/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright 2018 Joyent, Inc. * Copyright (c) 2016, 2017 by Delphix. All rights reserved. */ /* * PSMI 1.1 extensions are supported only in 2.6 and later versions. * PSMI 1.2 extensions are supported only in 2.7 and later versions. * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. * PSMI 1.5 extensions are supported in Solaris Nevada. * PSMI 1.6 extensions are supported in Solaris Nevada. * PSMI 1.7 extensions are supported in Solaris Nevada. */ #define PSMI_1_7 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void apic_record_ioapic_rdt(void *intrmap_private, ioapic_rdt_t *irdt); static void apic_record_msi(void *intrmap_private, msi_regs_t *mregs); /* * Common routines between pcplusmp & apix (taken from apic.c). */ int apic_clkinit(int); hrtime_t apic_gethrtime(void); void apic_send_ipi(int, int); void apic_set_idlecpu(processorid_t); void apic_unset_idlecpu(processorid_t); void apic_shutdown(int, int); void apic_preshutdown(int, int); processorid_t apic_get_next_processorid(processorid_t); hrtime_t apic_gettime(); enum apic_ioapic_method_type apix_mul_ioapic_method = APIC_MUL_IOAPIC_PCPLUSMP; /* Now the ones for Dynamic Interrupt distribution */ int apic_enable_dynamic_migration = 0; /* maximum loop count when sending Start IPIs. */ int apic_sipi_max_loop_count = 0x1000; /* * These variables are frequently accessed in apic_intr_enter(), * apic_intr_exit and apic_setspl, so group them together */ volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ int apic_setspl_delay = 1; /* apic_setspl - delay enable */ int apic_clkvect; /* vector at which error interrupts come in */ int apic_errvect; int apic_enable_error_intr = 1; int apic_error_display_delay = 100; /* vector at which performance counter overflow interrupts come in */ int apic_cpcovf_vect; int apic_enable_cpcovf_intr = 1; /* vector at which CMCI interrupts come in */ int apic_cmci_vect; extern int cmi_enable_cmci; extern void cmi_cmci_trap(void); kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ int cmci_cpu_setup_registered; lock_t apic_mode_switch_lock; int apic_pir_vect; /* * Patchable global variables. */ int apic_forceload = 0; int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ int apic_panic_on_nmi = 0; int apic_panic_on_apic_error = 0; int apic_verbose = 0; /* 0x1ff */ #ifdef DEBUG int apic_debug = 0; int apic_restrict_vector = 0; int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; int apic_debug_msgbufindex = 0; #endif /* DEBUG */ uint_t apic_nticks = 0; uint_t apic_skipped_redistribute = 0; uint_t last_count_read = 0; lock_t apic_gethrtime_lock; volatile int apic_hrtime_stamp = 0; volatile hrtime_t apic_nsec_since_boot = 0; static hrtime_t apic_last_hrtime = 0; int apic_hrtime_error = 0; int apic_remote_hrterr = 0; int apic_num_nmis = 0; int apic_apic_error = 0; int apic_num_apic_errors = 0; int apic_num_cksum_errors = 0; int apic_error = 0; static int apic_cmos_ssb_set = 0; /* use to make sure only one cpu handles the nmi */ lock_t apic_nmi_lock; /* use to make sure only one cpu handles the error interrupt */ lock_t apic_error_lock; static struct { uchar_t cntl; uchar_t data; } aspen_bmc[] = { { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; static struct { int port; uchar_t data; } sitka_bmc[] = { { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; /* Patchable global variables. */ int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ /* default apic ops without interrupt remapping */ static apic_intrmap_ops_t apic_nointrmap_ops = { (int (*)(int))return_instr, (void (*)(int))return_instr, (void (*)(void **, dev_info_t *, uint16_t, int, uchar_t))return_instr, (void (*)(void *, void *, uint16_t, int))return_instr, (void (*)(void **))return_instr, apic_record_ioapic_rdt, apic_record_msi, }; apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops; apic_cpus_info_t *apic_cpus = NULL; cpuset_t apic_cpumask; uint_t apic_picinit_called; /* Flag to indicate that we need to shut down all processors */ static uint_t apic_shutdown_processors; /* * Probe the ioapic method for apix module. Called in apic_probe_common() */ int apic_ioapic_method_probe() { if (apix_enable == 0) return (PSM_SUCCESS); /* * Set IOAPIC EOI handling method. The priority from low to high is: * 1. IOxAPIC: with EOI register * 2. IOMMU interrupt mapping * 3. Mask-Before-EOI method for systems without boot * interrupt routing, such as systems with only one IOAPIC; * NVIDIA CK8-04/MCP55 systems; systems with bridge solution * which disables the boot interrupt routing already. * 4. Directed EOI */ if (apic_io_ver[0] >= 0x20) apix_mul_ioapic_method = APIC_MUL_IOAPIC_IOXAPIC; if ((apic_io_max == 1) || (apic_nvidia_io_max == apic_io_max)) apix_mul_ioapic_method = APIC_MUL_IOAPIC_MASK; if (apic_directed_EOI_supported()) apix_mul_ioapic_method = APIC_MUL_IOAPIC_DEOI; /* fall back to pcplusmp */ if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_PCPLUSMP) { /* make sure apix is after pcplusmp in /etc/mach */ apix_enable = 0; /* go ahead with pcplusmp install next */ return (PSM_FAILURE); } return (PSM_SUCCESS); } /* * handler for APIC Error interrupt. Just print a warning and continue */ int apic_error_intr() { uint_t error0, error1, error; uint_t i; /* * We need to write before read as per 7.4.17 of system prog manual. * We do both and or the results to be safe */ error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); error = error0 | error1; /* * Clear the APIC error status (do this on all cpus that enter here) * (two writes are required due to the semantics of accessing the * error status register.) */ apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); /* * Prevent more than 1 CPU from handling error interrupt causing * double printing (interleave of characters from multiple * CPU's when using prom_printf) */ if (lock_try(&apic_error_lock) == 0) return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); if (error) { #if DEBUG if (apic_debug) debug_enter("pcplusmp: APIC Error interrupt received"); #endif /* DEBUG */ if (apic_panic_on_apic_error) cmn_err(CE_PANIC, "APIC Error interrupt on CPU %d. Status = %x", psm_get_cpu_id(), error); else { if ((error & ~APIC_CS_ERRORS) == 0) { /* cksum error only */ apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; apic_num_cksum_errors++; } else { /* * prom_printf is the best shot we have of * something which is problem free from * high level/NMI type of interrupts */ prom_printf("APIC Error interrupt on CPU %d. " "Status 0 = %x, Status 1 = %x\n", psm_get_cpu_id(), error0, error1); apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; for (i = 0; i < apic_error_display_delay; i++) { tenmicrosec(); } /* * provide more delay next time limited to * roughly 1 clock tick time */ if (apic_error_display_delay < 500) apic_error_display_delay *= 2; } } lock_clear(&apic_error_lock); return (DDI_INTR_CLAIMED); } else { lock_clear(&apic_error_lock); return (DDI_INTR_UNCLAIMED); } } /* * Turn off the mask bit in the performance counter Local Vector Table entry. */ void apic_cpcovf_mask_clear(void) { apic_reg_ops->apic_write(APIC_PCINT_VECT, (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); } /*ARGSUSED*/ static int apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); return (0); } /*ARGSUSED*/ static int apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); return (0); } /*ARGSUSED*/ int cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) { cpuset_t cpu_set; CPUSET_ONLY(cpu_set, cpuid); switch (what) { case CPU_ON: xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), (xc_func_t)apic_cmci_enable); break; case CPU_OFF: xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), (xc_func_t)apic_cmci_disable); break; default: break; } return (0); } static void apic_disable_local_apic(void) { apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); /* local intr reg 0 */ apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); /* disable NMI */ apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); /* and error interrupt */ apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); /* and perf counter intr */ apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); } static void apic_cpu_send_SIPI(processorid_t cpun, boolean_t start) { int loop_count; uint32_t vector; uint_t apicid; ulong_t iflag; apicid = apic_cpus[cpun].aci_local_id; /* * Interrupts on current CPU will be disabled during the * steps in order to avoid unwanted side effects from * executing interrupt handlers on a problematic BIOS. */ iflag = intr_clear(); if (start) { outb(CMOS_ADDR, SSB); outb(CMOS_DATA, BIOS_SHUTDOWN); } /* * According to X2APIC specification in section '2.3.5.1' of * Interrupt Command Register Semantics, the semantics of * programming the Interrupt Command Register to dispatch an interrupt * is simplified. A single MSR write to the 64-bit ICR is required * for dispatching an interrupt. Specifically, with the 64-bit MSR * interface to ICR, system software is not required to check the * status of the delivery status bit prior to writing to the ICR * to send an IPI. With the removal of the Delivery Status bit, * system software no longer has a reason to read the ICR. It remains * readable only to aid in debugging. */ #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) { APIC_AV_PENDING_SET(); } #endif /* DEBUG */ /* for integrated - make sure there is one INIT IPI in buffer */ /* for external - it will wake up the cpu */ apic_reg_ops->apic_write_int_cmd(apicid, AV_ASSERT | AV_RESET); /* If only 1 CPU is installed, PENDING bit will not go low */ for (loop_count = apic_sipi_max_loop_count; loop_count; loop_count--) { if (apic_mode == LOCAL_APIC && apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) apic_ret(); else break; } apic_reg_ops->apic_write_int_cmd(apicid, AV_DEASSERT | AV_RESET); drv_usecwait(20000); /* 20 milli sec */ if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { /* integrated apic */ vector = (rm_platter_pa >> MMU_PAGESHIFT) & (APIC_VECTOR_MASK | APIC_IPL_MASK); /* to offset the INIT IPI queue up in the buffer */ apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); drv_usecwait(200); /* 20 micro sec */ /* * send the second SIPI (Startup IPI) as recommended by Intel * software development manual. */ apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); drv_usecwait(200); /* 20 micro sec */ } intr_restore(iflag); } /*ARGSUSED1*/ int apic_cpu_start(processorid_t cpun, caddr_t arg) { ASSERT(MUTEX_HELD(&cpu_lock)); if (!apic_cpu_in_range(cpun)) { return (EINVAL); } /* * Switch to apic_common_send_ipi for safety during starting other CPUs. */ if (apic_mode == LOCAL_X2APIC) { apic_switch_ipi_callback(B_TRUE); } apic_cmos_ssb_set = 1; apic_cpu_send_SIPI(cpun, B_TRUE); return (0); } /* * Put CPU into halted state with interrupts disabled. */ /*ARGSUSED1*/ int apic_cpu_stop(processorid_t cpun, caddr_t arg) { int rc; cpu_t *cp; extern cpuset_t cpu_ready_set; extern void cpu_idle_intercept_cpu(cpu_t *cp); ASSERT(MUTEX_HELD(&cpu_lock)); if (!apic_cpu_in_range(cpun)) { return (EINVAL); } if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { return (ENOTSUP); } cp = cpu_get(cpun); ASSERT(cp != NULL); ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0); ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0); ASSERT((cp->cpu_flags & CPU_ENABLE) == 0); /* Clear CPU_READY flag to disable cross calls. */ cp->cpu_flags &= ~CPU_READY; CPUSET_ATOMIC_DEL(cpu_ready_set, cpun); rc = xc_flush_cpu(cp); if (rc != 0) { CPUSET_ATOMIC_ADD(cpu_ready_set, cpun); cp->cpu_flags |= CPU_READY; return (rc); } /* Intercept target CPU at a safe point before powering it off. */ cpu_idle_intercept_cpu(cp); apic_cpu_send_SIPI(cpun, B_FALSE); cp->cpu_flags &= ~CPU_RUNNING; return (0); } int apic_cpu_ops(psm_cpu_request_t *reqp) { if (reqp == NULL) { return (EINVAL); } switch (reqp->pcr_cmd) { case PSM_CPU_ADD: return (apic_cpu_add(reqp)); case PSM_CPU_REMOVE: return (apic_cpu_remove(reqp)); case PSM_CPU_STOP: return (apic_cpu_stop(reqp->req.cpu_stop.cpuid, reqp->req.cpu_stop.ctx)); default: return (ENOTSUP); } } #ifdef DEBUG int apic_break_on_cpu = 9; int apic_stretch_interrupts = 0; int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ #endif /* DEBUG */ /* * generates an interprocessor interrupt to another CPU. Any changes made to * this routine must be accompanied by similar changes to * apic_common_send_ipi(). */ void apic_send_ipi(int cpun, int ipl) { int vector; ulong_t flag; vector = apic_resv_vector[ipl]; ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); flag = intr_clear(); APIC_AV_PENDING_SET(); apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, vector); intr_restore(flag); } void apic_send_pir_ipi(processorid_t cpun) { const int vector = apic_pir_vect; ulong_t flag; ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); flag = intr_clear(); /* Self-IPI for inducing PIR makes no sense. */ if ((cpun != psm_get_cpu_id())) { APIC_AV_PENDING_SET(); apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, vector); } intr_restore(flag); } int apic_get_pir_ipivect(void) { return (apic_pir_vect); } /*ARGSUSED*/ void apic_set_idlecpu(processorid_t cpun) { } /*ARGSUSED*/ void apic_unset_idlecpu(processorid_t cpun) { } void apic_ret() { } /* * If apic_coarse_time == 1, then apic_gettime() is used instead of * apic_gethrtime(). This is used for performance instead of accuracy. */ hrtime_t apic_gettime() { int old_hrtime_stamp; hrtime_t temp; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gettime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); gettime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); temp = apic_nsec_since_boot; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ goto gettime_again; } return (temp); } /* * Here we return the number of nanoseconds since booting. Note every * clock interrupt increments apic_nsec_since_boot by the appropriate * amount. */ hrtime_t apic_gethrtime(void) { int curr_timeval, countval, elapsed_ticks; int old_hrtime_stamp, status; hrtime_t temp; uint32_t cpun; ulong_t oflags; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gethrtime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); oflags = intr_clear(); /* prevent migration */ cpun = apic_reg_ops->apic_read(APIC_LID_REG); if (apic_mode == LOCAL_APIC) cpun >>= APIC_ID_BIT_OFFSET; lock_set(&apic_gethrtime_lock); gethrtime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); /* * Check to see which CPU we are on. Note the time is kept on * the local APIC of CPU 0. If on CPU 0, simply read the current * counter. If on another CPU, issue a remote read command to CPU 0. */ if (cpun == apic_cpus[0].aci_local_id) { countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); } else { #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ apic_reg_ops->apic_write_int_cmd( apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) & AV_READ_PENDING) { apic_ret(); } if (status & AV_REMOTE_STATUS) /* 1 = valid */ countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); else { /* 0 = invalid */ apic_remote_hrterr++; /* * return last hrtime right now, will need more * testing if change to retry */ temp = apic_last_hrtime; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } } if (countval > last_count_read) countval = 0; else last_count_read = countval; elapsed_ticks = apic_hertz_count - countval; curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); temp = apic_nsec_since_boot + curr_timeval; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ /* we might have clobbered last_count_read. Restore it */ last_count_read = apic_hertz_count; goto gethrtime_again; } if (temp < apic_last_hrtime) { /* return last hrtime if error occurs */ apic_hrtime_error++; temp = apic_last_hrtime; } else apic_last_hrtime = temp; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } /* apic NMI handler */ /*ARGSUSED*/ void apic_nmi_intr(caddr_t arg, struct regs *rp) { if (apic_shutdown_processors) { apic_disable_local_apic(); return; } apic_error |= APIC_ERR_NMI; if (!lock_try(&apic_nmi_lock)) return; apic_num_nmis++; if (apic_kmdb_on_nmi && psm_debugger()) { debug_enter("NMI received: entering kmdb\n"); } else if (apic_panic_on_nmi) { /* Keep panic from entering kmdb. */ nopanicdebug = 1; panic("NMI received\n"); } else { /* * prom_printf is the best shot we have of something which is * problem free from high level/NMI type of interrupts */ prom_printf("NMI received\n"); } lock_clear(&apic_nmi_lock); } processorid_t apic_get_next_processorid(processorid_t cpu_id) { int i; if (cpu_id == -1) return ((processorid_t)0); for (i = cpu_id + 1; i < NCPU; i++) { if (apic_cpu_in_range(i)) return (i); } return ((processorid_t)-1); } int apic_cpu_add(psm_cpu_request_t *reqp) { int i, rv = 0; ulong_t iflag; boolean_t first = B_TRUE; uchar_t localver = 0; uint32_t localid, procid; processorid_t cpuid = (processorid_t)-1; mach_cpu_add_arg_t *ap; ASSERT(reqp != NULL); reqp->req.cpu_add.cpuid = (processorid_t)-1; /* Check whether CPU hotplug is supported. */ if (!plat_dr_support_cpu() || apic_max_nproc == -1) { return (ENOTSUP); } ap = (mach_cpu_add_arg_t *)reqp->req.cpu_add.argp; switch (ap->type) { case MACH_CPU_ARG_LOCAL_APIC: localid = ap->arg.apic.apic_id; procid = ap->arg.apic.proc_id; if (localid >= 255 || procid > 255) { cmn_err(CE_WARN, "!apic: apicid(%u) or procid(%u) is invalid.", localid, procid); return (EINVAL); } break; case MACH_CPU_ARG_LOCAL_X2APIC: localid = ap->arg.apic.apic_id; procid = ap->arg.apic.proc_id; if (localid >= UINT32_MAX) { cmn_err(CE_WARN, "!apic: x2apicid(%u) is invalid.", localid); return (EINVAL); } else if (localid >= 255 && apic_mode == LOCAL_APIC) { cmn_err(CE_WARN, "!apic: system is in APIC mode, " "can't support x2APIC processor."); return (ENOTSUP); } break; default: cmn_err(CE_WARN, "!apic: unknown argument type %d to apic_cpu_add().", ap->type); return (EINVAL); } /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); /* Check whether local APIC id already exists. */ for (i = 0; i < apic_nproc; i++) { if (!CPU_IN_SET(apic_cpumask, i)) continue; if (apic_cpus[i].aci_local_id == localid) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: local apic id %u already exists.", localid); return (EEXIST); } else if (apic_cpus[i].aci_processor_id == procid) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: processor id %u already exists.", (int)procid); return (EEXIST); } /* * There's no local APIC version number available in MADT table, * so assume that all CPUs are homogeneous and use local APIC * version number of the first existing CPU. */ if (first) { first = B_FALSE; localver = apic_cpus[i].aci_local_ver; } } ASSERT(first == B_FALSE); /* * Try to assign the same cpuid if APIC id exists in the dirty cache. */ for (i = 0; i < apic_max_nproc; i++) { if (CPU_IN_SET(apic_cpumask, i)) { ASSERT((apic_cpus[i].aci_status & APIC_CPU_FREE) == 0); continue; } ASSERT(apic_cpus[i].aci_status & APIC_CPU_FREE); if ((apic_cpus[i].aci_status & APIC_CPU_DIRTY) && apic_cpus[i].aci_local_id == localid && apic_cpus[i].aci_processor_id == procid) { cpuid = i; break; } } /* Avoid the dirty cache and allocate fresh slot if possible. */ if (cpuid == (processorid_t)-1) { for (i = 0; i < apic_max_nproc; i++) { if ((apic_cpus[i].aci_status & APIC_CPU_FREE) && (apic_cpus[i].aci_status & APIC_CPU_DIRTY) == 0) { cpuid = i; break; } } } /* Try to find any free slot as last resort. */ if (cpuid == (processorid_t)-1) { for (i = 0; i < apic_max_nproc; i++) { if (apic_cpus[i].aci_status & APIC_CPU_FREE) { cpuid = i; break; } } } if (cpuid == (processorid_t)-1) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_NOTE, "!apic: failed to allocate cpu id for processor %u.", procid); rv = EAGAIN; } else if (ACPI_FAILURE(acpica_map_cpu(cpuid, procid))) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_NOTE, "!apic: failed to build mapping for processor %u.", procid); rv = EBUSY; } else { ASSERT(cpuid >= 0 && cpuid < NCPU); ASSERT(cpuid < apic_max_nproc && cpuid < max_ncpus); bzero(&apic_cpus[cpuid], sizeof (apic_cpus[0])); apic_cpus[cpuid].aci_processor_id = procid; apic_cpus[cpuid].aci_local_id = localid; apic_cpus[cpuid].aci_local_ver = localver; CPUSET_ATOMIC_ADD(apic_cpumask, cpuid); if (cpuid >= apic_nproc) { apic_nproc = cpuid + 1; } lock_clear(&apic_ioapic_lock); intr_restore(iflag); reqp->req.cpu_add.cpuid = cpuid; } return (rv); } int apic_cpu_remove(psm_cpu_request_t *reqp) { int i; ulong_t iflag; processorid_t cpuid; /* Check whether CPU hotplug is supported. */ if (!plat_dr_support_cpu() || apic_max_nproc == -1) { return (ENOTSUP); } cpuid = reqp->req.cpu_remove.cpuid; /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); if (!apic_cpu_in_range(cpuid)) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: cpuid %d doesn't exist in apic_cpus array.", cpuid); return (ENODEV); } ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_FREE) == 0); if (ACPI_FAILURE(acpica_unmap_cpu(cpuid))) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (ENOENT); } if (cpuid == apic_nproc - 1) { /* * We are removing the highest numbered cpuid so we need to * find the next highest cpuid as the new value for apic_nproc. */ for (i = apic_nproc; i > 0; i--) { if (CPU_IN_SET(apic_cpumask, i - 1)) { apic_nproc = i; break; } } /* at least one CPU left */ ASSERT(i > 0); } CPUSET_ATOMIC_DEL(apic_cpumask, cpuid); /* mark slot as free and keep it in the dirty cache */ apic_cpus[cpuid].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (0); } /* * Return the number of ticks the APIC decrements in SF nanoseconds. * The fixed-frequency PIT (aka 8254) is used for the measurement. */ static uint64_t apic_calibrate_impl() { uint8_t pit_tick_lo; uint16_t pit_tick, target_pit_tick, pit_ticks_adj; uint32_t pit_ticks; uint32_t start_apic_tick, end_apic_tick, apic_ticks; ulong_t iflag; apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); iflag = intr_clear(); do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick < APIC_TIME_MIN || pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); /* * Wait for the PIT to decrement by 5 ticks to ensure * we didn't start in the middle of a tick. * Compare with 0x10 for the wrap around case. */ target_pit_tick = pit_tick - 5; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); start_apic_tick = apic_reg_ops->apic_read(APIC_CURR_COUNT); /* * Wait for the PIT to decrement by APIC_TIME_COUNT ticks */ target_pit_tick = pit_tick - APIC_TIME_COUNT; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); end_apic_tick = apic_reg_ops->apic_read(APIC_CURR_COUNT); intr_restore(iflag); apic_ticks = start_apic_tick - end_apic_tick; /* The PIT might have decremented by more ticks than planned */ pit_ticks_adj = target_pit_tick - pit_tick; /* total number of PIT ticks corresponding to apic_ticks */ pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; /* * Determine the number of nanoseconds per APIC clock tick * and then determine how many APIC ticks to interrupt at the * desired frequency * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) * apic_ticks_per_SFns = * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) */ return ((SF * apic_ticks * PIT_HZ) / ((uint64_t)pit_ticks * NANOSEC)); } /* * It was found empirically that 5 measurements seem sufficient to give a good * accuracy. Most spurious measurements are higher than the target value thus * we eliminate up to 2/5 spurious measurements. */ #define APIC_CALIBRATE_MEASUREMENTS 5 #define APIC_CALIBRATE_PERCENT_OFF_WARNING 10 /* * Return the number of ticks the APIC decrements in SF nanoseconds. * Several measurements are taken to filter out outliers. */ uint64_t apic_calibrate() { uint64_t measurements[APIC_CALIBRATE_MEASUREMENTS]; int median_idx; uint64_t median; /* * When running under a virtual machine, the emulated PIT and APIC * counters do not always return the right values and can roll over. * Those spurious measurements are relatively rare but could * significantly affect the calibration. * Therefore we take several measurements and then keep the median. * The median is preferred to the average here as we only want to * discard outliers. */ for (int i = 0; i < APIC_CALIBRATE_MEASUREMENTS; i++) measurements[i] = apic_calibrate_impl(); /* * sort results and retrieve median. */ for (int i = 0; i < APIC_CALIBRATE_MEASUREMENTS; i++) { for (int j = i + 1; j < APIC_CALIBRATE_MEASUREMENTS; j++) { if (measurements[j] < measurements[i]) { uint64_t tmp = measurements[i]; measurements[i] = measurements[j]; measurements[j] = tmp; } } } median_idx = APIC_CALIBRATE_MEASUREMENTS / 2; median = measurements[median_idx]; #if (APIC_CALIBRATE_MEASUREMENTS >= 3) /* * Check that measurements are consistent. Post a warning * if the three middle values are not close to each other. */ uint64_t delta_warn = median * APIC_CALIBRATE_PERCENT_OFF_WARNING / 100; if ((median - measurements[median_idx - 1]) > delta_warn || (measurements[median_idx + 1] - median) > delta_warn) { cmn_err(CE_WARN, "apic_calibrate measurements lack " "precision: %llu, %llu, %llu.", (u_longlong_t)measurements[median_idx - 1], (u_longlong_t)median, (u_longlong_t)measurements[median_idx + 1]); } #endif return (median); } /* * Initialise the APIC timer on the local APIC of CPU 0 to the desired * frequency. Note at this stage in the boot sequence, the boot processor * is the only active processor. * hertz value of 0 indicates a one-shot mode request. In this case * the function returns the resolution (in nanoseconds) for the hardware * timer interrupt. If one-shot mode capability is not available, * the return value will be 0. apic_enable_oneshot is a global switch * for disabling the functionality. * A non-zero positive value for hertz indicates a periodic mode request. * In this case the hardware will be programmed to generate clock interrupts * at hertz frequency and returns the resolution of interrupts in * nanosecond. */ int apic_clkinit(int hertz) { int ret; apic_int_busy_mark = (apic_int_busy_mark * apic_sample_factor_redistribution) / 100; apic_int_free_mark = (apic_int_free_mark * apic_sample_factor_redistribution) / 100; apic_diff_for_redistribution = (apic_diff_for_redistribution * apic_sample_factor_redistribution) / 100; ret = apic_timer_init(hertz); return (ret); } /* * apic_preshutdown: * Called early in shutdown whilst we can still access filesystems to do * things like loading modules which will be required to complete shutdown * after filesystems are all unmounted. */ void apic_preshutdown(int cmd, int fcn) { APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", cmd, fcn, apic_poweroff_method, apic_enable_acpi)); } void apic_shutdown(int cmd, int fcn) { int restarts, attempts; int i; uchar_t byte; ulong_t iflag; hpet_acpi_fini(); /* Send NMI to all CPUs except self to do per processor shutdown */ iflag = intr_clear(); #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ apic_shutdown_processors = 1; apic_reg_ops->apic_write(APIC_INT_CMD1, AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); /* restore cmos shutdown byte before reboot */ if (apic_cmos_ssb_set) { outb(CMOS_ADDR, SSB); outb(CMOS_DATA, 0); } ioapic_disable_redirection(); /* disable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); } apic_disable_local_apic(); intr_restore(iflag); /* remainder of function is for shutdown cases only */ if (cmd != A_SHUTDOWN) return; /* * Switch system back into Legacy-Mode if using ACPI and * not powering-off. Some BIOSes need to remain in ACPI-mode * for power-off to succeed (Dell Dimension 4600) * Do not disable ACPI while doing fastreboot */ if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) (void) AcpiDisable(); if (fcn == AD_FASTREBOOT) { apic_reg_ops->apic_write(APIC_INT_CMD1, AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); } /* remainder of function is for shutdown+poweroff case only */ if (fcn != AD_POWEROFF) return; switch (apic_poweroff_method) { case APIC_POWEROFF_VIA_RTC: /* select the extended NVRAM bank in the RTC */ outb(CMOS_ADDR, RTC_REGA); byte = inb(CMOS_DATA); outb(CMOS_DATA, (byte | EXT_BANK)); outb(CMOS_ADDR, PFR_REG); /* for Predator must toggle the PAB bit */ byte = inb(CMOS_DATA); /* * clear power active bar, wakeup alarm and * kickstart */ byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); outb(CMOS_DATA, byte); /* delay before next write */ drv_usecwait(1000); /* for S40 the following would suffice */ byte = inb(CMOS_DATA); /* power active bar control bit */ byte |= PAB_CBIT; outb(CMOS_DATA, byte); break; case APIC_POWEROFF_VIA_ASPEN_BMC: restarts = 0; restart_aspen_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); i = 0; for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); i++) { attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); } break; case APIC_POWEROFF_VIA_SITKA_BMC: restarts = 0; restart_sitka_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_STATE_MASK; if ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)); outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); i = 0; for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); i++) { attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_IBF_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while (byte != 0); outb(sitka_bmc[i].port, sitka_bmc[i].data); } break; case APIC_POWEROFF_NONE: /* If no APIC direct method, we will try using ACPI */ if (apic_enable_acpi) { if (acpi_poweroff() == 1) return; } else return; break; } /* * Wait a limited time here for power to go off. * If the power does not go off, then there was a * problem and we should continue to the halt which * prints a message for the user to press a key to * reboot. */ drv_usecwait(7000000); /* wait seven seconds */ } cyclic_id_t apic_cyclic_id; /* * The following functions are in the platform specific file so that they * can be different functions depending on whether we are running on * bare metal or a hypervisor. */ /* * map an apic for memory-mapped access */ uint32_t * mapin_apic(uint32_t addr, size_t len, int flags) { return ((void *)psm_map_phys(addr, len, flags)); } uint32_t * mapin_ioapic(uint32_t addr, size_t len, int flags) { return (mapin_apic(addr, len, flags)); } /* * unmap an apic */ void mapout_apic(caddr_t addr, size_t len) { psm_unmap_phys(addr, len); } void mapout_ioapic(caddr_t addr, size_t len) { mapout_apic(addr, len); } uint32_t ioapic_read(int ioapic_ix, uint32_t reg) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_REG] = reg; return (ioapic[APIC_IO_DATA]); } void ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_REG] = reg; ioapic[APIC_IO_DATA] = value; } void ioapic_write_eoi(int ioapic_ix, uint32_t value) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_EOI] = value; } /* * Round-robin algorithm to find the next CPU with interrupts enabled. * It can't share the same static variable apic_next_bind_cpu with * apic_get_next_bind_cpu(), since that will cause all interrupts to be * bound to CPU1 at boot time. During boot, only CPU0 is online with * interrupts enabled when apic_get_next_bind_cpu() and apic_find_cpu() * are called. However, the pcplusmp driver assumes that there will be * boot_ncpus CPUs configured eventually so it tries to distribute all * interrupts among CPU0 - CPU[boot_ncpus - 1]. Thus to prevent all * interrupts being targetted at CPU1, we need to use a dedicated static * variable for find_next_cpu() instead of sharing apic_next_bind_cpu. */ processorid_t apic_find_cpu(int flag) { int i; static processorid_t acid = 0; /* Find the first CPU with the passed-in flag set */ for (i = 0; i < apic_nproc; i++) { if (++acid >= apic_nproc) { acid = 0; } if (apic_cpu_in_range(acid) && (apic_cpus[acid].aci_status & flag)) { break; } } ASSERT((apic_cpus[acid].aci_status & flag) != 0); return (acid); } void apic_intrmap_init(int apic_mode) { int suppress_brdcst_eoi = 0; /* * Intel Software Developer's Manual 3A, 10.12.7: * * Routing of device interrupts to local APIC units operating in * x2APIC mode requires use of the interrupt-remapping architecture * specified in the Intel Virtualization Technology for Directed * I/O, Revision 1.3. Because of this, BIOS must enumerate support * for and software must enable this interrupt remapping with * Extended Interrupt Mode Enabled before it enabling x2APIC mode in * the local APIC units. * * * In other words, to use the APIC in x2APIC mode, we need interrupt * remapping. Since we don't start up the IOMMU by default, we * won't be able to do any interrupt remapping and therefore have to * use the APIC in traditional 'local APIC' mode with memory mapped * I/O. */ if (psm_vt_ops != NULL) { if (((apic_intrmap_ops_t *)psm_vt_ops)-> apic_intrmap_init(apic_mode) == DDI_SUCCESS) { apic_vt_ops = psm_vt_ops; /* * We leverage the interrupt remapping engine to * suppress broadcast EOI; thus we must send the * directed EOI with the directed-EOI handler. */ if (apic_directed_EOI_supported() == 0) { suppress_brdcst_eoi = 1; } apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi); if (apic_detect_x2apic()) { apic_enable_x2apic(); } if (apic_directed_EOI_supported() == 0) { apic_set_directed_EOI_handler(); } } } } /*ARGSUSED*/ static void apic_record_ioapic_rdt(void *intrmap_private, ioapic_rdt_t *irdt) { irdt->ir_hi <<= APIC_ID_BIT_OFFSET; } /*ARGSUSED*/ static void apic_record_msi(void *intrmap_private, msi_regs_t *mregs) { mregs->mr_addr = MSI_ADDR_HDR | (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | mregs->mr_data; } /* * Functions from apic_introp.c * * Those functions are used by apic_intr_ops(). */ /* * MSI support flag: * reflects whether MSI is supported at APIC level * it can also be patched through /etc/system * * 0 = default value - don't know and need to call apic_check_msi_support() * to find out then set it accordingly * 1 = supported * -1 = not supported */ int apic_support_msi = 0; /* Multiple vector support for MSI-X */ int apic_msix_enable = 1; /* Multiple vector support for MSI */ int apic_multi_msi_enable = 1; /* * Check whether the system supports MSI. * * MSI is required for PCI-E and for PCI versions later than 2.2, so if we find * a PCI-E bus or we find a PCI bus whose version we know is >= 2.2, then we * return PSM_SUCCESS to indicate this system supports MSI. * * (Currently the only way we check whether a given PCI bus supports >= 2.2 is * by detecting if we are running inside the KVM hypervisor, which guarantees * this version number.) */ int apic_check_msi_support() { dev_info_t *cdip; char dev_type[16]; int dev_len; DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n")); /* * check whether the first level children of root_node have * PCI-E or PCI capability. */ for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL; cdip = ddi_get_next_sibling(cdip)) { DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p," " driver: %s, binding: %s, nodename: %s\n", (void *)cdip, ddi_driver_name(cdip), ddi_binding_name(cdip), ddi_node_name(cdip))); dev_len = sizeof (dev_type); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, &dev_len) != DDI_PROP_SUCCESS) continue; if (strcmp(dev_type, "pciex") == 0) return (PSM_SUCCESS); if (strcmp(dev_type, "pci") == 0 && get_hwenv() == HW_KVM) return (PSM_SUCCESS); } /* MSI is not supported on this system */ DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' " "device_type found\n")); return (PSM_FAILURE); } /* * apic_pci_msi_unconfigure: * * This and next two interfaces are copied from pci_intr_lib.c * Do ensure that these two files stay in sync. * These needed to be copied over here to avoid a deadlock situation on * certain mp systems that use MSI interrupts. * * IMPORTANT regards next three interfaces: * i) are called only for MSI/X interrupts. * ii) called with interrupts disabled, and must not block */ void apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) { ushort_t msi_ctrl; int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); ASSERT((handle != NULL) && (cap_ptr != 0)); if (type == DDI_INTR_TYPE_MSI) { msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); msi_ctrl &= (~PCI_MSI_MME_MASK); pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0); if (msi_ctrl & PCI_MSI_64BIT_MASK) { pci_config_put16(handle, cap_ptr + PCI_MSI_64BIT_DATA, 0); pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0); } else { pci_config_put16(handle, cap_ptr + PCI_MSI_32BIT_DATA, 0); } } else if (type == DDI_INTR_TYPE_MSIX) { uintptr_t off; uint32_t mask; ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip); ASSERT(msix_p != NULL); /* Offset into "inum"th entry in the MSI-X table & mask it */ off = (uintptr_t)msix_p->msix_tbl_addr + (inum * PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1)); /* Offset into the "inum"th entry in the MSI-X table */ off = (uintptr_t)msix_p->msix_tbl_addr + (inum * PCI_MSIX_VECTOR_SIZE); /* Reset the "data" and "addr" bits */ ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0); ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0); } } /* * apic_pci_msi_disable_mode: */ void apic_pci_msi_disable_mode(dev_info_t *rdip, int type) { ushort_t msi_ctrl; int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); ASSERT((handle != NULL) && (cap_ptr != 0)); if (type == DDI_INTR_TYPE_MSI) { msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); if (!(msi_ctrl & PCI_MSI_ENABLE_BIT)) return; msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */ pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); } else if (type == DDI_INTR_TYPE_MSIX) { msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); if (msi_ctrl & PCI_MSIX_ENABLE_BIT) { msi_ctrl &= ~PCI_MSIX_ENABLE_BIT; pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, msi_ctrl); } } } uint32_t apic_get_localapicid(uint32_t cpuid) { ASSERT(cpuid < apic_nproc && apic_cpus != NULL); return (apic_cpus[cpuid].aci_local_id); } uchar_t apic_get_ioapicid(uchar_t ioapicindex) { ASSERT(ioapicindex < MAX_IO_APIC); return (apic_io_id[ioapicindex]); }