list for code that searches memseg. * This ASSERTS that the memsegs coming in from boot * are in increasing physical address order and not * contiguous. */ if (memsegs != NULL) { ASSERT(cur_memseg->pages_base >= memsegs->pages_end); cur_memseg->next = memsegs; } memsegs = cur_memseg; /* * add_physmem() initializes the PSM part of the page * struct by calling the PSM back with add_physmem_cb(). * In addition it coalesces pages into larger pages as * it initializes them. */ add_physmem(pp, num, base_pfn); cur_memseg++; availrmem_initial += num; availrmem += num; pp += num; if (ms >= me) break; /* process next memory node range */ ms++; base_pfn = mem_node_config[ms].physbase; if (mnode_xwa > 1) { num = MIN(mem_node_config[ms].physmax, end_pfn) - base_pfn + 1; } else { num = mem_node_config[ms].physmax - base_pfn + 1; } } } PRM_DEBUG(availrmem_initial); PRM_DEBUG(availrmem); PRM_DEBUG(freemem); build_pfn_hash(); return (pages_done); } /* * Kernel VM initialization. */ static void kvm_init(void) { ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); /* * Put the kernel segments in kernel address space. */ rw_enter(&kas.a_lock, RW_WRITER); as_avlinit(&kas); (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); (void) segkmem_create(&ktextseg); (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); (void) segkmem_create(&kvalloc); (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); (void) segkmem_create(&kvseg); if (core_size > 0) { PRM_POINT("attaching kvseg_core"); (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); (void) segkmem_create(&kvseg_core); } PRM_POINT("attaching segkvmm"); (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg); (void) segkmem_create(&kvmmseg); segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize)); if (segziosize > 0) { PRM_POINT("attaching segzio"); (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), &kzioseg); (void) segkmem_create(&kzioseg); /* create zio area covering new segment */ segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); } (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); (void) segkmem_create(&kdebugseg); rw_exit(&kas.a_lock); /* * Ensure that the red zone at kernelbase is never accessible. */ PRM_POINT("protecting redzone"); (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); /* * Make the text writable so that it can be hot patched by DTrace. */ (void) as_setprot(&kas, s_text, e_modtext - s_text, PROT_READ | PROT_WRITE | PROT_EXEC); /* * Make data writable until end. */ (void) as_setprot(&kas, s_data, e_moddata - s_data, PROT_READ | PROT_WRITE | PROT_EXEC); } #ifndef __xpv /* * Solaris adds an entry for Write Combining caching to the PAT */ static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; void pat_sync(void) { ulong_t cr0, cr0_orig, cr4; if (!is_x86_feature(x86_featureset, X86FSET_PAT)) return; cr0_orig = cr0 = getcr0(); cr4 = getcr4(); /* disable caching and flush all caches and TLBs */ cr0 |= CR0_CD; cr0 &= ~CR0_NW; setcr0(cr0); invalidate_cache(); if (cr4 & CR4_PGE) { setcr4(cr4 & ~(ulong_t)CR4_PGE); setcr4(cr4); } else { reload_cr3(); } /* add our entry to the PAT */ wrmsr(REG_PAT, pat_attr_reg); /* flush TLBs and cache again, then reenable cr0 caching */ if (cr4 & CR4_PGE) { setcr4(cr4 & ~(ulong_t)CR4_PGE); setcr4(cr4); } else { reload_cr3(); } invalidate_cache(); setcr0(cr0_orig); } #endif /* !__xpv */ #if defined(_SOFT_HOSTID) /* * On platforms that do not have a hardware serial number, attempt * to set one based on the contents of /etc/hostid. If this file does * not exist, assume that we are to generate a new hostid and set * it in the kernel, for subsequent saving by a userland process * once the system is up and the root filesystem is mounted r/w. * * In order to gracefully support upgrade on OpenSolaris, if * /etc/hostid does not exist, we will attempt to get a serial number * using the legacy method (/kernel/misc/sysinit). * * If that isn't present, we attempt to use an SMBIOS UUID, which is * a hardware serial number. Note that we don't automatically trust * all SMBIOS UUIDs (some older platforms are defective and ship duplicate * UUIDs in violation of the standard), we check against a blacklist. * * In an attempt to make the hostid less prone to abuse * (for license circumvention, etc), we store it in /etc/hostid * in rot47 format. */ static int atoi(char *); /* * Set this to non-zero in /etc/system if you think your SMBIOS returns a * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist * array can be updated.) */ int smbios_broken_uuid = 0; /* * List of known bad UUIDs. This is just the lower 32-bit values, since * that's what we use for the host id. If your hostid falls here, you need * to contact your hardware OEM for a fix for your BIOS. */ static unsigned char smbios_uuid_blacklist[][16] = { { /* Reported bad UUID (Google search) */ 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, }, { /* Known bad DELL UUID */ 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, }, { /* Uninitialized flash */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { /* All zeros */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; static int32_t uuid_to_hostid(const uint8_t *uuid) { /* * Although the UUIDs are 128-bits, they may not distribute entropy * evenly. We would like to use SHA or MD5, but those are located * in loadable modules and not available this early in boot. As we * don't need the values to be cryptographically strong, we just * generate 32-bit vaue by xor'ing the various sequences together, * which ensures that the entire UUID contributes to the hostid. */ uint32_t id = 0; /* first check against the blacklist */ for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { cmn_err(CE_CONT, "?Broken SMBIOS UUID. " "Contact BIOS manufacturer for repair.\n"); return ((int32_t)HW_INVALID_HOSTID); } } for (int i = 0; i < 16; i++) id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); /* Make sure return value is positive */ return (id & 0x7fffffff); } static int32_t set_soft_hostid(void) { struct _buf *file; char tokbuf[MAXNAMELEN]; token_t token; int done = 0; u_longlong_t tmp; int i; int32_t hostid = (int32_t)HW_INVALID_HOSTID; unsigned char *c; hrtime_t tsc; smbios_system_t smsys; /* * If /etc/hostid file not found, we'd like to get a pseudo * random number to use at the hostid. A nice way to do this * is to read the real time clock. To remain xen-compatible, * we can't poke the real hardware, so we use tsc_read() to * read the real time clock. */ if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { /* * hostid file not found - try to load sysinit module * and see if it has a nonzero hostid value...use that * instead of generating a new hostid here if so. */ if ((i = modload("misc", "sysinit")) != -1) { if (strlen(hw_serial) > 0) hostid = (int32_t)atoi(hw_serial); (void) modunload(i); } /* * We try to use the SMBIOS UUID. But not if it is blacklisted * in /etc/system. */ if ((hostid == HW_INVALID_HOSTID) && (smbios_broken_uuid == 0) && (ksmbios != NULL) && (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && (smsys.smbs_uuidlen >= 16)) { hostid = uuid_to_hostid(smsys.smbs_uuid); } /* * Generate a "random" hostid using the clock. These * hostids will change on each boot if the value is not * saved to a persistent /etc/hostid file. */ if (hostid == HW_INVALID_HOSTID) { hostid = tsc_read() & 0x0CFFFFF; } } else { /* hostid file found */ while (!done) { token = kobj_lex(file, tokbuf, sizeof (tokbuf)); switch (token) { case POUND: /* * skip comments */ kobj_find_eol(file); break; case STRING: /* * un-rot47 - obviously this * nonsense is ascii-specific */ for (c = (unsigned char *)tokbuf; *c != '\0'; c++) { *c += 47; if (*c > '~') *c -= 94; else if (*c < '!') *c += 94; } /* * now we should have a real number */ if (kobj_getvalue(tokbuf, &tmp) != 0) kobj_file_err(CE_WARN, file, "Bad value %s for hostid", tokbuf); else hostid = (int32_t)tmp; break; case EOF: done = 1; /* FALLTHROUGH */ case NEWLINE: kobj_newline(file); break; default: break; } } if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ kobj_file_err(CE_WARN, file, "hostid missing or corrupt"); kobj_close_file(file); } /* * hostid is now the value read from /etc/hostid, or the * new hostid we generated in this routine or HW_INVALID_HOSTID if not * set. */ return (hostid); } static int atoi(char *p) { int i = 0; while (*p != '\0') i = 10 * i + (*p++ - '0'); return (i); } #endif /* _SOFT_HOSTID */ void get_system_configuration(void) { char prop[32]; u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || BOP_GETPROP(bootops, "nodes", prop) < 0 || kobj_getvalue(prop, &nodes_ll) == -1 || nodes_ll > MAXNODES || BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || kobj_getvalue(prop, &cpus_pernode_ll) == -1) { system_hardware.hd_nodes = 1; system_hardware.hd_cpus_per_node = 0; } else { system_hardware.hd_nodes = (int)nodes_ll; system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; } if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || BOP_GETPROP(bootops, "kernelbase", prop) < 0 || kobj_getvalue(prop, &lvalue) == -1) eprom_kernelbase = 0; else eprom_kernelbase = (uintptr_t)lvalue; if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || BOP_GETPROP(bootops, "segmapsize", prop) < 0 || kobj_getvalue(prop, &lvalue) == -1) segmapsize = SEGMAPDEFAULT; else segmapsize = (uintptr_t)lvalue; if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || kobj_getvalue(prop, &lvalue) == -1) segmapfreelists = 0; /* use segmap driver default */ else segmapfreelists = (int)lvalue; if (BOP_GETPROPLEN(bootops, "segkpsize") > sizeof (prop) || BOP_GETPROP(bootops, "segkpsize", prop) < 0 || kobj_getvalue(prop, &lvalue) == -1) segkpsize = mmu_btop(SEGKPDEFSIZE); else segkpsize = mmu_btop((size_t)lvalue); /* physmem used to be here, but moved much earlier to fakebop.c */ } /* * Add to a memory list. * start = start of new memory segment * len = length of new memory segment in bytes * new = pointer to a new struct memlist * memlistp = memory list to which to add segment. */ void memlist_add( uint64_t start, uint64_t len, struct memlist *new, struct memlist **memlistp) { struct memlist *cur; uint64_t end = start + len; new->ml_address = start; new->ml_size = len; cur = *memlistp; while (cur) { if (cur->ml_address >= end) { new->ml_next = cur; *memlistp = new; new->ml_prev = cur->ml_prev; cur->ml_prev = new; return; } ASSERT(cur->ml_address + cur->ml_size <= start); if (cur->ml_next == NULL) { cur->ml_next = new; new->ml_prev = cur; new->ml_next = NULL; return; } memlistp = &cur->ml_next; cur = cur->ml_next; } } void kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) { size_t tsize = e_modtext - modtext; size_t dsize = e_moddata - moddata; *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); } caddr_t kobj_text_alloc(vmem_t *arena, size_t size) { return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); } /*ARGSUSED*/ caddr_t kobj_texthole_alloc(caddr_t addr, size_t size) { panic("unexpected call to kobj_texthole_alloc()"); /*NOTREACHED*/ return (0); } /*ARGSUSED*/ void kobj_texthole_free(caddr_t addr, size_t size) { panic("unexpected call to kobj_texthole_free()"); } /* * This is called just after configure() in startup(). * * The ISALIST concept is a bit hopeless on Intel, because * there's no guarantee of an ever-more-capable processor * given that various parts of the instruction set may appear * and disappear between different implementations. * * While it would be possible to correct it and even enhance * it somewhat, the explicit hardware capability bitmask allows * more flexibility. * * So, we just leave this alone. */ void setx86isalist(void) { char *tp; size_t len; extern char *isa_list; #define TBUFSIZE 1024 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); *tp = '\0'; (void) strcpy(tp, "amd64 "); switch (x86_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: case X86_VENDOR_HYGON: case X86_VENDOR_TM: if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { /* * Pentium Pro or later */ (void) strcat(tp, "pentium_pro"); (void) strcat(tp, is_x86_feature(x86_featureset, X86FSET_MMX) ? "+mmx pentium_pro " : " "); } /*FALLTHROUGH*/ case X86_VENDOR_Cyrix: /* * The Cyrix 6x86 does not have any Pentium features * accessible while not at privilege level 0. */ if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { (void) strcat(tp, "pentium"); (void) strcat(tp, is_x86_feature(x86_featureset, X86FSET_MMX) ? "+mmx pentium " : " "); } break; default: break; } (void) strcat(tp, "i486 i386 i86"); len = strlen(tp) + 1; /* account for NULL at end of string */ isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); kmem_free(tp, TBUFSIZE); #undef TBUFSIZE } void * device_arena_alloc(size_t size, int vm_flag) { return (vmem_alloc(device_arena, size, vm_flag)); } void device_arena_free(void *vaddr, size_t size) { vmem_free(device_arena, vaddr, size); }