/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef TRAPTRACE #include #endif /* TRAPTRACE */ #ifdef C2_AUDIT extern void audit_enterprom(int); extern void audit_exitprom(int); #endif /* * The panicbuf array is used to record messages and state: */ char panicbuf[PANICBUFSIZE]; /* * maxphys - used during physio * klustsize - used for klustering by swapfs and specfs */ int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ int klustsize = 56 * 1024; caddr_t p0_va; /* Virtual address for accessing physical page 0 */ int pokefault = 0; /* * defined here, though unused on x86, * to make kstat_fr.c happy. */ int vac; void stop_other_cpus(); void debug_enter(char *); int procset = 1; /* * Flags set by mdboot if we're panicking and we invoke mdboot on a CPU which * is not the boot CPU. When set, panic_idle() on the boot CPU will invoke * mdboot with the corresponding arguments. */ #define BOOT_WAIT -1 /* Flag indicating we should idle */ volatile int cpu_boot_cmd = BOOT_WAIT; volatile int cpu_boot_fcn = BOOT_WAIT; extern void pm_cfb_check_and_powerup(void); extern void pm_cfb_rele(void); /* * Machine dependent code to reboot. * "mdep" is interpreted as a character pointer; if non-null, it is a pointer * to a string to be used as the argument string when rebooting. * * "invoke_cb" is a boolean. It is set to true when mdboot() can safely * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when * we are in a normal shutdown sequence (interrupts are not blocked, the * system is not panic'ing or being suspended). */ /*ARGSUSED*/ void mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) { extern void mtrr_resync(void); /* * The PSMI guarantees the implementor of psm_shutdown that it will * only be called on the boot CPU. This was needed by Corollary * because the hardware does not allow other CPUs to reset the * boot CPU. So before rebooting, we switch over to the boot CPU. * If we are panicking, the other CPUs are at high spl spinning in * panic_idle(), so we set the cpu_boot_* variables and wait for * the boot CPU to re-invoke mdboot() for us. */ if (!panicstr) { kpreempt_disable(); affinity_set(getbootcpuid()); } else if (CPU->cpu_id != getbootcpuid()) { cpu_boot_cmd = cmd; cpu_boot_fcn = fcn; for (;;); } /* * XXX - rconsvp is set to NULL to ensure that output messages * are sent to the underlying "hardware" device using the * monitor's printf routine since we are in the process of * either rebooting or halting the machine. */ rconsvp = NULL; /* * Print the reboot message now, before pausing other cpus. * There is a race condition in the printing support that * can deadlock multiprocessor machines. */ if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) prom_printf("rebooting...\n"); /* * We can't bring up the console from above lock level, so do it now */ pm_cfb_check_and_powerup(); /* make sure there are no more changes to the device tree */ devtree_freeze(); if (invoke_cb) (void) callb_execute_class(CB_CL_MDBOOT, NULL); /* * stop other cpus and raise our priority. since there is only * one active cpu after this, and our priority will be too high * for us to be preempted, we're essentially single threaded * from here on out. */ (void) spl6(); if (!panicstr) { mutex_enter(&cpu_lock); pause_cpus(NULL); mutex_exit(&cpu_lock); } /* * try and reset leaf devices. reset_leaves() should only * be called when there are no other threads that could be * accessing devices */ reset_leaves(); (void) spl8(); (*psm_shutdownf)(cmd, fcn); mtrr_resync(); if (fcn == AD_HALT || fcn == AD_POWEROFF) halt((char *)NULL); else prom_reboot(""); /*NOTREACHED*/ } /* mdpreboot - may be called prior to mdboot while root fs still mounted */ /*ARGSUSED*/ void mdpreboot(int cmd, int fcn, char *mdep) { (*psm_preshutdownf)(cmd, fcn); } void idle_other_cpus() { int cpuid = CPU->cpu_id; cpuset_t xcset; ASSERT(cpuid < NCPU); CPUSET_ALL_BUT(xcset, cpuid); xc_capture_cpus(xcset); } void resume_other_cpus() { ASSERT(CPU->cpu_id < NCPU); xc_release_cpus(); } extern void mp_halt(char *); void stop_other_cpus() { int cpuid = CPU->cpu_id; cpuset_t xcset; ASSERT(cpuid < NCPU); /* * xc_trycall will attempt to make all other CPUs execute mp_halt, * and will return immediately regardless of whether or not it was * able to make them do it. */ CPUSET_ALL_BUT(xcset, cpuid); xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); } /* * Machine dependent abort sequence handling */ void abort_sequence_enter(char *msg) { if (abort_enable == 0) { #ifdef C2_AUDIT if (audit_active) audit_enterprom(0); #endif /* C2_AUDIT */ return; } #ifdef C2_AUDIT if (audit_active) audit_enterprom(1); #endif /* C2_AUDIT */ debug_enter(msg); #ifdef C2_AUDIT if (audit_active) audit_exitprom(1); #endif /* C2_AUDIT */ } /* * Enter debugger. Called when the user types ctrl-alt-d or whenever * code wants to enter the debugger and possibly resume later. */ void debug_enter( char *msg) /* message to print, possibly NULL */ { if (dtrace_debugger_init != NULL) (*dtrace_debugger_init)(); if (msg) prom_printf("%s\n", msg); if (boothowto & RB_DEBUG) kdi_dvec_enter(); if (dtrace_debugger_fini != NULL) (*dtrace_debugger_fini)(); } void reset(void) { ushort_t *bios_memchk; /* * Can't use psm_map_phys before the hat is initialized. */ if (khat_running) { bios_memchk = (ushort_t *)psm_map_phys(0x472, sizeof (ushort_t), PROT_READ | PROT_WRITE); if (bios_memchk) *bios_memchk = 0x1234; /* bios memory check disable */ } pc_reset(); /*NOTREACHED*/ } /* * Halt the machine and return to the monitor */ void halt(char *s) { stop_other_cpus(); /* send stop signal to other CPUs */ if (s) prom_printf("(%s) \n", s); prom_exit_to_mon(); /*NOTREACHED*/ } /* * Enter monitor. Called via cross-call from stop_other_cpus(). */ void mp_halt(char *msg) { if (msg) prom_printf("%s\n", msg); /*CONSTANTCONDITION*/ while (1) ; } /* * Initiate interrupt redistribution. */ void i_ddi_intr_redist_all_cpus() { } /* * XXX These probably ought to live somewhere else * XXX They are called from mem.c */ /* * Convert page frame number to an OBMEM page frame number * (i.e. put in the type bits -- zero for this implementation) */ pfn_t impl_obmem_pfnum(pfn_t pf) { return (pf); } #ifdef NM_DEBUG int nmi_test = 0; /* checked in intentry.s during clock int */ int nmtest = -1; nmfunc1(arg, rp) int arg; struct regs *rp; { printf("nmi called with arg = %x, regs = %x\n", arg, rp); nmtest += 50; if (arg == nmtest) { printf("ip = %x\n", rp->r_pc); return (1); } return (0); } #endif #include /* Hacked up initialization for initial kernel check out is HERE. */ /* The basic steps are: */ /* kernel bootfuncs definition/initialization for KADB */ /* kadb bootfuncs pointer initialization */ /* putchar/getchar (interrupts disabled) */ /* kadb bootfuncs pointer initialization */ int sysp_getchar() { int i; int s; if (cons_polledio == NULL) { /* Uh oh */ prom_printf("getchar called with no console\n"); for (;;) /* LOOP FOREVER */; } s = clear_int_flag(); i = cons_polledio->cons_polledio_getchar( cons_polledio->cons_polledio_argument); restore_int_flag(s); return (i); } void sysp_putchar(int c) { int s; /* * We have no alternative but to drop the output on the floor. */ if (cons_polledio == NULL) return; s = clear_int_flag(); cons_polledio->cons_polledio_putchar( cons_polledio->cons_polledio_argument, c); restore_int_flag(s); } int sysp_ischar() { int i; int s; if (cons_polledio == NULL) return (0); s = clear_int_flag(); i = cons_polledio->cons_polledio_ischar( cons_polledio->cons_polledio_argument); restore_int_flag(s); return (i); } int goany(void) { prom_printf("Type any key to continue "); (void) prom_getchar(); prom_printf("\n"); return (1); } static struct boot_syscalls kern_sysp = { sysp_getchar, /* unchar (*getchar)(); 7 */ sysp_putchar, /* int (*putchar)(); 8 */ sysp_ischar, /* int (*ischar)(); 9 */ }; void kadb_uses_kernel() { /* * This routine is now totally misnamed, since it does not in fact * control kadb's I/O; it only controls the kernel's prom_* I/O. */ sysp = &kern_sysp; } /* * the interface to the outside world */ /* * poll_port -- wait for a register to achieve a * specific state. Arguments are a mask of bits we care about, * and two sub-masks. To return normally, all the bits in the * first sub-mask must be ON, all the bits in the second sub- * mask must be OFF. If about seconds pass without the register * achieving the desired bit configuration, we return 1, else * 0. */ int poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) { int i; ushort_t maskval; for (i = 500000; i; i--) { maskval = inb(port) & mask; if (((maskval & onbits) == onbits) && ((maskval & offbits) == 0)) return (0); drv_usecwait(10); } return (1); } /* * set_idle_cpu is called from idle() when a CPU becomes idle. */ /*LINTED: static unused */ static uint_t last_idle_cpu; /*ARGSUSED*/ void set_idle_cpu(int cpun) { last_idle_cpu = cpun; (*psm_set_idle_cpuf)(cpun); } /* * unset_idle_cpu is called from idle() when a CPU is no longer idle. */ /*ARGSUSED*/ void unset_idle_cpu(int cpun) { (*psm_unset_idle_cpuf)(cpun); } /* * This routine is almost correct now, but not quite. It still needs the * equivalent concept of "hres_last_tick", just like on the sparc side. * The idea is to take a snapshot of the hi-res timer while doing the * hrestime_adj updates under hres_lock in locore, so that the small * interval between interrupt assertion and interrupt processing is * accounted for correctly. Once we have this, the code below should * be modified to subtract off hres_last_tick rather than hrtime_base. * * I'd have done this myself, but I don't have source to all of the * vendor-specific hi-res timer routines (grrr...). The generic hook I * need is something like "gethrtime_unlocked()", which would be just like * gethrtime() but would assume that you're already holding CLOCK_LOCK(). * This is what the GET_HRTIME() macro is for on sparc (although it also * serves the function of making time available without a function call * so you don't take a register window overflow while traps are disabled). */ void pc_gethrestime(timestruc_t *tp) { int lock_prev; timestruc_t now; int nslt; /* nsec since last tick */ int adj; /* amount of adjustment to apply */ loop: lock_prev = hres_lock; now = hrestime; nslt = (int)(gethrtime() - hres_last_tick); if (nslt < 0) { /* * nslt < 0 means a tick came between sampling * gethrtime() and hres_last_tick; restart the loop */ goto loop; } now.tv_nsec += nslt; if (hrestime_adj != 0) { if (hrestime_adj > 0) { adj = (nslt >> ADJ_SHIFT); if (adj > hrestime_adj) adj = (int)hrestime_adj; } else { adj = -(nslt >> ADJ_SHIFT); if (adj < hrestime_adj) adj = (int)hrestime_adj; } now.tv_nsec += adj; } while ((unsigned long)now.tv_nsec >= NANOSEC) { /* * We might have a large adjustment or have been in the * debugger for a long time; take care of (at most) four * of those missed seconds (tv_nsec is 32 bits, so * anything >4s will be wrapping around). However, * anything more than 2 seconds out of sync will trigger * timedelta from clock() to go correct the time anyway, * so do what we can, and let the big crowbar do the * rest. A similar correction while loop exists inside * hres_tick(); in all cases we'd like tv_nsec to * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing * user processes, but if tv_sec's a little behind for a * little while, that's OK; time still monotonically * increases. */ now.tv_nsec -= NANOSEC; now.tv_sec++; } if ((hres_lock & ~1) != lock_prev) goto loop; *tp = now; } void gethrestime_lasttick(timespec_t *tp) { int s; s = hr_clock_lock(); *tp = hrestime; hr_clock_unlock(s); } time_t gethrestime_sec(void) { timestruc_t now; gethrestime(&now); return (now.tv_sec); } /* * Initialize a kernel thread's stack */ caddr_t thread_stk_init(caddr_t stk) { ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); return (stk - SA(MINFRAME)); } /* * Initialize lwp's kernel stack. */ #ifdef TRAPTRACE /* * There's a tricky interdependency here between use of sysenter and * TRAPTRACE which needs recording to avoid future confusion (this is * about the third time I've re-figured this out ..) * * Here's how debugging lcall works with TRAPTRACE. * * 1 We're in userland with a breakpoint on the lcall instruction. * 2 We execute the instruction - the instruction pushes the userland * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel * via the call gate. * 3 The hardware raises a debug trap in kernel mode, the hardware * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. * 4 dbgtrap pushes the error code and trapno and calls cmntrap * 5 cmntrap finishes building a trap frame * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk * off the stack into the traptrace buffer. * * This means that the traptrace buffer contains the wrong values in * %esp and %ss, but everything else in there is correct. * * Here's how debugging sysenter works with TRAPTRACE. * * a We're in userland with a breakpoint on the sysenter instruction. * b We execute the instruction - the instruction pushes -nothing- * on the stack, but sets %cs, %eip, %ss, %esp to prearranged * values to take us to sys_sysenter, at the top of the lwp's * stack. * c goto 3 * * At this point, because we got into the kernel without the requisite * five pushes on the stack, if we didn't make extra room, we'd * end up with the TRACE_REGS macro fetching the saved %ss and %esp * values from negative (unmapped) stack addresses -- which really bites. * That's why we do the '-= 8' below. * * XXX Note that reading "up" lwp0's stack works because t0 is declared * right next to t0stack in locore.s */ #endif caddr_t lwp_stk_init(klwp_t *lwp, caddr_t stk) { caddr_t oldstk; struct pcb *pcb = &lwp->lwp_pcb; oldstk = stk; stk -= SA(sizeof (struct regs) + SA(MINFRAME)); #ifdef TRAPTRACE stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ #endif stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); bzero(stk, oldstk - stk); lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); /* * Arrange that the virtualized %fs and %gs GDT descriptors * have a well-defined initial state (present, ring 3 * and of type data). */ #if defined(__amd64) if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; else pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; #elif defined(__i386) pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; #endif /* __i386 */ lwp_installctx(lwp); return (stk); } /*ARGSUSED*/ void lwp_stk_fini(klwp_t *lwp) {} /* * If we're not the panic CPU, we wait in panic_idle for reboot. If we're * the boot CPU, then we are responsible for actually doing the reboot, so * we watch for cpu_boot_cmd to be set. */ static void panic_idle(void) { splx(ipltospl(CLOCK_LEVEL)); (void) setjmp(&curthread->t_pcb); if (CPU->cpu_id == getbootcpuid()) { while (cpu_boot_cmd == BOOT_WAIT || cpu_boot_fcn == BOOT_WAIT) drv_usecwait(10); mdboot(cpu_boot_cmd, cpu_boot_fcn, NULL, B_FALSE); } for (;;); } /* * Stop the other CPUs by cross-calling them and forcing them to enter * the panic_idle() loop above. */ /*ARGSUSED*/ void panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) { processorid_t i; cpuset_t xcset; (void) splzs(); CPUSET_ALL_BUT(xcset, cp->cpu_id); xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); for (i = 0; i < NCPU; i++) { if (i != cp->cpu_id && cpu[i] != NULL && (cpu[i]->cpu_flags & CPU_EXISTS)) cpu[i]->cpu_flags |= CPU_QUIESCED; } } /* * Platform callback following each entry to panicsys(). */ /*ARGSUSED*/ void panic_enter_hw(int spl) { /* Nothing to do here */ } /* * Platform-specific code to execute after panicstr is set: we invoke * the PSM entry point to indicate that a panic has occurred. */ /*ARGSUSED*/ void panic_quiesce_hw(panic_data_t *pdp) { psm_notifyf(PSM_PANIC_ENTER); #ifdef TRAPTRACE /* * Turn off TRAPTRACE */ TRAPTRACE_FREEZE; #endif /* TRAPTRACE */ } /* * Platform callback prior to writing crash dump. */ /*ARGSUSED*/ void panic_dump_hw(int spl) { /* Nothing to do here */ } /*ARGSUSED*/ void plat_tod_fault(enum tod_fault_type tod_bad) { } /*ARGSUSED*/ int blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) { return (ENOTSUP); } /* * The underlying console output routines are protected by raising IPL in case * we are still calling into the early boot services. Once we start calling * the kernel console emulator, it will disable interrupts completely during * character rendering (see sysp_putchar, for example). Refer to the comments * and code in common/os/console.c for more information on these callbacks. */ /*ARGSUSED*/ int console_enter(int busy) { return (splzs()); } /*ARGSUSED*/ void console_exit(int busy, int spl) { splx(spl); } /* * Allocate a region of virtual address space, unmapped. * Stubbed out except on sparc, at least for now. */ /*ARGSUSED*/ void * boot_virt_alloc(void *addr, size_t size) { return (addr); } volatile unsigned long tenmicrodata; void tenmicrosec(void) { extern int tsc_gethrtime_initted; int i; if (tsc_gethrtime_initted) { hrtime_t start, end; start = end = gethrtime(); while ((end - start) < (10 * (NANOSEC / MICROSEC))) { SMT_PAUSE(); end = gethrtime(); } } else { /* * Artificial loop to induce delay. */ for (i = 0; i < microdata; i++) tenmicrodata = microdata; } }