/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. */ /* * PSMI 1.1 extensions are supported only in 2.6 and later versions. * PSMI 1.2 extensions are supported only in 2.7 and later versions. * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. * PSMI 1.5 extensions are supported in Solaris Nevada. * PSMI 1.6 extensions are supported in Solaris Nevada. * PSMI 1.7 extensions are supported in Solaris Nevada. */ #define PSMI_1_7 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Local Function Prototypes */ static void apic_init_intr(); static void apic_nmi_intr(caddr_t arg, struct regs *rp); /* * standard MP entries */ static int apic_probe(); static int apic_clkinit(); static int apic_getclkirq(int ipl); static uint_t apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj); static hrtime_t apic_gettime(); static hrtime_t apic_gethrtime(); static void apic_init(); static void apic_picinit(void); static int apic_cpu_start(processorid_t cpuid, caddr_t ctx); static int apic_cpu_stop(processorid_t cpuid, caddr_t ctx); static int apic_cpu_add(psm_cpu_request_t *reqp); static int apic_cpu_remove(psm_cpu_request_t *reqp); static int apic_cpu_ops(psm_cpu_request_t *reqp); static int apic_post_cpu_start(void); static void apic_send_ipi(int cpun, int ipl); static void apic_set_idlecpu(processorid_t cpun); static void apic_unset_idlecpu(processorid_t cpun); static int apic_intr_enter(int ipl, int *vect); static void apic_setspl(int ipl); static void x2apic_setspl(int ipl); static void apic_switch_ipi_callback(boolean_t enter); static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); static void apic_shutdown(int cmd, int fcn); static void apic_preshutdown(int cmd, int fcn); static int apic_disable_intr(processorid_t cpun); static void apic_enable_intr(processorid_t cpun); static processorid_t apic_get_next_processorid(processorid_t cpun); static int apic_get_ipivect(int ipl, int type); static void apic_timer_reprogram(hrtime_t time); static void apic_timer_enable(void); static void apic_timer_disable(void); static void apic_post_cyclic_setup(void *arg); static void apic_intrmap_init(int apic_mode); static void apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt); static void apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs); static int apic_oneshot = 0; int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ /* Now the ones for Dynamic Interrupt distribution */ int apic_enable_dynamic_migration = 0; extern int apic_have_32bit_cr8; /* * These variables are frequently accessed in apic_intr_enter(), * apic_intr_exit and apic_setspl, so group them together */ volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ int apic_setspl_delay = 1; /* apic_setspl - delay enable */ int apic_clkvect; /* vector at which error interrupts come in */ int apic_errvect; int apic_enable_error_intr = 1; int apic_error_display_delay = 100; /* vector at which performance counter overflow interrupts come in */ int apic_cpcovf_vect; int apic_enable_cpcovf_intr = 1; /* maximum loop count when sending Start IPIs. */ int apic_sipi_max_loop_count = 0x1000; /* vector at which CMCI interrupts come in */ int apic_cmci_vect; extern int cmi_enable_cmci; extern void cmi_cmci_trap(void); static kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ static int cmci_cpu_setup_registered; /* number of CPUs in power-on transition state */ static int apic_poweron_cnt = 0; static lock_t apic_mode_switch_lock; /* * The following vector assignments influence the value of ipltopri and * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program * idle to 0 and IPL 0 to 0xf to differentiate idle in case * we care to do so in future. Note some IPLs which are rarely used * will share the vector ranges and heavily used IPLs (5 and 6) have * a wide range. * * This array is used to initialize apic_ipls[] (in apic_init()). * * IPL Vector range. as passed to intr_enter * 0 none. * 1,2,3 0x20-0x2f 0x0-0xf * 4 0x30-0x3f 0x10-0x1f * 5 0x40-0x5f 0x20-0x3f * 6 0x60-0x7f 0x40-0x5f * 7,8,9 0x80-0x8f 0x60-0x6f * 10 0x90-0x9f 0x70-0x7f * 11 0xa0-0xaf 0x80-0x8f * ... ... * 15 0xe0-0xef 0xc0-0xcf * 15 0xf0-0xff 0xd0-0xdf */ uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 }; /* * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] * NOTE that this is vector as passed into intr_enter which is * programmed vector - 0x20 (APIC_BASE_VECT) */ uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ /* The taskpri to be programmed into apic to mask given ipl */ #if defined(__amd64) uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ #endif /* * Correlation of the hardware vector to the IPL in use, initialized * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate * to the IPLs in apic_vectortoipl on some systems that share interrupt lines * connected to errata-stricken IOAPICs */ uchar_t apic_ipls[APIC_AVAIL_VECTOR]; /* * Patchable global variables. */ int apic_forceload = 0; int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ /* 1 - use gettime() for performance */ int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ int apic_panic_on_nmi = 0; int apic_panic_on_apic_error = 0; int apic_verbose = 0; /* minimum number of timer ticks to program to */ int apic_min_timer_ticks = 1; /* * Local static data */ static struct psm_ops apic_ops = { apic_probe, apic_init, apic_picinit, apic_intr_enter, apic_intr_exit, apic_setspl, apic_addspl, apic_delspl, apic_disable_intr, apic_enable_intr, (int (*)(int))NULL, /* psm_softlvl_to_irq */ (void (*)(int))NULL, /* psm_set_softintr */ apic_set_idlecpu, apic_unset_idlecpu, apic_clkinit, apic_getclkirq, (void (*)(void))NULL, /* psm_hrtimeinit */ apic_gethrtime, apic_get_next_processorid, apic_cpu_start, apic_post_cpu_start, apic_shutdown, apic_get_ipivect, apic_send_ipi, (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ (void (*)(int, char *))NULL, /* psm_notify_error */ (void (*)(int))NULL, /* psm_notify_func */ apic_timer_reprogram, apic_timer_enable, apic_timer_disable, apic_post_cyclic_setup, apic_preshutdown, apic_intr_ops, /* Advanced DDI Interrupt framework */ apic_state, /* save, restore apic state for S3 */ apic_cpu_ops, /* CPU control interface. */ }; static struct psm_info apic_psm_info = { PSM_INFO_VER01_7, /* version */ PSM_OWN_EXCLUSIVE, /* ownership */ (struct psm_ops *)&apic_ops, /* operation */ APIC_PCPLUSMP_NAME, /* machine name */ "pcplusmp v1.4 compatible", }; static void *apic_hdlp; #ifdef DEBUG int apic_debug = 0; int apic_restrict_vector = 0; int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; int apic_debug_msgbufindex = 0; #endif /* DEBUG */ apic_cpus_info_t *apic_cpus; cpuset_t apic_cpumask; uint_t apic_picinit_called; /* Flag to indicate that we need to shut down all processors */ static uint_t apic_shutdown_processors; uint_t apic_nsec_per_intr = 0; /* * apic_let_idle_redistribute can have the following values: * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. * apic_redistribute_lock prevents multiple idle cpus from redistributing */ int apic_num_idle_redistributions = 0; static int apic_let_idle_redistribute = 0; static uint_t apic_nticks = 0; static uint_t apic_skipped_redistribute = 0; /* to gather intr data and redistribute */ static void apic_redistribute_compute(void); static uint_t last_count_read = 0; static lock_t apic_gethrtime_lock; volatile int apic_hrtime_stamp = 0; volatile hrtime_t apic_nsec_since_boot = 0; static uint_t apic_hertz_count; uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ static hrtime_t apic_nsec_max; static hrtime_t apic_last_hrtime = 0; int apic_hrtime_error = 0; int apic_remote_hrterr = 0; int apic_num_nmis = 0; int apic_apic_error = 0; int apic_num_apic_errors = 0; int apic_num_cksum_errors = 0; int apic_error = 0; static int apic_cmos_ssb_set = 0; /* use to make sure only one cpu handles the nmi */ static lock_t apic_nmi_lock; /* use to make sure only one cpu handles the error interrupt */ static lock_t apic_error_lock; static struct { uchar_t cntl; uchar_t data; } aspen_bmc[] = { { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; static struct { int port; uchar_t data; } sitka_bmc[] = { { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; /* Patchable global variables. */ int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ /* default apic ops without interrupt remapping */ static apic_intrmap_ops_t apic_nointrmap_ops = { (int (*)(int))return_instr, (void (*)(int))return_instr, (void (*)(apic_irq_t *))return_instr, (void (*)(apic_irq_t *, void *))return_instr, (void (*)(apic_irq_t *))return_instr, apic_record_ioapic_rdt, apic_record_msi, }; apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops; /* * This is the loadable module wrapper */ int _init(void) { if (apic_coarse_hrtime) apic_ops.psm_gethrtime = &apic_gettime; return (psm_mod_init(&apic_hdlp, &apic_psm_info)); } int _fini(void) { return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); } int _info(struct modinfo *modinfop) { return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); } static int apic_probe() { return (apic_probe_common(apic_psm_info.p_mach_idstring)); } void apic_init() { int i; int j = 1; apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) /* get to highest vector at the same ipl */ continue; for (; j <= apic_vectortoipl[i]; j++) { apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; } } for (; j < MAXIPL + 1; j++) /* fill up any empty ipltopri slots */ apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; apic_init_common(); #if defined(__amd64) /* * Make cpu-specific interrupt info point to cr8pri vector */ for (i = 0; i <= MAXIPL; i++) apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; CPU->cpu_pri_data = apic_cr8pri; #else if (cpuid_have_cr8access(CPU)) apic_have_32bit_cr8 = 1; #endif /* __amd64 */ } /* * handler for APIC Error interrupt. Just print a warning and continue */ static int apic_error_intr() { uint_t error0, error1, error; uint_t i; /* * We need to write before read as per 7.4.17 of system prog manual. * We do both and or the results to be safe */ error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); error = error0 | error1; /* * Clear the APIC error status (do this on all cpus that enter here) * (two writes are required due to the semantics of accessing the * error status register.) */ apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); /* * Prevent more than 1 CPU from handling error interrupt causing * double printing (interleave of characters from multiple * CPU's when using prom_printf) */ if (lock_try(&apic_error_lock) == 0) return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); if (error) { #if DEBUG if (apic_debug) debug_enter("pcplusmp: APIC Error interrupt received"); #endif /* DEBUG */ if (apic_panic_on_apic_error) cmn_err(CE_PANIC, "APIC Error interrupt on CPU %d. Status = %x\n", psm_get_cpu_id(), error); else { if ((error & ~APIC_CS_ERRORS) == 0) { /* cksum error only */ apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; apic_num_cksum_errors++; } else { /* * prom_printf is the best shot we have of * something which is problem free from * high level/NMI type of interrupts */ prom_printf("APIC Error interrupt on CPU %d. " "Status 0 = %x, Status 1 = %x\n", psm_get_cpu_id(), error0, error1); apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; for (i = 0; i < apic_error_display_delay; i++) { tenmicrosec(); } /* * provide more delay next time limited to * roughly 1 clock tick time */ if (apic_error_display_delay < 500) apic_error_display_delay *= 2; } } lock_clear(&apic_error_lock); return (DDI_INTR_CLAIMED); } else { lock_clear(&apic_error_lock); return (DDI_INTR_UNCLAIMED); } /* NOTREACHED */ } /* * Turn off the mask bit in the performance counter Local Vector Table entry. */ static void apic_cpcovf_mask_clear(void) { apic_reg_ops->apic_write(APIC_PCINT_VECT, (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); } /*ARGSUSED*/ static int apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); return (0); } /*ARGSUSED*/ static int apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); return (0); } /*ARGSUSED*/ static int cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) { cpuset_t cpu_set; CPUSET_ONLY(cpu_set, cpuid); switch (what) { case CPU_ON: xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), (xc_func_t)apic_cmci_enable); break; case CPU_OFF: xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), (xc_func_t)apic_cmci_disable); break; default: break; } return (0); } static void apic_init_intr() { processorid_t cpun = psm_get_cpu_id(); uint_t nlvt; uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); if (apic_mode == LOCAL_APIC) { /* * We are running APIC in MMIO mode. */ if (apic_flat_model) { apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL); } else { apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL); } apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun); } if (apic_directed_EOI_supported()) { /* * Setting the 12th bit in the Spurious Interrupt Vector * Register suppresses broadcast EOIs generated by the local * APIC. The suppression of broadcast EOIs happens only when * interrupts are level-triggered. */ svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; } /* need to enable APIC before unmasking NMI */ apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); /* * Presence of an invalid vector with delivery mode AV_FIXED can * cause an error interrupt, even if the entry is masked...so * write a valid vector to LVT entries along with the mask bit */ /* All APICs have timer and LINT0/1 */ apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ /* * On integrated APICs, the number of LVT entries is * 'Max LVT entry' + 1; on 82489DX's (non-integrated * APICs), nlvt is "3" (LINT0, LINT1, and timer) */ if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { nlvt = 3; } else { nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 0xFF) + 1; } if (nlvt >= 5) { /* Enable performance counter overflow interrupt */ if ((x86_feature & X86_MSR) != X86_MSR) apic_enable_cpcovf_intr = 0; if (apic_enable_cpcovf_intr) { if (apic_cpcovf_vect == 0) { int ipl = APIC_PCINT_IPL; int irq = apic_get_ipivect(ipl, -1); ASSERT(irq != -1); apic_cpcovf_vect = apic_irq_table[irq]->airq_vector; ASSERT(apic_cpcovf_vect); (void) add_avintr(NULL, ipl, (avfunc)kcpc_hw_overflow_intr, "apic pcint", irq, NULL, NULL, NULL, NULL); kcpc_hw_overflow_intr_installed = 1; kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear; } apic_reg_ops->apic_write(APIC_PCINT_VECT, apic_cpcovf_vect); } } if (nlvt >= 6) { /* Only mask TM intr if the BIOS apparently doesn't use it */ uint32_t lvtval; lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); if (((lvtval & AV_MASK) == AV_MASK) || ((lvtval & AV_DELIV_MODE) != AV_SMI)) { apic_reg_ops->apic_write(APIC_THERM_VECT, AV_MASK|APIC_RESV_IRQ); } } /* Enable error interrupt */ if (nlvt >= 4 && apic_enable_error_intr) { if (apic_errvect == 0) { int ipl = 0xf; /* get highest priority intr */ int irq = apic_get_ipivect(ipl, -1); ASSERT(irq != -1); apic_errvect = apic_irq_table[irq]->airq_vector; ASSERT(apic_errvect); /* * Not PSMI compliant, but we are going to merge * with ON anyway */ (void) add_avintr((void *)NULL, ipl, (avfunc)apic_error_intr, "apic error intr", irq, NULL, NULL, NULL, NULL); } apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); } /* Enable CMCI interrupt */ if (cmi_enable_cmci) { mutex_enter(&cmci_cpu_setup_lock); if (cmci_cpu_setup_registered == 0) { mutex_enter(&cpu_lock); register_cpu_setup_func(cmci_cpu_setup, NULL); mutex_exit(&cpu_lock); cmci_cpu_setup_registered = 1; } mutex_exit(&cmci_cpu_setup_lock); if (apic_cmci_vect == 0) { int ipl = 0x2; int irq = apic_get_ipivect(ipl, -1); ASSERT(irq != -1); apic_cmci_vect = apic_irq_table[irq]->airq_vector; ASSERT(apic_cmci_vect); (void) add_avintr(NULL, ipl, (avfunc)cmi_cmci_trap, "apic cmci intr", irq, NULL, NULL, NULL, NULL); } apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); } } static void apic_disable_local_apic() { apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); /* local intr reg 0 */ apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); /* disable NMI */ apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); /* and error interrupt */ apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); /* and perf counter intr */ apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); } static void apic_picinit(void) { int i, j; uint_t isr; /* * Initialize and enable interrupt remapping before apic * hardware initialization */ apic_intrmap_init(apic_mode); /* * On UniSys Model 6520, the BIOS leaves vector 0x20 isr * bit on without clearing it with EOI. Since softint * uses vector 0x20 to interrupt itself, so softint will * not work on this machine. In order to fix this problem * a check is made to verify all the isr bits are clear. * If not, EOIs are issued to clear the bits. */ for (i = 7; i >= 1; i--) { isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); if (isr != 0) for (j = 0; ((j < 32) && (isr != 0)); j++) if (isr & (1 << j)) { apic_reg_ops->apic_write( APIC_EOI_REG, 0); isr &= ~(1 << j); apic_error |= APIC_ERR_BOOT_EOI; } } /* set a flag so we know we have run apic_picinit() */ apic_picinit_called = 1; LOCK_INIT_CLEAR(&apic_gethrtime_lock); LOCK_INIT_CLEAR(&apic_ioapic_lock); LOCK_INIT_CLEAR(&apic_error_lock); LOCK_INIT_CLEAR(&apic_mode_switch_lock); picsetup(); /* initialise the 8259 */ /* add nmi handler - least priority nmi handler */ LOCK_INIT_CLEAR(&apic_nmi_lock); if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, "pcplusmp NMI handler", (caddr_t)NULL)) cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); /* * Check for directed-EOI capability in the local APIC. */ if (apic_directed_EOI_supported() == 1) { apic_set_directed_EOI_handler(); } apic_init_intr(); /* enable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); } ioapic_init_intr(IOAPIC_MASK); } static void apic_cpu_send_SIPI(processorid_t cpun, boolean_t start) { int loop_count; uint32_t vector; uint_t apicid; ulong_t iflag; apicid = apic_cpus[cpun].aci_local_id; /* * Interrupts on current CPU will be disabled during the * steps in order to avoid unwanted side effects from * executing interrupt handlers on a problematic BIOS. */ iflag = intr_clear(); if (start) { outb(CMOS_ADDR, SSB); outb(CMOS_DATA, BIOS_SHUTDOWN); } /* * According to X2APIC specification in section '2.3.5.1' of * Interrupt Command Register Semantics, the semantics of * programming the Interrupt Command Register to dispatch an interrupt * is simplified. A single MSR write to the 64-bit ICR is required * for dispatching an interrupt. Specifically, with the 64-bit MSR * interface to ICR, system software is not required to check the * status of the delivery status bit prior to writing to the ICR * to send an IPI. With the removal of the Delivery Status bit, * system software no longer has a reason to read the ICR. It remains * readable only to aid in debugging. */ #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) { APIC_AV_PENDING_SET(); } #endif /* DEBUG */ /* for integrated - make sure there is one INIT IPI in buffer */ /* for external - it will wake up the cpu */ apic_reg_ops->apic_write_int_cmd(apicid, AV_ASSERT | AV_RESET); /* If only 1 CPU is installed, PENDING bit will not go low */ for (loop_count = apic_sipi_max_loop_count; loop_count; loop_count--) { if (apic_mode == LOCAL_APIC && apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) apic_ret(); else break; } apic_reg_ops->apic_write_int_cmd(apicid, AV_DEASSERT | AV_RESET); drv_usecwait(20000); /* 20 milli sec */ if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { /* integrated apic */ vector = (rm_platter_pa >> MMU_PAGESHIFT) & (APIC_VECTOR_MASK | APIC_IPL_MASK); /* to offset the INIT IPI queue up in the buffer */ apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); drv_usecwait(200); /* 20 micro sec */ /* * send the second SIPI (Startup IPI) as recommended by Intel * software development manual. */ apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); drv_usecwait(200); /* 20 micro sec */ } intr_restore(iflag); } /*ARGSUSED1*/ static int apic_cpu_start(processorid_t cpun, caddr_t arg) { ASSERT(MUTEX_HELD(&cpu_lock)); if (!apic_cpu_in_range(cpun)) { return (EINVAL); } /* * Switch to apic_common_send_ipi for safety during starting other CPUs. */ if (apic_mode == LOCAL_X2APIC) { apic_switch_ipi_callback(B_TRUE); } apic_cmos_ssb_set = 1; apic_cpu_send_SIPI(cpun, B_TRUE); return (0); } /* * Put CPU into halted state with interrupts disabled. */ /*ARGSUSED1*/ static int apic_cpu_stop(processorid_t cpun, caddr_t arg) { int rc; cpu_t *cp; extern cpuset_t cpu_ready_set; extern void cpu_idle_intercept_cpu(cpu_t *cp); ASSERT(MUTEX_HELD(&cpu_lock)); if (!apic_cpu_in_range(cpun)) { return (EINVAL); } if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { return (ENOTSUP); } cp = cpu_get(cpun); ASSERT(cp != NULL); ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0); ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0); ASSERT((cp->cpu_flags & CPU_ENABLE) == 0); /* Clear CPU_READY flag to disable cross calls. */ cp->cpu_flags &= ~CPU_READY; CPUSET_ATOMIC_DEL(cpu_ready_set, cpun); rc = xc_flush_cpu(cp); if (rc != 0) { CPUSET_ATOMIC_ADD(cpu_ready_set, cpun); cp->cpu_flags |= CPU_READY; return (rc); } /* Intercept target CPU at a safe point before powering it off. */ cpu_idle_intercept_cpu(cp); apic_cpu_send_SIPI(cpun, B_FALSE); cp->cpu_flags &= ~CPU_RUNNING; return (0); } static int apic_cpu_ops(psm_cpu_request_t *reqp) { if (reqp == NULL) { return (EINVAL); } switch (reqp->pcr_cmd) { case PSM_CPU_ADD: return (apic_cpu_add(reqp)); case PSM_CPU_REMOVE: return (apic_cpu_remove(reqp)); case PSM_CPU_STOP: return (apic_cpu_stop(reqp->req.cpu_stop.cpuid, reqp->req.cpu_stop.ctx)); default: return (ENOTSUP); } } #ifdef DEBUG int apic_break_on_cpu = 9; int apic_stretch_interrupts = 0; int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ void apic_break() { } #endif /* DEBUG */ /* * platform_intr_enter * * Called at the beginning of the interrupt service routine to * mask all level equal to and below the interrupt priority * of the interrupting vector. An EOI should be given to * the interrupt controller to enable other HW interrupts. * * Return -1 for spurious interrupts * */ /*ARGSUSED*/ static int apic_intr_enter(int ipl, int *vectorp) { uchar_t vector; int nipl; int irq; ulong_t iflag; apic_cpus_info_t *cpu_infop; /* * The real vector delivered is (*vectorp + 0x20), but our caller * subtracts 0x20 from the vector before passing it to us. * (That's why APIC_BASE_VECT is 0x20.) */ vector = (uchar_t)*vectorp; /* if interrupted by the clock, increment apic_nsec_since_boot */ if (vector == apic_clkvect) { if (!apic_oneshot) { /* NOTE: this is not MT aware */ apic_hrtime_stamp++; apic_nsec_since_boot += apic_nsec_per_intr; apic_hrtime_stamp++; last_count_read = apic_hertz_count; apic_redistribute_compute(); } /* We will avoid all the book keeping overhead for clock */ nipl = apic_ipls[vector]; *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; if (apic_mode == LOCAL_APIC) { #if defined(__amd64) setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); #else if (apic_have_32bit_cr8) setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); else LOCAL_APIC_WRITE_REG(APIC_TASK_REG, (uint32_t)apic_ipltopri[nipl]); #endif LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); } else { X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); X2APIC_WRITE(APIC_EOI_REG, 0); } return (nipl); } cpu_infop = &apic_cpus[psm_get_cpu_id()]; if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { cpu_infop->aci_spur_cnt++; return (APIC_INT_SPURIOUS); } /* Check if the vector we got is really what we need */ if (apic_revector_pending) { /* * Disable interrupts for the duration of * the vector translation to prevent a self-race for * the apic_revector_lock. This cannot be done * in apic_xlate_vector because it is recursive and * we want the vector translation to be atomic with * respect to other (higher-priority) interrupts. */ iflag = intr_clear(); vector = apic_xlate_vector(vector + APIC_BASE_VECT) - APIC_BASE_VECT; intr_restore(iflag); } nipl = apic_ipls[vector]; *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; if (apic_mode == LOCAL_APIC) { #if defined(__amd64) setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); #else if (apic_have_32bit_cr8) setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); else LOCAL_APIC_WRITE_REG(APIC_TASK_REG, (uint32_t)apic_ipltopri[nipl]); #endif } else { X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); } cpu_infop->aci_current[nipl] = (uchar_t)irq; cpu_infop->aci_curipl = (uchar_t)nipl; cpu_infop->aci_ISR_in_progress |= 1 << nipl; /* * apic_level_intr could have been assimilated into the irq struct. * but, having it as a character array is more efficient in terms of * cache usage. So, we leave it as is. */ if (!apic_level_intr[irq]) { if (apic_mode == LOCAL_APIC) { LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); } else { X2APIC_WRITE(APIC_EOI_REG, 0); } } #ifdef DEBUG APIC_DEBUG_BUF_PUT(vector); APIC_DEBUG_BUF_PUT(irq); APIC_DEBUG_BUF_PUT(nipl); APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) drv_usecwait(apic_stretch_interrupts); if (apic_break_on_cpu == psm_get_cpu_id()) apic_break(); #endif /* DEBUG */ return (nipl); } /* * This macro is a common code used by MMIO local apic and X2APIC * local apic. */ #define APIC_INTR_EXIT() \ { \ cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ if (apic_level_intr[irq]) \ apic_reg_ops->apic_send_eoi(irq); \ cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ /* ISR above current pri could not be in progress */ \ cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ } /* * Any changes made to this function must also change X2APIC * version of intr_exit. */ void apic_intr_exit(int prev_ipl, int irq) { apic_cpus_info_t *cpu_infop; #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[prev_ipl]); #else if (apic_have_32bit_cr8) setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT)); else apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; #endif APIC_INTR_EXIT(); } /* * Same as apic_intr_exit() except it uses MSR rather than MMIO * to access local apic registers. */ void x2apic_intr_exit(int prev_ipl, int irq) { apic_cpus_info_t *cpu_infop; X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); APIC_INTR_EXIT(); } intr_exit_fn_t psm_intr_exit_fn(void) { if (apic_mode == LOCAL_X2APIC) return (x2apic_intr_exit); return (apic_intr_exit); } /* * Mask all interrupts below or equal to the given IPL. * Any changes made to this function must also change X2APIC * version of setspl. */ static void apic_setspl(int ipl) { #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[ipl]); #else if (apic_have_32bit_cr8) setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT)); else apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; #endif /* interrupts at ipl above this cannot be in progress */ apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; /* * this is a patch fix for the ALR QSMP P5 machine, so that interrupts * have enough time to come in before the priority is raised again * during the idle() loop. */ if (apic_setspl_delay) (void) apic_reg_ops->apic_get_pri(); } /* * X2APIC version of setspl. * Mask all interrupts below or equal to the given IPL */ static void x2apic_setspl(int ipl) { X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); /* interrupts at ipl above this cannot be in progress */ apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; } /* * generates an interprocessor interrupt to another CPU. Any changes made to * this routine must be accompanied by similar changes to * apic_common_send_ipi(). */ static void apic_send_ipi(int cpun, int ipl) { int vector; ulong_t flag; vector = apic_resv_vector[ipl]; ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); flag = intr_clear(); APIC_AV_PENDING_SET(); apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, vector); intr_restore(flag); } /*ARGSUSED*/ static void apic_set_idlecpu(processorid_t cpun) { } /*ARGSUSED*/ static void apic_unset_idlecpu(processorid_t cpun) { } void apic_ret() { } /* * If apic_coarse_time == 1, then apic_gettime() is used instead of * apic_gethrtime(). This is used for performance instead of accuracy. */ static hrtime_t apic_gettime() { int old_hrtime_stamp; hrtime_t temp; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gettime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); gettime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); temp = apic_nsec_since_boot; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ goto gettime_again; } return (temp); } /* * Here we return the number of nanoseconds since booting. Note every * clock interrupt increments apic_nsec_since_boot by the appropriate * amount. */ static hrtime_t apic_gethrtime() { int curr_timeval, countval, elapsed_ticks; int old_hrtime_stamp, status; hrtime_t temp; uint32_t cpun; ulong_t oflags; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gethrtime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); oflags = intr_clear(); /* prevent migration */ cpun = apic_reg_ops->apic_read(APIC_LID_REG); if (apic_mode == LOCAL_APIC) cpun >>= APIC_ID_BIT_OFFSET; lock_set(&apic_gethrtime_lock); gethrtime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); /* * Check to see which CPU we are on. Note the time is kept on * the local APIC of CPU 0. If on CPU 0, simply read the current * counter. If on another CPU, issue a remote read command to CPU 0. */ if (cpun == apic_cpus[0].aci_local_id) { countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); } else { #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ apic_reg_ops->apic_write_int_cmd( apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) & AV_READ_PENDING) { apic_ret(); } if (status & AV_REMOTE_STATUS) /* 1 = valid */ countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); else { /* 0 = invalid */ apic_remote_hrterr++; /* * return last hrtime right now, will need more * testing if change to retry */ temp = apic_last_hrtime; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } } if (countval > last_count_read) countval = 0; else last_count_read = countval; elapsed_ticks = apic_hertz_count - countval; curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); temp = apic_nsec_since_boot + curr_timeval; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ /* we might have clobbered last_count_read. Restore it */ last_count_read = apic_hertz_count; goto gethrtime_again; } if (temp < apic_last_hrtime) { /* return last hrtime if error occurs */ apic_hrtime_error++; temp = apic_last_hrtime; } else apic_last_hrtime = temp; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } /* apic NMI handler */ /*ARGSUSED*/ static void apic_nmi_intr(caddr_t arg, struct regs *rp) { if (apic_shutdown_processors) { apic_disable_local_apic(); return; } apic_error |= APIC_ERR_NMI; if (!lock_try(&apic_nmi_lock)) return; apic_num_nmis++; if (apic_kmdb_on_nmi && psm_debugger()) { debug_enter("NMI received: entering kmdb\n"); } else if (apic_panic_on_nmi) { /* Keep panic from entering kmdb. */ nopanicdebug = 1; panic("NMI received\n"); } else { /* * prom_printf is the best shot we have of something which is * problem free from high level/NMI type of interrupts */ prom_printf("NMI received\n"); } lock_clear(&apic_nmi_lock); } /*ARGSUSED*/ static int apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) { return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); } static int apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) { return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); } static int apic_post_cpu_start() { int cpun; static int cpus_started = 1; /* We know this CPU + BSP started successfully. */ cpus_started++; /* * On BSP we would have enabled X2APIC, if supported by processor, * in acpi_probe(), but on AP we do it here. * * We enable X2APIC mode only if BSP is running in X2APIC & the * local APIC mode of the current CPU is MMIO (xAPIC). */ if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && apic_local_mode() == LOCAL_APIC) { apic_enable_x2apic(); } /* * Switch back to x2apic IPI sending method for performance when target * CPU has entered x2apic mode. */ if (apic_mode == LOCAL_X2APIC) { apic_switch_ipi_callback(B_FALSE); } splx(ipltospl(LOCK_LEVEL)); apic_init_intr(); /* * since some systems don't enable the internal cache on the non-boot * cpus, so we have to enable them here */ setcr0(getcr0() & ~(CR0_CD | CR0_NW)); #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ /* * We may be booting, or resuming from suspend; aci_status will * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the * APIC_CPU_ONLINE flag here rather than setting aci_status completely. */ cpun = psm_get_cpu_id(); apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); return (PSM_SUCCESS); } processorid_t apic_get_next_processorid(processorid_t cpu_id) { int i; if (cpu_id == -1) return ((processorid_t)0); for (i = cpu_id + 1; i < NCPU; i++) { if (apic_cpu_in_range(i)) return (i); } return ((processorid_t)-1); } static int apic_cpu_add(psm_cpu_request_t *reqp) { int i, rv = 0; ulong_t iflag; boolean_t first = B_TRUE; uchar_t localver; uint32_t localid, procid; processorid_t cpuid = (processorid_t)-1; mach_cpu_add_arg_t *ap; ASSERT(reqp != NULL); reqp->req.cpu_add.cpuid = (processorid_t)-1; /* Check whether CPU hotplug is supported. */ if (!plat_dr_support_cpu() || apic_max_nproc == -1) { return (ENOTSUP); } ap = (mach_cpu_add_arg_t *)reqp->req.cpu_add.argp; switch (ap->type) { case MACH_CPU_ARG_LOCAL_APIC: localid = ap->arg.apic.apic_id; procid = ap->arg.apic.proc_id; if (localid >= 255 || procid > 255) { cmn_err(CE_WARN, "!apic: apicid(%u) or procid(%u) is invalid.", localid, procid); return (EINVAL); } break; case MACH_CPU_ARG_LOCAL_X2APIC: localid = ap->arg.apic.apic_id; procid = ap->arg.apic.proc_id; if (localid >= UINT32_MAX) { cmn_err(CE_WARN, "!apic: x2apicid(%u) is invalid.", localid); return (EINVAL); } else if (localid >= 255 && apic_mode == LOCAL_APIC) { cmn_err(CE_WARN, "!apic: system is in APIC mode, " "can't support x2APIC processor."); return (ENOTSUP); } break; default: cmn_err(CE_WARN, "!apic: unknown argument type %d to apic_cpu_add().", ap->type); return (EINVAL); } /* Use apic_ioapic_lock to sync with apic_find_next_cpu_intr. */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); /* Check whether local APIC id already exists. */ for (i = 0; i < apic_nproc; i++) { if (!CPU_IN_SET(apic_cpumask, i)) continue; if (apic_cpus[i].aci_local_id == localid) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: local apic id %u already exists.", localid); return (EEXIST); } else if (apic_cpus[i].aci_processor_id == procid) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: processor id %u already exists.", (int)procid); return (EEXIST); } /* * There's no local APIC version number available in MADT table, * so assume that all CPUs are homogeneous and use local APIC * version number of the first existing CPU. */ if (first) { first = B_FALSE; localver = apic_cpus[i].aci_local_ver; } } ASSERT(first == B_FALSE); /* * Try to assign the same cpuid if APIC id exists in the dirty cache. */ for (i = 0; i < apic_max_nproc; i++) { if (CPU_IN_SET(apic_cpumask, i)) { ASSERT((apic_cpus[i].aci_status & APIC_CPU_FREE) == 0); continue; } ASSERT(apic_cpus[i].aci_status & APIC_CPU_FREE); if ((apic_cpus[i].aci_status & APIC_CPU_DIRTY) && apic_cpus[i].aci_local_id == localid && apic_cpus[i].aci_processor_id == procid) { cpuid = i; break; } } /* Avoid the dirty cache and allocate fresh slot if possible. */ if (cpuid == (processorid_t)-1) { for (i = 0; i < apic_max_nproc; i++) { if ((apic_cpus[i].aci_status & APIC_CPU_FREE) && (apic_cpus[i].aci_status & APIC_CPU_DIRTY) == 0) { cpuid = i; break; } } } /* Try to find any free slot as last resort. */ if (cpuid == (processorid_t)-1) { for (i = 0; i < apic_max_nproc; i++) { if (apic_cpus[i].aci_status & APIC_CPU_FREE) { cpuid = i; break; } } } if (cpuid == (processorid_t)-1) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_NOTE, "!apic: failed to allocate cpu id for processor %u.", procid); rv = EAGAIN; } else if (ACPI_FAILURE(acpica_map_cpu(cpuid, procid))) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_NOTE, "!apic: failed to build mapping for processor %u.", procid); rv = EBUSY; } else { ASSERT(cpuid >= 0 && cpuid < NCPU); ASSERT(cpuid < apic_max_nproc && cpuid < max_ncpus); bzero(&apic_cpus[cpuid], sizeof (apic_cpus[0])); apic_cpus[cpuid].aci_processor_id = procid; apic_cpus[cpuid].aci_local_id = localid; apic_cpus[cpuid].aci_local_ver = localver; CPUSET_ATOMIC_ADD(apic_cpumask, cpuid); if (cpuid >= apic_nproc) { apic_nproc = cpuid + 1; } lock_clear(&apic_ioapic_lock); intr_restore(iflag); reqp->req.cpu_add.cpuid = cpuid; } return (rv); } static int apic_cpu_remove(psm_cpu_request_t *reqp) { int i; ulong_t iflag; processorid_t cpuid; /* Check whether CPU hotplug is supported. */ if (!plat_dr_support_cpu() || apic_max_nproc == -1) { return (ENOTSUP); } cpuid = reqp->req.cpu_remove.cpuid; /* Use apic_ioapic_lock to sync with apic_find_next_cpu_intr. */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); if (!apic_cpu_in_range(cpuid)) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); cmn_err(CE_WARN, "!apic: cpuid %d doesn't exist in apic_cpus array.", cpuid); return (ENODEV); } ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_FREE) == 0); if (ACPI_FAILURE(acpica_unmap_cpu(cpuid))) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (ENOENT); } if (cpuid == apic_nproc - 1) { /* * We are removing the highest numbered cpuid so we need to * find the next highest cpuid as the new value for apic_nproc. */ for (i = apic_nproc; i > 0; i--) { if (CPU_IN_SET(apic_cpumask, i - 1)) { apic_nproc = i; break; } } /* at least one CPU left */ ASSERT(i > 0); } CPUSET_ATOMIC_DEL(apic_cpumask, cpuid); /* mark slot as free and keep it in the dirty cache */ apic_cpus[cpuid].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (0); } /* * type == -1 indicates it is an internal request. Do not change * resv_vector for these requests */ static int apic_get_ipivect(int ipl, int type) { uchar_t vector; int irq; if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) { if (vector = apic_allocate_vector(ipl, irq, 1)) { apic_irq_table[irq]->airq_mps_intr_index = RESERVE_INDEX; apic_irq_table[irq]->airq_vector = vector; if (type != -1) { apic_resv_vector[ipl] = vector; } return (irq); } } apic_error |= APIC_ERR_GET_IPIVECT_FAIL; return (-1); /* shouldn't happen */ } static int apic_getclkirq(int ipl) { int irq; if ((irq = apic_get_ipivect(ipl, -1)) == -1) return (-1); /* * Note the vector in apic_clkvect for per clock handling. */ apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", apic_clkvect)); return (irq); } /* * Return the number of APIC clock ticks elapsed for 8245 to decrement * (APIC_TIME_COUNT + pit_ticks_adj) ticks. */ static uint_t apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) { uint8_t pit_tick_lo; uint16_t pit_tick, target_pit_tick; uint32_t start_apic_tick, end_apic_tick; ulong_t iflag; uint32_t reg; reg = addr + APIC_CURR_COUNT - apicadr; iflag = intr_clear(); do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick < APIC_TIME_MIN || pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); /* * Wait for the 8254 to decrement by 5 ticks to ensure * we didn't start in the middle of a tick. * Compare with 0x10 for the wrap around case. */ target_pit_tick = pit_tick - 5; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); start_apic_tick = apic_reg_ops->apic_read(reg); /* * Wait for the 8254 to decrement by * (APIC_TIME_COUNT + pit_ticks_adj) ticks */ target_pit_tick = pit_tick - APIC_TIME_COUNT; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); end_apic_tick = apic_reg_ops->apic_read(reg); *pit_ticks_adj = target_pit_tick - pit_tick; intr_restore(iflag); return (start_apic_tick - end_apic_tick); } /* * Initialise the APIC timer on the local APIC of CPU 0 to the desired * frequency. Note at this stage in the boot sequence, the boot processor * is the only active processor. * hertz value of 0 indicates a one-shot mode request. In this case * the function returns the resolution (in nanoseconds) for the hardware * timer interrupt. If one-shot mode capability is not available, * the return value will be 0. apic_enable_oneshot is a global switch * for disabling the functionality. * A non-zero positive value for hertz indicates a periodic mode request. * In this case the hardware will be programmed to generate clock interrupts * at hertz frequency and returns the resolution of interrupts in * nanosecond. */ static int apic_clkinit(int hertz) { uint_t apic_ticks = 0; uint_t pit_ticks; int ret; uint16_t pit_ticks_adj; static int firsttime = 1; if (firsttime) { /* first time calibrate on CPU0 only */ apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); /* total number of PIT ticks corresponding to apic_ticks */ pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; /* * Determine the number of nanoseconds per APIC clock tick * and then determine how many APIC ticks to interrupt at the * desired frequency * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) * pic_ticks_per_SFns = * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) */ apic_ticks_per_SFnsecs = ((SF * apic_ticks * PIT_HZ) / ((uint64_t)pit_ticks * NANOSEC)); /* the interval timer initial count is 32 bit max */ apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); firsttime = 0; } if (hertz != 0) { /* periodic */ apic_nsec_per_intr = NANOSEC / hertz; apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); } apic_int_busy_mark = (apic_int_busy_mark * apic_sample_factor_redistribution) / 100; apic_int_free_mark = (apic_int_free_mark * apic_sample_factor_redistribution) / 100; apic_diff_for_redistribution = (apic_diff_for_redistribution * apic_sample_factor_redistribution) / 100; if (hertz == 0) { /* requested one_shot */ if (!tsc_gethrtime_enable || !apic_oneshot_enable) return (0); apic_oneshot = 1; ret = (int)APIC_TICKS_TO_NSECS(1); } else { /* program the local APIC to interrupt at the given frequency */ apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count); apic_reg_ops->apic_write(APIC_LOCAL_TIMER, (apic_clkvect + APIC_BASE_VECT) | AV_TIME); apic_oneshot = 0; ret = NANOSEC / hertz; } return (ret); } /* * apic_preshutdown: * Called early in shutdown whilst we can still access filesystems to do * things like loading modules which will be required to complete shutdown * after filesystems are all unmounted. */ static void apic_preshutdown(int cmd, int fcn) { APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", cmd, fcn, apic_poweroff_method, apic_enable_acpi)); if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { return; } } static void apic_shutdown(int cmd, int fcn) { int restarts, attempts; int i; uchar_t byte; ulong_t iflag; hpet_acpi_fini(); /* Send NMI to all CPUs except self to do per processor shutdown */ iflag = intr_clear(); #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ apic_shutdown_processors = 1; apic_reg_ops->apic_write(APIC_INT_CMD1, AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); /* restore cmos shutdown byte before reboot */ if (apic_cmos_ssb_set) { outb(CMOS_ADDR, SSB); outb(CMOS_DATA, 0); } ioapic_disable_redirection(); /* disable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); } apic_disable_local_apic(); intr_restore(iflag); /* remainder of function is for shutdown cases only */ if (cmd != A_SHUTDOWN) return; /* * Switch system back into Legacy-Mode if using ACPI and * not powering-off. Some BIOSes need to remain in ACPI-mode * for power-off to succeed (Dell Dimension 4600) * Do not disable ACPI while doing fastreboot */ if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) (void) AcpiDisable(); if (fcn == AD_FASTREBOOT) { apic_reg_ops->apic_write(APIC_INT_CMD1, AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); } /* remainder of function is for shutdown+poweroff case only */ if (fcn != AD_POWEROFF) return; switch (apic_poweroff_method) { case APIC_POWEROFF_VIA_RTC: /* select the extended NVRAM bank in the RTC */ outb(CMOS_ADDR, RTC_REGA); byte = inb(CMOS_DATA); outb(CMOS_DATA, (byte | EXT_BANK)); outb(CMOS_ADDR, PFR_REG); /* for Predator must toggle the PAB bit */ byte = inb(CMOS_DATA); /* * clear power active bar, wakeup alarm and * kickstart */ byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); outb(CMOS_DATA, byte); /* delay before next write */ drv_usecwait(1000); /* for S40 the following would suffice */ byte = inb(CMOS_DATA); /* power active bar control bit */ byte |= PAB_CBIT; outb(CMOS_DATA, byte); break; case APIC_POWEROFF_VIA_ASPEN_BMC: restarts = 0; restart_aspen_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); i = 0; for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); i++) { attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); } break; case APIC_POWEROFF_VIA_SITKA_BMC: restarts = 0; restart_sitka_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_STATE_MASK; if ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)); outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); i = 0; for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); i++) { attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_IBF_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while (byte != 0); outb(sitka_bmc[i].port, sitka_bmc[i].data); } break; case APIC_POWEROFF_NONE: /* If no APIC direct method, we will try using ACPI */ if (apic_enable_acpi) { if (acpi_poweroff() == 1) return; } else return; break; } /* * Wait a limited time here for power to go off. * If the power does not go off, then there was a * problem and we should continue to the halt which * prints a message for the user to press a key to * reboot. */ drv_usecwait(7000000); /* wait seven seconds */ } /* * Try and disable all interrupts. We just assign interrupts to other * processors based on policy. If any were bound by user request, we * let them continue and return failure. We do not bother to check * for cache affinity while rebinding. */ static int apic_disable_intr(processorid_t cpun) { int bind_cpu = 0, i, hardbound = 0; apic_irq_t *irq_ptr; ulong_t iflag; iflag = intr_clear(); lock_set(&apic_ioapic_lock); for (i = 0; i <= APIC_MAX_VECTOR; i++) { if (apic_reprogram_info[i].done == B_FALSE) { if (apic_reprogram_info[i].bindcpu == cpun) { /* * CPU is busy -- it's the target of * a pending reprogramming attempt */ lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (PSM_FAILURE); } } } apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; apic_cpus[cpun].aci_curipl = 0; i = apic_min_device_irq; for (; i <= apic_max_device_irq; i++) { /* * If there are bound interrupts on this cpu, then * rebind them to other processors. */ if ((irq_ptr = apic_irq_table[i]) != NULL) { ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || (apic_cpu_in_range(irq_ptr->airq_temp_cpu))); if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { hardbound = 1; continue; } if (irq_ptr->airq_temp_cpu == cpun) { do { bind_cpu = apic_find_next_cpu_intr(); } while (apic_rebind_all(irq_ptr, bind_cpu)); } } } lock_clear(&apic_ioapic_lock); intr_restore(iflag); if (hardbound) { cmn_err(CE_WARN, "Could not disable interrupts on %d" "due to user bound interrupts", cpun); return (PSM_FAILURE); } else return (PSM_SUCCESS); } /* * Bind interrupts to the CPU's local APIC. * Interrupts should not be bound to a CPU's local APIC until the CPU * is ready to receive interrupts. */ static void apic_enable_intr(processorid_t cpun) { int i; apic_irq_t *irq_ptr; ulong_t iflag; iflag = intr_clear(); lock_set(&apic_ioapic_lock); apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; i = apic_min_device_irq; for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { if ((irq_ptr = apic_irq_table[i]) != NULL) { if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { (void) apic_rebind_all(irq_ptr, irq_ptr->airq_cpu); } } } lock_clear(&apic_ioapic_lock); intr_restore(iflag); } /* * This function will reprogram the timer. * * When in oneshot mode the argument is the absolute time in future to * generate the interrupt at. * * When in periodic mode, the argument is the interval at which the * interrupts should be generated. There is no need to support the periodic * mode timer change at this time. */ static void apic_timer_reprogram(hrtime_t time) { hrtime_t now; uint_t ticks; int64_t delta; /* * We should be called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ if (!apic_oneshot) { /* time is the interval for periodic mode */ ticks = APIC_NSECS_TO_TICKS(time); } else { /* one shot mode */ now = gethrtime(); delta = time - now; if (delta <= 0) { /* * requested to generate an interrupt in the past * generate an interrupt as soon as possible */ ticks = apic_min_timer_ticks; } else if (delta > apic_nsec_max) { /* * requested to generate an interrupt at a time * further than what we are capable of. Set to max * the hardware can handle */ ticks = APIC_MAXVAL; #ifdef DEBUG cmn_err(CE_CONT, "apic_timer_reprogram, request at" " %lld too far in future, current time" " %lld \n", time, now); #endif } else ticks = APIC_NSECS_TO_TICKS(delta); } if (ticks < apic_min_timer_ticks) ticks = apic_min_timer_ticks; apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks); } /* * This function will enable timer interrupts. */ static void apic_timer_enable(void) { /* * We should be Called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ if (!apic_oneshot) { apic_reg_ops->apic_write(APIC_LOCAL_TIMER, (apic_clkvect + APIC_BASE_VECT) | AV_TIME); } else { /* one shot */ apic_reg_ops->apic_write(APIC_LOCAL_TIMER, (apic_clkvect + APIC_BASE_VECT)); } } /* * This function will disable timer interrupts. */ static void apic_timer_disable(void) { /* * We should be Called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ apic_reg_ops->apic_write(APIC_LOCAL_TIMER, (apic_clkvect + APIC_BASE_VECT) | AV_MASK); } /* * Set timer far into the future and return timer * current Count in nanoseconds. */ hrtime_t apic_timer_stop_count(void) { hrtime_t ns_val; int enable_val, count_val; /* * Should be called with interrupts disabled. */ ASSERT(!interrupts_enabled()); enable_val = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); if ((enable_val & AV_MASK) == AV_MASK) return ((hrtime_t)-1); /* timer is disabled */ count_val = apic_reg_ops->apic_read(APIC_CURR_COUNT); ns_val = APIC_TICKS_TO_NSECS(count_val); apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); return (ns_val); } /* * Reprogram timer after Deep C-State. */ void apic_timer_restart(hrtime_t time) { apic_timer_reprogram(time); } ddi_periodic_t apic_periodic_id; /* * If this module needs a periodic handler for the interrupt distribution, it * can be added here. The argument to the periodic handler is not currently * used, but is reserved for future. */ static void apic_post_cyclic_setup(void *arg) { _NOTE(ARGUNUSED(arg)) /* cpu_lock is held */ /* set up a periodic handler for intr redistribution */ /* * In peridoc mode intr redistribution processing is done in * apic_intr_enter during clk intr processing */ if (!apic_oneshot) return; /* * Register a periodical handler for the redistribution processing. * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so * DDI_IPL_2 should be passed to ddi_periodic_add() here. */ apic_periodic_id = ddi_periodic_add( (void (*)(void *))apic_redistribute_compute, NULL, apic_redistribute_sample_interval, DDI_IPL_2); } static void apic_redistribute_compute(void) { int i, j, max_busy; if (apic_enable_dynamic_migration) { if (++apic_nticks == apic_sample_factor_redistribution) { /* * Time to call apic_intr_redistribute(). * reset apic_nticks. This will cause max_busy * to be calculated below and if it is more than * apic_int_busy, we will do the whole thing */ apic_nticks = 0; } max_busy = 0; for (i = 0; i < apic_nproc; i++) { if (!apic_cpu_in_range(i)) continue; /* * Check if curipl is non zero & if ISR is in * progress */ if (((j = apic_cpus[i].aci_curipl) != 0) && (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { int irq; apic_cpus[i].aci_busy++; irq = apic_cpus[i].aci_current[j]; apic_irq_table[irq]->airq_busy++; } if (!apic_nticks && (apic_cpus[i].aci_busy > max_busy)) max_busy = apic_cpus[i].aci_busy; } if (!apic_nticks) { if (max_busy > apic_int_busy_mark) { /* * We could make the following check be * skipped > 1 in which case, we get a * redistribution at half the busy mark (due to * double interval). Need to be able to collect * more empirical data to decide if that is a * good strategy. Punt for now. */ if (apic_skipped_redistribute) { apic_cleanup_busy(); apic_skipped_redistribute = 0; } else { apic_intr_redistribute(); } } else apic_skipped_redistribute++; } } } /* * The following functions are in the platform specific file so that they * can be different functions depending on whether we are running on * bare metal or a hypervisor. */ /* * map an apic for memory-mapped access */ uint32_t * mapin_apic(uint32_t addr, size_t len, int flags) { /*LINTED: pointer cast may result in improper alignment */ return ((uint32_t *)psm_map_phys(addr, len, flags)); } uint32_t * mapin_ioapic(uint32_t addr, size_t len, int flags) { return (mapin_apic(addr, len, flags)); } /* * unmap an apic */ void mapout_apic(caddr_t addr, size_t len) { psm_unmap_phys(addr, len); } void mapout_ioapic(caddr_t addr, size_t len) { mapout_apic(addr, len); } /* * Check to make sure there are enough irq slots */ int apic_check_free_irqs(int count) { int i, avail; avail = 0; for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { if ((apic_irq_table[i] == NULL) || apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { if (++avail >= count) return (PSM_SUCCESS); } } return (PSM_FAILURE); } /* * This function allocates "count" MSI vector(s) for the given "dip/pri/type" */ int apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, int behavior) { int rcount, i; uchar_t start, irqno; uint32_t cpu; major_t major; apic_irq_t *irqptr; DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", (void *)dip, inum, pri, count, behavior)); if (count > 1) { if (behavior == DDI_INTR_ALLOC_STRICT && apic_multi_msi_enable == 0) return (0); if (apic_multi_msi_enable == 0) count = 1; } if ((rcount = apic_navail_vector(dip, pri)) > count) rcount = count; else if (rcount == 0 || (rcount < count && behavior == DDI_INTR_ALLOC_STRICT)) return (0); /* if not ISP2, then round it down */ if (!ISP2(rcount)) rcount = 1 << (highbit(rcount) - 1); mutex_enter(&airq_mutex); for (start = 0; rcount > 0; rcount >>= 1) { if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || behavior == DDI_INTR_ALLOC_STRICT) break; } if (start == 0) { /* no vector available */ mutex_exit(&airq_mutex); return (0); } if (apic_check_free_irqs(rcount) == PSM_FAILURE) { /* not enough free irq slots available */ mutex_exit(&airq_mutex); return (0); } major = (dip != NULL) ? ddi_driver_major(dip) : 0; for (i = 0; i < rcount; i++) { if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == (uchar_t)-1) { /* * shouldn't happen because of the * apic_check_free_irqs() check earlier */ mutex_exit(&airq_mutex); DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " "apic_allocate_irq failed\n")); return (i); } apic_max_device_irq = max(irqno, apic_max_device_irq); apic_min_device_irq = min(irqno, apic_min_device_irq); irqptr = apic_irq_table[irqno]; #ifdef DEBUG if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " "apic_vector_to_irq is not APIC_RESV_IRQ\n")); #endif apic_vector_to_irq[start + i] = (uchar_t)irqno; irqptr->airq_vector = (uchar_t)(start + i); irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ irqptr->airq_intin_no = (uchar_t)rcount; irqptr->airq_ipl = pri; irqptr->airq_vector = start + i; irqptr->airq_origirq = (uchar_t)(inum + i); irqptr->airq_share_id = 0; irqptr->airq_mps_intr_index = MSI_INDEX; irqptr->airq_dip = dip; irqptr->airq_major = major; if (i == 0) /* they all bound to the same cpu */ cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); else irqptr->airq_cpu = cpu; DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, (void *)irqptr->airq_dip, irqptr->airq_vector, irqptr->airq_origirq, pri)); } mutex_exit(&airq_mutex); return (rcount); } /* * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" */ int apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, int behavior) { int rcount, i; major_t major; mutex_enter(&airq_mutex); if ((rcount = apic_navail_vector(dip, pri)) > count) rcount = count; else if (rcount == 0 || (rcount < count && behavior == DDI_INTR_ALLOC_STRICT)) { rcount = 0; goto out; } if (apic_check_free_irqs(rcount) == PSM_FAILURE) { /* not enough free irq slots available */ rcount = 0; goto out; } major = (dip != NULL) ? ddi_driver_major(dip) : 0; for (i = 0; i < rcount; i++) { uchar_t vector, irqno; apic_irq_t *irqptr; if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == (uchar_t)-1) { /* * shouldn't happen because of the * apic_check_free_irqs() check earlier */ DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " "apic_allocate_irq failed\n")); rcount = i; goto out; } if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { /* * shouldn't happen because of the * apic_navail_vector() call earlier */ DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " "apic_allocate_vector failed\n")); rcount = i; goto out; } apic_max_device_irq = max(irqno, apic_max_device_irq); apic_min_device_irq = min(irqno, apic_min_device_irq); irqptr = apic_irq_table[irqno]; irqptr->airq_vector = (uchar_t)vector; irqptr->airq_ipl = pri; irqptr->airq_origirq = (uchar_t)(inum + i); irqptr->airq_share_id = 0; irqptr->airq_mps_intr_index = MSIX_INDEX; irqptr->airq_dip = dip; irqptr->airq_major = major; irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); } out: mutex_exit(&airq_mutex); return (rcount); } /* * Allocate a free vector for irq at ipl. Takes care of merging of multiple * IPLs into a single APIC level as well as stretching some IPLs onto multiple * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority * requests and allocated only when pri is set. */ uchar_t apic_allocate_vector(int ipl, int irq, int pri) { int lowest, highest, i; highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ lowest -= APIC_VECTOR_PER_IPL; #ifdef DEBUG if (apic_restrict_vector) /* for testing shared interrupt logic */ highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; #endif /* DEBUG */ if (pri == 0) highest -= APIC_HI_PRI_VECTS; for (i = lowest; i <= highest; i++) { if (APIC_CHECK_RESERVE_VECTORS(i)) continue; if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { apic_vector_to_irq[i] = (uchar_t)irq; return (i); } } return (0); } /* Mark vector as not being used by any irq */ void apic_free_vector(uchar_t vector) { apic_vector_to_irq[vector] = APIC_RESV_IRQ; } uint32_t ioapic_read(int ioapic_ix, uint32_t reg) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_REG] = reg; return (ioapic[APIC_IO_DATA]); } void ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_REG] = reg; ioapic[APIC_IO_DATA] = value; } void ioapic_write_eoi(int ioapic_ix, uint32_t value) { volatile uint32_t *ioapic; ioapic = apicioadr[ioapic_ix]; ioapic[APIC_IO_EOI] = value; } /* * Call rebind to do the actual programming. * Must be called with interrupts disabled and apic_ioapic_lock held * 'p' is polymorphic -- if this function is called to process a deferred * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which * the irq pointer is retrieved. If not doing deferred reprogramming, * p is of the type 'apic_irq_t *'. * * apic_ioapic_lock must be held across this call, as it protects apic_rebind * and it protects apic_find_next_cpu_intr() from a race in which a CPU can be * taken offline after a cpu is selected, but before apic_rebind is called to * bind interrupts to it. */ int apic_setup_io_intr(void *p, int irq, boolean_t deferred) { apic_irq_t *irqptr; struct ioapic_reprogram_data *drep = NULL; int rv; if (deferred) { drep = (struct ioapic_reprogram_data *)p; ASSERT(drep != NULL); irqptr = drep->irqp; } else irqptr = (apic_irq_t *)p; ASSERT(irqptr != NULL); rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); if (rv) { /* * CPU is not up or interrupts are disabled. Fall back to * the first available CPU */ rv = apic_rebind(irqptr, apic_find_next_cpu_intr(), drep); } return (rv); } uchar_t apic_modify_vector(uchar_t vector, int irq) { apic_vector_to_irq[vector] = (uchar_t)irq; return (vector); } char * apic_get_apic_type() { return (apic_psm_info.p_mach_idstring); } /* * Switch between safe and x2APIC IPI sending method. * CPU may power on in xapic mode or x2apic mode. If CPU needs to send IPI to * other CPUs before entering x2APIC mode, it still needs to xAPIC method. * Before sending StartIPI to target CPU, psm_send_ipi will be changed to * apic_common_send_ipi, which detects current local APIC mode and use right * method to send IPI. If some CPUs fail to start up, apic_poweron_cnt * won't return to zero, so apic_common_send_ipi will always be used. * psm_send_ipi can't be simply changed back to x2apic_send_ipi if some CPUs * failed to start up because those failed CPUs may recover itself later at * unpredictable time. */ static void apic_switch_ipi_callback(boolean_t enter) { ulong_t iflag; struct psm_ops *pops = &apic_ops; iflag = intr_clear(); lock_set(&apic_mode_switch_lock); if (enter) { ASSERT(apic_poweron_cnt >= 0); if (apic_poweron_cnt == 0) { pops->psm_send_ipi = apic_common_send_ipi; send_dirintf = pops->psm_send_ipi; } apic_poweron_cnt++; } else { ASSERT(apic_poweron_cnt > 0); apic_poweron_cnt--; if (apic_poweron_cnt == 0) { pops->psm_send_ipi = x2apic_send_ipi; send_dirintf = pops->psm_send_ipi; } } lock_clear(&apic_mode_switch_lock); intr_restore(iflag); } void x2apic_update_psm() { struct psm_ops *pops = &apic_ops; ASSERT(pops != NULL); pops->psm_intr_exit = x2apic_intr_exit; pops->psm_setspl = x2apic_setspl; pops->psm_send_ipi = x2apic_send_ipi; send_dirintf = pops->psm_send_ipi; apic_mode = LOCAL_X2APIC; apic_change_ops(); } static void apic_intrmap_init(int apic_mode) { int suppress_brdcst_eoi = 0; if (psm_vt_ops != NULL) { /* * Since X2APIC requires the use of interrupt remapping * (though this is not documented explicitly in the Intel * documentation (yet)), initialize interrupt remapping * support before initializing the X2APIC unit. */ if (((apic_intrmap_ops_t *)psm_vt_ops)-> apic_intrmap_init(apic_mode) == DDI_SUCCESS) { apic_vt_ops = psm_vt_ops; /* * We leverage the interrupt remapping engine to * suppress broadcast EOI; thus we must send the * directed EOI with the directed-EOI handler. */ if (apic_directed_EOI_supported() == 0) { suppress_brdcst_eoi = 1; } apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi); if (apic_detect_x2apic()) { apic_enable_x2apic(); } if (apic_directed_EOI_supported() == 0) { apic_set_directed_EOI_handler(); } } } } /*ARGSUSED*/ static void apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt) { irdt->ir_hi <<= APIC_ID_BIT_OFFSET; } /*ARGSUSED*/ static void apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs) { mregs->mr_addr = MSI_ADDR_HDR | (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | mregs->mr_data; }