/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * PSMI 1.1 extensions are supported only in 2.6 and later versions. * PSMI 1.2 extensions are supported only in 2.7 and later versions. * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. * PSMI 1.5 extensions are supported in Solaris Nevada. * PSMI 1.6 extensions are supported in Solaris Nevada. */ #define PSMI_1_6 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Local Function Prototypes */ static int apic_handle_defconf(); static int apic_parse_mpct(caddr_t mpct, int bypass); static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); static int apic_checksum(caddr_t bptr, int len); static int apic_find_bus_type(char *bus); static int apic_find_bus(int busid); static int apic_find_bus_id(int bustype); static struct apic_io_intr *apic_find_io_intr(int irqno); static int apic_find_free_irq(int start, int end); static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); static void apic_xlate_vector_free_timeout_handler(void *arg); static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, int new_bind_cpu, int apicindex, int intin_no, int which_irq, struct ioapic_reprogram_data *drep); static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); static int apic_find_intin(uchar_t ioapic, uchar_t intin); static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, struct apic_io_intr **intrp); static int apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, int type); static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); static void apic_try_deferred_reprogram(int ipl, int vect); static void delete_defer_repro_ent(int which_irq); static void apic_ioapic_wait_pending_clear(int ioapicindex, int intin_no); static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ /* ACPI SCI interrupt configuration; -1 if SCI not used */ int apic_sci_vect = -1; iflag_t apic_sci_flags; /* * psm name pointer */ static char *psm_name; /* ACPI support routines */ static int acpi_probe(char *); static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, int *pci_irqp, iflag_t *intr_flagp); static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, int ipin, int *pci_irqp, iflag_t *intr_flagp); static uchar_t acpi_find_ioapic(int irq); static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); /* * number of bits per byte, from */ #define UCHAR_MAX ((1 << NBBY) - 1) /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ int apic_max_reps_clear_pending = 1000; /* The irq # is implicit in the array index: */ struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1]; /* * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info * is indexed by IRQ number, NOT by vector number. */ int apic_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY; int apic_next_bind_cpu = 1; /* For round robin assignment */ /* start with cpu 1 */ /* * If enabled, the distribution works as follows: * On every interrupt entry, the current ipl for the CPU is set in cpu_info * and the irq corresponding to the ipl is also set in the aci_current array. * interrupt exit and setspl (due to soft interrupts) will cause the current * ipl to be be changed. This is cache friendly as these frequently used * paths write into a per cpu structure. * * Sampling is done by checking the structures for all CPUs and incrementing * the busy field of the irq (if any) executing on each CPU and the busy field * of the corresponding CPU. * In periodic mode this is done on every clock interrupt. * In one-shot mode, this is done thru a cyclic with an interval of * apic_redistribute_sample_interval (default 10 milli sec). * * Every apic_sample_factor_redistribution times we sample, we do computations * to decide which interrupt needs to be migrated (see comments * before apic_intr_redistribute(). */ /* * Following 3 variables start as % and can be patched or set using an * API to be defined in future. They will be scaled to * sample_factor_redistribution which is in turn set to hertz+1 (in periodic * mode), or 101 in one-shot mode to stagger it away from one sec processing */ int apic_int_busy_mark = 60; int apic_int_free_mark = 20; int apic_diff_for_redistribution = 10; /* sampling interval for interrupt redistribution for dynamic migration */ int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ /* * number of times we sample before deciding to redistribute interrupts * for dynamic migration */ int apic_sample_factor_redistribution = 101; /* timeout for xlate_vector, mark_vector */ int apic_revector_timeout = 16 * 10000; /* 160 millisec */ int apic_redist_cpu_skip = 0; int apic_num_imbalance = 0; int apic_num_rebind = 0; int apic_nproc = 0; size_t apic_cpus_size = 0; int apic_defconf = 0; int apic_irq_translate = 0; int apic_spec_rev = 0; int apic_imcrp = 0; int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ /* * For interrupt link devices, if apic_unconditional_srs is set, an irq resource * will be assigned (via _SRS). If it is not set, use the current * irq setting (via _CRS), but only if that irq is in the set of possible * irqs (returned by _PRS) for the device. */ int apic_unconditional_srs = 1; /* * For interrupt link devices, if apic_prefer_crs is set when we are * assigning an IRQ resource to a device, prefer the current IRQ setting * over other possible irq settings under same conditions. */ int apic_prefer_crs = 1; uchar_t apic_io_id[MAX_IO_APIC]; volatile uint32_t *apicioadr[MAX_IO_APIC]; static uchar_t apic_io_ver[MAX_IO_APIC]; static uchar_t apic_io_vectbase[MAX_IO_APIC]; static uchar_t apic_io_vectend[MAX_IO_APIC]; uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; uint32_t apic_physaddr[MAX_IO_APIC]; static boolean_t ioapic_mask_workaround[MAX_IO_APIC]; /* * First available slot to be used as IRQ index into the apic_irq_table * for those interrupts (like MSI/X) that don't have a physical IRQ. */ int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; /* * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound * and bound elements of cpus_info and the temp_cpu element of irq_struct */ lock_t apic_ioapic_lock; /* * apic_defer_reprogram_lock ensures that only one processor is handling * deferred interrupt programming at *_intr_exit time. */ static lock_t apic_defer_reprogram_lock; /* * The current number of deferred reprogrammings outstanding */ uint_t apic_reprogram_outstanding = 0; #ifdef DEBUG /* * Counters that keep track of deferred reprogramming stats */ uint_t apic_intr_deferrals = 0; uint_t apic_intr_deliver_timeouts = 0; uint_t apic_last_ditch_reprogram_failures = 0; uint_t apic_deferred_setup_failures = 0; uint_t apic_defer_repro_total_retries = 0; uint_t apic_defer_repro_successes = 0; uint_t apic_deferred_spurious_enters = 0; #endif static int apic_io_max = 0; /* no. of i/o apics enabled */ static struct apic_io_intr *apic_io_intrp = 0; static struct apic_bus *apic_busp; uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; uchar_t apic_resv_vector[MAXIPL+1]; char apic_level_intr[APIC_MAX_VECTOR+1]; static uint32_t eisa_level_intr_mask = 0; /* At least MSB will be set if EISA bus */ static int apic_pci_bus_total = 0; static uchar_t apic_single_pci_busid = 0; /* * airq_mutex protects additions to the apic_irq_table - the first * pointer and any airq_nexts off of that one. It also protects * apic_max_device_irq & apic_min_device_irq. It also guarantees * that share_id is unique as new ids are generated only when new * irq_t structs are linked in. Once linked in the structs are never * deleted. temp_cpu & mps_intr_index field indicate if it is programmed * or allocated. Note that there is a slight gap between allocating in * apic_introp_xlate and programming in addspl. */ kmutex_t airq_mutex; apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; int apic_max_device_irq = 0; int apic_min_device_irq = APIC_MAX_VECTOR; /* * Following declarations are for revectoring; used when ISRs at different * IPLs share an irq. */ static lock_t apic_revector_lock; int apic_revector_pending = 0; static uchar_t *apic_oldvec_to_newvec; static uchar_t *apic_newvec_to_oldvec; typedef struct prs_irq_list_ent { int list_prio; int32_t irq; iflag_t intrflags; acpi_prs_private_t prsprv; struct prs_irq_list_ent *next; } prs_irq_list_t; /* * ACPI variables */ /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ int apic_enable_acpi = 0; /* ACPI Multiple APIC Description Table ptr */ static MULTIPLE_APIC_TABLE *acpi_mapic_dtp = NULL; /* ACPI Interrupt Source Override Structure ptr */ static MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; static int acpi_iso_cnt = 0; /* ACPI Non-maskable Interrupt Sources ptr */ static MADT_NMI_SOURCE *acpi_nmi_sp = NULL; static int acpi_nmi_scnt = 0; static MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; static int acpi_nmi_ccnt = 0; /* * The following added to identify a software poweroff method if available. */ static struct { int poweroff_method; char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ } apic_mps_ids[] = { { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ }; int apic_poweroff_method = APIC_POWEROFF_NONE; /* * Auto-configuration routines */ /* * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here * May work with 1.1 - but not guaranteed. * According to the MP Spec, the MP floating pointer structure * will be searched in the order described below: * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) * 2. Within the last kilobyte of system base memory * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh * Once we find the right signature with proper checksum, we call * either handle_defconf or parse_mpct to get all info necessary for * subsequent operations. */ int apic_probe_common(char *modname) { uint32_t mpct_addr, ebda_start = 0, base_mem_end; caddr_t biosdatap; caddr_t mpct; caddr_t fptr; int i, mpct_size, mapsize, retval = PSM_FAILURE; ushort_t ebda_seg, base_mem_size; struct apic_mpfps_hdr *fpsp; struct apic_mp_cnf_hdr *hdrp; int bypass_cpu_and_ioapics_in_mptables; int acpi_user_options; if (apic_forceload < 0) return (retval); /* * Remember who we are */ psm_name = modname; /* Allow override for MADT-only mode */ acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, "acpi-user-options", 0); apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); /* Allow apic_use_acpi to override MADT-only mode */ if (!apic_use_acpi) apic_use_acpi_madt_only = 0; retval = acpi_probe(modname); /* * mapin the bios data area 40:0 * 40:13h - two-byte location reports the base memory size * 40:0Eh - two-byte location for the exact starting address of * the EBDA segment for EISA */ biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); if (!biosdatap) return (retval); fpsp = (struct apic_mpfps_hdr *)NULL; mapsize = MPFPS_RAM_WIN_LEN; /*LINTED: pointer cast may result in improper alignment */ ebda_seg = *((ushort_t *)(biosdatap+0xe)); /* check the 1k of EBDA */ if (ebda_seg) { ebda_start = ((uint32_t)ebda_seg) << 4; fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); } } /* If not in EBDA, check the last k of system base memory */ if (!fpsp) { /*LINTED: pointer cast may result in improper alignment */ base_mem_size = *((ushort_t *)(biosdatap + 0x13)); if (base_mem_size > 512) base_mem_end = 639 * 1024; else base_mem_end = 511 * 1024; /* if ebda == last k of base mem, skip to check BIOS ROM */ if (base_mem_end != ebda_start) { fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); } } } psm_unmap_phys(biosdatap, 0x20); /* If still cannot find it, check the BIOS ROM space */ if (!fpsp) { mapsize = MPFPS_ROM_WIN_LEN; fptr = psm_map_phys(MPFPS_ROM_WIN_START, MPFPS_ROM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } } } if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } apic_spec_rev = fpsp->mpfps_spec_rev; if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } /* check IMCR is present or not */ apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; /* check default configuration (dual CPUs) */ if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { psm_unmap_phys(fptr, mapsize); return (apic_handle_defconf()); } /* MP Configuration Table */ mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ /* * Map in enough memory for the MP Configuration Table Header. * Use this table to read the total length of the BIOS data and * map in all the info */ /*LINTED: pointer cast may result in improper alignment */ hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, sizeof (struct apic_mp_cnf_hdr), PROT_READ); if (!hdrp) return (retval); /* check mp configuration table signature PCMP */ if (hdrp->mpcnf_sig != 0x504d4350) { psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); return (retval); } mpct_size = (int)hdrp->mpcnf_tbl_length; apic_set_pwroff_method_from_mpcnfhdr(hdrp); psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { /* This is an ACPI machine No need for further checks */ return (retval); } /* * Map in the entries for this machine, ie. Processor * Entry Tables, Bus Entry Tables, etc. * They are in fixed order following one another */ mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); if (!mpct) return (retval); if (apic_checksum(mpct, mpct_size) != 0) goto apic_fail1; /*LINTED: pointer cast may result in improper alignment */ hdrp = (struct apic_mp_cnf_hdr *)mpct; apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); if (!apicadr) goto apic_fail1; /* Parse all information in the tables */ bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == PSM_SUCCESS) return (PSM_SUCCESS); for (i = 0; i < apic_io_max; i++) mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); if (apic_cpus) kmem_free(apic_cpus, apic_cpus_size); if (apicadr) mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); apic_fail1: psm_unmap_phys(mpct, mpct_size); return (retval); } static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) { int i; for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); i++) { if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, strlen(apic_mps_ids[i].oem_id)) == 0) && (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, strlen(apic_mps_ids[i].prod_id)) == 0)) { apic_poweroff_method = apic_mps_ids[i].poweroff_method; break; } } if (apic_debug_mps_id != 0) { cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", psm_name, hdrp->mpcnf_oem_str[0], hdrp->mpcnf_oem_str[1], hdrp->mpcnf_oem_str[2], hdrp->mpcnf_oem_str[3], hdrp->mpcnf_oem_str[4], hdrp->mpcnf_oem_str[5], hdrp->mpcnf_oem_str[6], hdrp->mpcnf_oem_str[7], hdrp->mpcnf_prod_str[0], hdrp->mpcnf_prod_str[1], hdrp->mpcnf_prod_str[2], hdrp->mpcnf_prod_str[3], hdrp->mpcnf_prod_str[4], hdrp->mpcnf_prod_str[5], hdrp->mpcnf_prod_str[6], hdrp->mpcnf_prod_str[7], hdrp->mpcnf_prod_str[8], hdrp->mpcnf_prod_str[9], hdrp->mpcnf_prod_str[10], hdrp->mpcnf_prod_str[11]); } } static int acpi_probe(char *modname) { int i, intmax, index, rv; uint32_t id, ver; int acpi_verboseflags = 0; int madt_seen, madt_size; APIC_HEADER *ap; MADT_PROCESSOR_APIC *mpa; MADT_IO_APIC *mia; MADT_IO_SAPIC *misa; MADT_INTERRUPT_OVERRIDE *mio; MADT_NMI_SOURCE *mns; MADT_INTERRUPT_SOURCE *mis; MADT_LOCAL_APIC_NMI *mlan; MADT_ADDRESS_OVERRIDE *mao; ACPI_OBJECT_LIST arglist; ACPI_OBJECT arg; int sci; iflag_t sci_flags; volatile uint32_t *ioapic; int apic_ix; char local_ids[NCPU]; char proc_ids[NCPU]; uchar_t hid; if (!apic_use_acpi) return (PSM_FAILURE); if (AcpiGetFirmwareTable(APIC_SIG, 1, ACPI_LOGICAL_ADDRESSING, (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) return (PSM_FAILURE); apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->LocalApicAddress, APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); if (!apicadr) return (PSM_FAILURE); id = apicadr[APIC_LID_REG]; local_ids[0] = (uchar_t)(id >> 24); apic_nproc = index = 1; CPUSET_ONLY(apic_cpumask, 0); apic_io_max = 0; ap = (APIC_HEADER *) (acpi_mapic_dtp + 1); madt_size = acpi_mapic_dtp->Length; madt_seen = sizeof (*acpi_mapic_dtp); while (madt_seen < madt_size) { switch (ap->Type) { case APIC_PROCESSOR: mpa = (MADT_PROCESSOR_APIC *) ap; if (mpa->ProcessorEnabled) { if (mpa->LocalApicId == local_ids[0]) { proc_ids[0] = mpa->ProcessorId; acpica_map_cpu(0, mpa); } else if (apic_nproc < NCPU) { local_ids[index] = mpa->LocalApicId; proc_ids[index] = mpa->ProcessorId; CPUSET_ADD(apic_cpumask, index); acpica_map_cpu(index, mpa); index++; apic_nproc++; } else cmn_err(CE_WARN, "%s: exceeded " "maximum no. of CPUs (= %d)", psm_name, NCPU); } break; case APIC_IO: mia = (MADT_IO_APIC *) ap; if (apic_io_max < MAX_IO_APIC) { apic_ix = apic_io_max; apic_io_id[apic_io_max] = mia->IoApicId; apic_io_vectbase[apic_io_max] = mia->Interrupt; apic_physaddr[apic_io_max] = (uint32_t)mia->Address; ioapic = apicioadr[apic_io_max] = mapin_ioapic((uint32_t)mia->Address, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); if (!ioapic) goto cleanup; ioapic_mask_workaround[apic_io_max] = apic_is_ioapic_AMD_813x(mia->Address); apic_io_max++; } break; case APIC_XRUPT_OVERRIDE: mio = (MADT_INTERRUPT_OVERRIDE *) ap; if (acpi_isop == NULL) acpi_isop = mio; acpi_iso_cnt++; break; case APIC_NMI: /* UNIMPLEMENTED */ mns = (MADT_NMI_SOURCE *) ap; if (acpi_nmi_sp == NULL) acpi_nmi_sp = mns; acpi_nmi_scnt++; cmn_err(CE_NOTE, "!apic: nmi source: %d %d %d\n", mns->Interrupt, mns->Polarity, mns->TriggerMode); break; case APIC_LOCAL_NMI: /* UNIMPLEMENTED */ mlan = (MADT_LOCAL_APIC_NMI *) ap; if (acpi_nmi_cp == NULL) acpi_nmi_cp = mlan; acpi_nmi_ccnt++; cmn_err(CE_NOTE, "!apic: local nmi: %d %d %d %d\n", mlan->ProcessorId, mlan->Polarity, mlan->TriggerMode, mlan->Lint); break; case APIC_ADDRESS_OVERRIDE: /* UNIMPLEMENTED */ mao = (MADT_ADDRESS_OVERRIDE *) ap; cmn_err(CE_NOTE, "!apic: address override: %lx\n", (long)mao->Address); break; case APIC_IO_SAPIC: /* UNIMPLEMENTED */ misa = (MADT_IO_SAPIC *) ap; cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", misa->IoSapicId, misa->InterruptBase, (long)misa->Address); break; case APIC_XRUPT_SOURCE: /* UNIMPLEMENTED */ mis = (MADT_INTERRUPT_SOURCE *) ap; cmn_err(CE_NOTE, "!apic: irq source: %d %d %d %d %d %d %d\n", mis->ProcessorId, mis->ProcessorEid, mis->Interrupt, mis->Polarity, mis->TriggerMode, mis->InterruptType, mis->IoSapicVector); break; default: break; } /* advance to next entry */ madt_seen += ap->Length; ap = (APIC_HEADER *)(((char *)ap) + ap->Length); } apic_cpus_size = apic_nproc * sizeof (*apic_cpus); if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) goto cleanup; /* * ACPI doesn't provide the local apic ver, get it directly from the * local apic */ ver = apicadr[APIC_VERS_REG]; for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_local_id = local_ids[i]; apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); } for (i = 0; i < apic_io_max; i++) { apic_ix = i; /* * need to check Sitka on the following acpi problem * On the Sitka, the ioapic's apic_id field isn't reporting * the actual io apic id. We have reported this problem * to Intel. Until they fix the problem, we will get the * actual id directly from the ioapic. */ id = ioapic_read(apic_ix, APIC_ID_CMD); hid = (uchar_t)(id >> 24); if (hid != apic_io_id[i]) { if (apic_io_id[i] == 0) apic_io_id[i] = hid; else { /* set ioapic id to whatever reported by ACPI */ id = ((uint32_t)apic_io_id[i]) << 24; ioapic_write(apic_ix, APIC_ID_CMD, id); } } ver = ioapic_read(apic_ix, APIC_VERS_CMD); apic_io_ver[i] = (uchar_t)(ver & 0xff); intmax = (ver >> 16) & 0xff; apic_io_vectend[i] = apic_io_vectbase[i] + intmax; if (apic_first_avail_irq <= apic_io_vectend[i]) apic_first_avail_irq = apic_io_vectend[i] + 1; } /* * Process SCI configuration here * An error may be returned here if * acpi-user-options specifies legacy mode * (no SCI, no ACPI mode) */ if (acpica_get_sci(&sci, &sci_flags) != AE_OK) sci = -1; /* * Now call acpi_init() to generate namespaces * If this fails, we don't attempt to use ACPI * even if we were able to get a MADT above */ if (acpica_init() != AE_OK) goto cleanup; /* * Call acpica_build_processor_map() now that we have * ACPI namesspace access */ acpica_build_processor_map(); /* * Squirrel away the SCI and flags for later on * in apic_picinit() when we're ready */ apic_sci_vect = sci; apic_sci_flags = sci_flags; if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) goto cleanup; /* Enable ACPI APIC interrupt routing */ arglist.Count = 1; arglist.Pointer = &arg; arg.Type = ACPI_TYPE_INTEGER; arg.Integer.Value = ACPI_APIC_MODE; /* 1 */ rv = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); if (rv == AE_OK) { build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); apic_enable_acpi = 1; if (apic_use_acpi_madt_only) { cmn_err(CE_CONT, "?Using ACPI for CPU/IOAPIC information ONLY\n"); } return (PSM_SUCCESS); } /* if setting APIC mode failed above, we fall through to cleanup */ cleanup: if (apicadr != NULL) { mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); apicadr = NULL; } apic_nproc = 0; for (i = 0; i < apic_io_max; i++) { mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); apicioadr[i] = NULL; } apic_io_max = 0; acpi_isop = NULL; acpi_iso_cnt = 0; acpi_nmi_sp = NULL; acpi_nmi_scnt = 0; acpi_nmi_cp = NULL; acpi_nmi_ccnt = 0; return (PSM_FAILURE); } /* * Handle default configuration. Fill in reqd global variables & tables * Fill all details as MP table does not give any more info */ static int apic_handle_defconf() { uint_t lid; /*LINTED: pointer cast may result in improper alignment */ apicioadr[0] = mapin_ioapic(APIC_IO_ADDR, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); /*LINTED: pointer cast may result in improper alignment */ apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, APIC_LOCAL_MEMLEN, PROT_READ); apic_cpus_size = 2 * sizeof (*apic_cpus); apic_cpus = (apic_cpus_info_t *) kmem_zalloc(apic_cpus_size, KM_NOSLEEP); if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) goto apic_handle_defconf_fail; CPUSET_ONLY(apic_cpumask, 0); CPUSET_ADD(apic_cpumask, 1); apic_nproc = 2; lid = apicadr[APIC_LID_REG]; apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); /* * According to the PC+MP spec 1.1, the local ids * for the default configuration has to be 0 or 1 */ if (apic_cpus[0].aci_local_id == 1) apic_cpus[1].aci_local_id = 0; else if (apic_cpus[0].aci_local_id == 0) apic_cpus[1].aci_local_id = 1; else goto apic_handle_defconf_fail; apic_io_id[0] = 2; apic_io_max = 1; if (apic_defconf >= 5) { apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; apic_io_ver[0] = APIC_INTEGRATED_VERS; } else { apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ apic_cpus[1].aci_local_ver = 0; apic_io_ver[0] = 0; } if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); return (PSM_SUCCESS); apic_handle_defconf_fail: if (apic_cpus) kmem_free(apic_cpus, apic_cpus_size); if (apicadr) mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); if (apicioadr[0]) mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); return (PSM_FAILURE); } /* Parse the entries in MP configuration table and collect info that we need */ static int apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) { struct apic_procent *procp; struct apic_bus *busp; struct apic_io_entry *ioapicp; struct apic_io_intr *intrp; int apic_ix; uint_t lid; uint32_t id; uchar_t hid; /*LINTED: pointer cast may result in improper alignment */ procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); /* No need to count cpu entries if we won't use them */ if (!bypass_cpus_and_ioapics) { /* Find max # of CPUS and allocate structure accordingly */ apic_nproc = 0; CPUSET_ZERO(apic_cpumask); while (procp->proc_entry == APIC_CPU_ENTRY) { if (procp->proc_cpuflags & CPUFLAGS_EN) { if (apic_nproc < NCPU) CPUSET_ADD(apic_cpumask, apic_nproc); apic_nproc++; } procp++; } if (apic_nproc > NCPU) cmn_err(CE_WARN, "%s: exceeded " "maximum no. of CPUs (= %d)", psm_name, NCPU); apic_cpus_size = apic_nproc * sizeof (*apic_cpus); if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) return (PSM_FAILURE); } /*LINTED: pointer cast may result in improper alignment */ procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); /* * start with index 1 as 0 needs to be filled in with Boot CPU, but * if we're bypassing this information, it has already been filled * in by acpi_probe(), so don't overwrite it. */ if (!bypass_cpus_and_ioapics) apic_nproc = 1; while (procp->proc_entry == APIC_CPU_ENTRY) { /* check whether the cpu exists or not */ if (!bypass_cpus_and_ioapics && procp->proc_cpuflags & CPUFLAGS_EN) { if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ lid = apicadr[APIC_LID_REG]; apic_cpus[0].aci_local_id = procp->proc_apicid; if (apic_cpus[0].aci_local_id != (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { return (PSM_FAILURE); } apic_cpus[0].aci_local_ver = procp->proc_version; } else { apic_cpus[apic_nproc].aci_local_id = procp->proc_apicid; apic_cpus[apic_nproc].aci_local_ver = procp->proc_version; apic_nproc++; } } procp++; } /* * Save start of bus entries for later use. * Get EISA level cntrl if EISA bus is present. * Also get the CPI bus id for single CPI bus case */ apic_busp = busp = (struct apic_bus *)procp; while (busp->bus_entry == APIC_BUS_ENTRY) { lid = apic_find_bus_type((char *)&busp->bus_str1); if (lid == BUS_EISA) { eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); } else if (lid == BUS_PCI) { /* * apic_single_pci_busid will be used only if * apic_pic_bus_total is equal to 1 */ apic_pci_bus_total++; apic_single_pci_busid = busp->bus_id; } busp++; } ioapicp = (struct apic_io_entry *)busp; if (!bypass_cpus_and_ioapics) apic_io_max = 0; do { if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { apic_io_id[apic_io_max] = ioapicp->io_apicid; apic_io_ver[apic_io_max] = ioapicp->io_version; /*LINTED: pointer cast may result in improper alignment */ apicioadr[apic_io_max] = mapin_ioapic( (uint32_t)ioapicp->io_apic_addr, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); if (!apicioadr[apic_io_max]) return (PSM_FAILURE); ioapic_mask_workaround[apic_io_max] = apic_is_ioapic_AMD_813x( ioapicp->io_apic_addr); apic_ix = apic_io_max; id = ioapic_read(apic_ix, APIC_ID_CMD); hid = (uchar_t)(id >> 24); if (hid != apic_io_id[apic_io_max]) { if (apic_io_id[apic_io_max] == 0) apic_io_id[apic_io_max] = hid; else { /* * set ioapic id to whatever * reported by MPS * * may not need to set index * again ??? * take it out and try */ id = ((uint32_t) apic_io_id[apic_io_max]) << 24; ioapic_write(apic_ix, APIC_ID_CMD, id); } } apic_io_max++; } } ioapicp++; } while (ioapicp->io_entry == APIC_IO_ENTRY); apic_io_intrp = (struct apic_io_intr *)ioapicp; intrp = apic_io_intrp; while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { apic_irq_translate = 1; break; } intrp++; } return (PSM_SUCCESS); } boolean_t apic_cpu_in_range(int cpu) { return ((cpu & ~IRQ_USER_BOUND) < apic_nproc); } uint16_t apic_get_apic_version() { int i; uchar_t min_io_apic_ver = 0; static uint16_t version; /* Cache as value is constant */ static boolean_t found = B_FALSE; /* Accomodate zero version */ if (found == B_FALSE) { found = B_TRUE; /* * Don't assume all IO APICs in the system are the same. * * Set to the minimum version. */ for (i = 0; i < apic_io_max; i++) { if ((apic_io_ver[i] != 0) && ((min_io_apic_ver == 0) || (min_io_apic_ver >= apic_io_ver[i]))) min_io_apic_ver = apic_io_ver[i]; } /* Assume all local APICs are of the same version. */ version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; } return (version); } static struct apic_mpfps_hdr * apic_find_fps_sig(caddr_t cptr, int len) { int i; /* Look for the pattern "_MP_" */ for (i = 0; i < len; i += 16) { if ((*(cptr+i) == '_') && (*(cptr+i+1) == 'M') && (*(cptr+i+2) == 'P') && (*(cptr+i+3) == '_')) /*LINTED: pointer cast may result in improper alignment */ return ((struct apic_mpfps_hdr *)(cptr + i)); } return (NULL); } static int apic_checksum(caddr_t bptr, int len) { int i; uchar_t cksum; cksum = 0; for (i = 0; i < len; i++) cksum += *bptr++; return ((int)cksum); } /* * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable * are also set to NULL. vector->irq is set to a value which cannot map * to a real irq to show that it is free. */ void apic_init_common() { int i, j, indx; int *iptr; /* * Initialize apic_ipls from apic_vectortoipl. This array is * used in apic_intr_enter to determine the IPL to use for the * corresponding vector. On some systems, due to hardware errata * and interrupt sharing, the IPL may not correspond to the IPL listed * in apic_vectortoipl (see apic_addspl and apic_delspl). */ for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { indx = i * APIC_VECTOR_PER_IPL; for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++) apic_ipls[indx] = apic_vectortoipl[i]; } /* cpu 0 is always up (for now) */ apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; iptr = (int *)&apic_irq_table[0]; for (i = 0; i <= APIC_MAX_VECTOR; i++) { apic_level_intr[i] = 0; *iptr++ = NULL; apic_vector_to_irq[i] = APIC_RESV_IRQ; /* These *must* be initted to B_TRUE! */ apic_reprogram_info[i].done = B_TRUE; apic_reprogram_info[i].irqp = NULL; apic_reprogram_info[i].tries = 0; apic_reprogram_info[i].bindcpu = 0; } /* * Allocate a dummy irq table entry for the reserved entry. * This takes care of the race between removing an irq and * clock detecting a CPU in that irq during interrupt load * sampling. */ apic_irq_table[APIC_RESV_IRQ] = kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); } void ioapic_init_intr(int mask_apic) { int apic_ix; struct intrspec ispec; apic_irq_t *irqptr; int i, j; ulong_t iflag; LOCK_INIT_CLEAR(&apic_revector_lock); LOCK_INIT_CLEAR(&apic_defer_reprogram_lock); /* mask interrupt vectors */ for (j = 0; j < apic_io_max && mask_apic; j++) { int intin_max; apic_ix = j; /* Bits 23-16 define the maximum redirection entries */ intin_max = (ioapic_read(apic_ix, APIC_VERS_CMD) >> 16) & 0xff; for (i = 0; i < intin_max; i++) ioapic_write(apic_ix, APIC_RDT_CMD + 2 * i, AV_MASK); } /* * Hack alert: deal with ACPI SCI interrupt chicken/egg here */ if (apic_sci_vect > 0) { /* * acpica has already done add_avintr(); we just * to finish the job by mimicing translate_irq() * * Fake up an intrspec and setup the tables */ ispec.intrspec_vec = apic_sci_vect; ispec.intrspec_pri = SCI_IPL; if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { cmn_err(CE_WARN, "!apic: SCI setup failed"); return; } irqptr = apic_irq_table[apic_sci_vect]; iflag = intr_clear(); lock_set(&apic_ioapic_lock); /* Program I/O APIC */ (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE); lock_clear(&apic_ioapic_lock); intr_restore(iflag); irqptr->airq_share++; } } /* * Add mask bits to disable interrupt vector from happening * at or above IPL. In addition, it should remove mask bits * to enable interrupt vectors below the given IPL. * * Both add and delspl are complicated by the fact that different interrupts * may share IRQs. This can happen in two ways. * 1. The same H/W line is shared by more than 1 device * 1a. with interrupts at different IPLs * 1b. with interrupts at same IPL * 2. We ran out of vectors at a given IPL and started sharing vectors. * 1b and 2 should be handled gracefully, except for the fact some ISRs * will get called often when no interrupt is pending for the device. * For 1a, we just hope that the machine blows up with the person who * set it up that way!. In the meantime, we handle it at the higher IPL. */ /*ARGSUSED*/ int apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl) { uchar_t vector; ulong_t iflag; apic_irq_t *irqptr, *irqheadptr; int irqindex; ASSERT(max_ipl <= UCHAR_MAX); irqindex = IRQINDEX(irqno); if ((irqindex == -1) || (!apic_irq_table[irqindex])) return (PSM_FAILURE); mutex_enter(&airq_mutex); irqptr = irqheadptr = apic_irq_table[irqindex]; DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " "vector=0x%x\n", (void *)irqptr->airq_dip, irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); while (irqptr) { if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) break; irqptr = irqptr->airq_next; } irqptr->airq_share++; mutex_exit(&airq_mutex); /* return if it is not hardware interrupt */ if (irqptr->airq_mps_intr_index == RESERVE_INDEX) return (PSM_SUCCESS); /* Or if there are more interupts at a higher IPL */ if (ipl != max_ipl) return (PSM_SUCCESS); /* * if apic_picinit() has not been called yet, just return. * At the end of apic_picinit(), we will call setup_io_intr(). */ if (!apic_picinit_called) return (PSM_SUCCESS); /* * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, * return failure. Not very elegant, but then we hope the * machine will blow up with ... */ if (irqptr->airq_ipl != max_ipl && !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { vector = apic_allocate_vector(max_ipl, irqindex, 1); if (vector == 0) { irqptr->airq_share--; return (PSM_FAILURE); } irqptr = irqheadptr; apic_mark_vector(irqptr->airq_vector, vector); while (irqptr) { irqptr->airq_vector = vector; irqptr->airq_ipl = (uchar_t)max_ipl; /* * reprogram irq being added and every one else * who is not in the UNINIT state */ if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { apic_record_rdt_entry(irqptr, irqindex); iflag = intr_clear(); lock_set(&apic_ioapic_lock); (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); lock_clear(&apic_ioapic_lock); intr_restore(iflag); } irqptr = irqptr->airq_next; } return (PSM_SUCCESS); } else if (irqptr->airq_ipl != max_ipl && ioapic_mask_workaround[irqptr->airq_ioapicindex]) { /* * We cannot upgrade the vector, but we can change * the IPL that this vector induces. * * Note that we subtract APIC_BASE_VECT from the vector * here because this array is used in apic_intr_enter * (no need to add APIC_BASE_VECT in that hot code * path since we can do it in the rarely-executed path * here). */ apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] = (uchar_t)max_ipl; irqptr = irqheadptr; while (irqptr) { irqptr->airq_ipl = (uchar_t)max_ipl; irqptr = irqptr->airq_next; } return (PSM_SUCCESS); } ASSERT(irqptr); iflag = intr_clear(); lock_set(&apic_ioapic_lock); (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE); lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (PSM_SUCCESS); } /* * Recompute mask bits for the given interrupt vector. * If there is no interrupt servicing routine for this * vector, this function should disable interrupt vector * from happening at all IPLs. If there are still * handlers using the given vector, this function should * disable the given vector from happening below the lowest * IPL of the remaining hadlers. */ /*ARGSUSED*/ int apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl) { uchar_t vector; ushort_t bind_cpu; int intin, irqindex; int apic_ix; apic_irq_t *irqptr, *irqheadptr, *irqp; ulong_t iflag; mutex_enter(&airq_mutex); irqindex = IRQINDEX(irqno); irqptr = irqheadptr = apic_irq_table[irqindex]; DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " "vector=0x%x\n", (void *)irqptr->airq_dip, irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); while (irqptr) { if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) break; irqptr = irqptr->airq_next; } ASSERT(irqptr); irqptr->airq_share--; mutex_exit(&airq_mutex); if (ipl < max_ipl) return (PSM_SUCCESS); /* return if it is not hardware interrupt */ if (irqptr->airq_mps_intr_index == RESERVE_INDEX) return (PSM_SUCCESS); if (!apic_picinit_called) { /* * Clear irq_struct. If two devices shared an intpt * line & 1 unloaded before picinit, we are hosed. But, then * we hope the machine will ... */ irqptr->airq_mps_intr_index = FREE_INDEX; irqptr->airq_temp_cpu = IRQ_UNINIT; apic_free_vector(irqptr->airq_vector); return (PSM_SUCCESS); } /* * Downgrade vector to new max_ipl if needed.If we cannot allocate, * use old IPL. Not very elegant, but then we hope ... */ if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) && !ioapic_mask_workaround[irqptr->airq_ioapicindex]) { apic_irq_t *irqp; if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { apic_mark_vector(irqheadptr->airq_vector, vector); irqp = irqheadptr; while (irqp) { irqp->airq_vector = vector; irqp->airq_ipl = (uchar_t)max_ipl; if (irqp->airq_temp_cpu != IRQ_UNINIT) { apic_record_rdt_entry(irqp, irqindex); iflag = intr_clear(); lock_set(&apic_ioapic_lock); (void) apic_setup_io_intr(irqp, irqindex, B_FALSE); lock_clear(&apic_ioapic_lock); intr_restore(iflag); } irqp = irqp->airq_next; } } } else if (irqptr->airq_ipl != max_ipl && max_ipl != PSM_INVALID_IPL && ioapic_mask_workaround[irqptr->airq_ioapicindex]) { /* * We cannot downgrade the IPL of the vector below the vector's * hardware priority. If we did, it would be possible for a * higher-priority hardware vector to interrupt a CPU running at an IPL * lower than the hardware priority of the interrupting vector (but * higher than the soft IPL of this IRQ). When this happens, we would * then try to drop the IPL BELOW what it was (effectively dropping * below base_spl) which would be potentially catastrophic. * * (e.g. Suppose the hardware vector associated with this IRQ is 0x40 * (hardware IPL of 4). Further assume that the old IPL of this IRQ * was 4, but the new IPL is 1. If we forced vector 0x40 to result in * an IPL of 1, it would be possible for the processor to be executing * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting * the currently-executing ISR. When apic_intr_enter consults * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1 * so even though the processor was running at IPL 4, an IPL 1 * interrupt will have interrupted it, which must not happen)). * * Effectively, this means that the hardware priority corresponding to * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's * hardware priority. * * (In the above example, then, after removal of the IPL 4 device's * interrupt handler, the new IPL will continue to be 4 because the * hardware priority that IPL 1 implies is lower than the hardware * priority of the vector used.) */ /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */ const int apic_ipls_index = irqptr->airq_vector - APIC_BASE_VECT; const int vect_inherent_hwpri = irqptr->airq_vector >> APIC_IPL_SHIFT; /* * If there are still devices using this IRQ, determine the * new ipl to use. */ if (irqptr->airq_share) { int vect_desired_hwpri, hwpri; ASSERT(max_ipl < MAXIPL); vect_desired_hwpri = apic_ipltopri[max_ipl] >> APIC_IPL_SHIFT; /* * If the desired IPL's hardware priority is lower * than that of the vector, use the hardware priority * of the vector to determine the new IPL. */ hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ? vect_inherent_hwpri : vect_desired_hwpri; /* * Now, to get the right index for apic_vectortoipl, * we need to subtract APIC_BASE_VECT from the * hardware-vector-equivalent (in hwpri). Since hwpri * is already shifted, we shift APIC_BASE_VECT before * doing the subtraction. */ hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT); ASSERT(hwpri >= 0); ASSERT(hwpri < MAXIPL); max_ipl = apic_vectortoipl[hwpri]; apic_ipls[apic_ipls_index] = max_ipl; irqp = irqheadptr; while (irqp) { irqp->airq_ipl = (uchar_t)max_ipl; irqp = irqp->airq_next; } } else { /* * No more devices on this IRQ, so reset this vector's * element in apic_ipls to the original IPL for this * vector */ apic_ipls[apic_ipls_index] = apic_vectortoipl[vect_inherent_hwpri]; } } if (irqptr->airq_share) return (PSM_SUCCESS); iflag = intr_clear(); lock_set(&apic_ioapic_lock); if (irqptr->airq_mps_intr_index == MSI_INDEX) { /* * Disable the MSI vector * Make sure we only disable on the last * of the multi-MSI support */ if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) { apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSI, irqptr->airq_ioapicindex); apic_pci_msi_disable_mode(irqptr->airq_dip, DDI_INTR_TYPE_MSI); } } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) { /* * Disable the MSI-X vector * needs to clear its mask and addr/data for each MSI-X */ apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX, irqptr->airq_origirq); /* * Make sure we only disable on the last MSI-X */ if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) { apic_pci_msi_disable_mode(irqptr->airq_dip, DDI_INTR_TYPE_MSIX); } } else { /* * The assumption here is that this is safe, even for * systems with IOAPICs that suffer from the hardware * erratum because all devices have been quiesced before * they unregister their interrupt handlers. If that * assumption turns out to be false, this mask operation * can induce the same erratum result we're trying to * avoid. */ apic_ix = irqptr->airq_ioapicindex; intin = irqptr->airq_intin_no; ioapic_write(apic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK); } if (max_ipl == PSM_INVALID_IPL) { ASSERT(irqheadptr == irqptr); bind_cpu = irqptr->airq_temp_cpu; if (((ushort_t)bind_cpu != IRQ_UNBOUND) && ((ushort_t)bind_cpu != IRQ_UNINIT)) { ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); if (bind_cpu & IRQ_USER_BOUND) { /* If hardbound, temp_cpu == cpu */ bind_cpu &= ~IRQ_USER_BOUND; apic_cpus[bind_cpu].aci_bound--; } else apic_cpus[bind_cpu].aci_temp_bound--; } irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_mps_intr_index = FREE_INDEX; lock_clear(&apic_ioapic_lock); intr_restore(iflag); apic_free_vector(irqptr->airq_vector); return (PSM_SUCCESS); } lock_clear(&apic_ioapic_lock); intr_restore(iflag); mutex_enter(&airq_mutex); if ((irqptr == apic_irq_table[irqindex])) { apic_irq_t *oldirqptr; /* Move valid irq entry to the head */ irqheadptr = oldirqptr = irqptr; irqptr = irqptr->airq_next; ASSERT(irqptr); while (irqptr) { if (irqptr->airq_mps_intr_index != FREE_INDEX) break; oldirqptr = irqptr; irqptr = irqptr->airq_next; } /* remove all invalid ones from the beginning */ apic_irq_table[irqindex] = irqptr; /* * and link them back after the head. The invalid ones * begin with irqheadptr and end at oldirqptr */ oldirqptr->airq_next = irqptr->airq_next; irqptr->airq_next = irqheadptr; } mutex_exit(&airq_mutex); irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_mps_intr_index = FREE_INDEX; return (PSM_SUCCESS); } /* * apic_introp_xlate() replaces apic_translate_irq() and is * called only from apic_intr_ops(). With the new ADII framework, * the priority can no longer be retrieved through i_ddi_get_intrspec(). * It has to be passed in from the caller. */ int apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) { char dev_type[16]; int dev_len, pci_irq, newirq, bustype, devid, busid, i; int irqno = ispec->intrspec_vec; ddi_acc_handle_t cfg_handle; uchar_t ipin; struct apic_io_intr *intrp; iflag_t intr_flag; APIC_HEADER *hp; MADT_INTERRUPT_OVERRIDE *isop; apic_irq_t *airqp; int parent_is_pci_or_pciex = 0; int child_is_pciex = 0; DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, irqno)); dev_len = sizeof (dev_type); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, &dev_len) == DDI_PROP_SUCCESS) { if ((strcmp(dev_type, "pci") == 0) || (strcmp(dev_type, "pciex") == 0)) parent_is_pci_or_pciex = 1; } if (parent_is_pci_or_pciex && ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "pcie-capid-pointer", PCI_CAP_NEXT_PTR_NULL) != PCI_CAP_NEXT_PTR_NULL) { child_is_pciex = 1; } if (DDI_INTR_IS_MSI_OR_MSIX(type)) { if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) { airqp->airq_iflag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; return (apic_vector_to_irq[airqp->airq_vector]); } return (apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type)); } bustype = 0; /* check if we have already translated this irq */ mutex_enter(&airq_mutex); newirq = apic_min_device_irq; for (; newirq <= apic_max_device_irq; newirq++) { airqp = apic_irq_table[newirq]; while (airqp) { if ((airqp->airq_dip == dip) && (airqp->airq_origirq == irqno) && (airqp->airq_mps_intr_index != FREE_INDEX)) { mutex_exit(&airq_mutex); return (VIRTIRQ(newirq, airqp->airq_share_id)); } airqp = airqp->airq_next; } } mutex_exit(&airq_mutex); if (apic_defconf) goto defconf; if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) goto nonpci; if (parent_is_pci_or_pciex) { /* pci device */ if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) goto nonpci; if (busid == 0 && apic_pci_bus_total == 1) busid = (int)apic_single_pci_busid; if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) goto nonpci; ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; pci_config_teardown(&cfg_handle); if (apic_enable_acpi && !apic_use_acpi_madt_only) { if (apic_acpi_translate_pci_irq(dip, busid, devid, ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) goto nonpci; intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL, ispec, &intr_flag, type)) == -1) goto nonpci; return (newirq); } else { pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { if ((pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp)) == -1) goto nonpci; } if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp, ispec, NULL, type)) == -1) goto nonpci; return (newirq); } } else if (strcmp(dev_type, "isa") == 0) bustype = BUS_ISA; else if (strcmp(dev_type, "eisa") == 0) bustype = BUS_EISA; nonpci: if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* search iso entries first */ if (acpi_iso_cnt != 0) { hp = (APIC_HEADER *)acpi_isop; i = 0; while (i < acpi_iso_cnt) { if (hp->Type == APIC_XRUPT_OVERRIDE) { isop = (MADT_INTERRUPT_OVERRIDE *)hp; if (isop->Bus == 0 && isop->Source == irqno) { newirq = isop->Interrupt; intr_flag.intr_po = isop->Polarity; intr_flag.intr_el = isop->TriggerMode; intr_flag.bustype = BUS_ISA; return (apic_setup_irq_table( dip, newirq, NULL, ispec, &intr_flag, type)); } i++; } hp = (APIC_HEADER *)(((char *)hp) + hp->Length); } } intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; intr_flag.intr_el = INTR_EL_EDGE; intr_flag.bustype = BUS_ISA; return (apic_setup_irq_table(dip, irqno, NULL, ispec, &intr_flag, type)); } else { if (bustype == 0) bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; for (i = 0; i < 2; i++) { if (((busid = apic_find_bus_id(bustype)) != -1) && ((intrp = apic_find_io_intr_w_busid(irqno, busid)) != NULL)) { if ((newirq = apic_setup_irq_table(dip, irqno, intrp, ispec, NULL, type)) != -1) { return (newirq); } goto defconf; } bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; } } /* MPS default configuration */ defconf: newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); if (newirq == -1) return (newirq); ASSERT(IRQINDEX(newirq) == irqno); ASSERT(apic_irq_table[irqno]); return (newirq); } /* * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge * needs special handling. We may need to chase up the device tree, * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", * to find the IPIN at the root bus that relates to the IPIN on the * subsidiary bus (for ACPI or MP). We may, however, have an entry * in the MP table or the ACPI namespace for this device itself. * We handle both cases in the search below. */ /* this is the non-acpi version */ static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, struct apic_io_intr **intrp) { dev_info_t *dipp, *dip; int pci_irq; ddi_acc_handle_t cfg_handle; int bridge_devno, bridge_bus; int ipin; dip = idip; /*CONSTCOND*/ while (1) { if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) return (-1); if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { pci_config_teardown(&cfg_handle); if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, NULL) != 0) return (-1); /* * This is the rotating scheme documented in the * PCI-to-PCI spec. If the PCI-to-PCI bridge is * behind another PCI-to-PCI bridge, then it needs * to keep ascending until an interrupt entry is * found or the root is reached. */ ipin = (child_devno + child_ipin) % PCI_INTD; if (bridge_bus == 0 && apic_pci_bus_total == 1) bridge_bus = (int)apic_single_pci_busid; pci_irq = ((bridge_devno & 0x1f) << 2) | (ipin & 0x3); if ((*intrp = apic_find_io_intr_w_busid(pci_irq, bridge_bus)) != NULL) { return (pci_irq); } dip = dipp; child_devno = bridge_devno; child_ipin = ipin; } else { pci_config_teardown(&cfg_handle); return (-1); } } /*LINTED: function will not fall off the bottom */ } static uchar_t acpi_find_ioapic(int irq) { int i; for (i = 0; i < apic_io_max; i++) { if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) return (i); } return (0xFF); /* shouldn't happen */ } /* * See if two irqs are compatible for sharing a vector. * Currently we only support sharing of PCI devices. */ static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) { uint_t level1, po1; uint_t level2, po2; /* Assume active high by default */ po1 = 0; po2 = 0; if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) return (0); if (iflag1.intr_el == INTR_EL_CONFORM) level1 = AV_LEVEL; else level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || (iflag1.intr_po == INTR_PO_CONFORM))) po1 = AV_ACTIVE_LOW; if (iflag2.intr_el == INTR_EL_CONFORM) level2 = AV_LEVEL; else level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || (iflag2.intr_po == INTR_PO_CONFORM))) po2 = AV_ACTIVE_LOW; if ((level1 == level2) && (po1 == po2)) return (1); return (0); } /* * Attempt to share vector with someone else */ static int apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) { #ifdef DEBUG apic_irq_t *tmpirqp = NULL; #endif /* DEBUG */ apic_irq_t *irqptr, dummyirq; int newirq, chosen_irq = -1, share = 127; int lowest, highest, i; uchar_t share_id; DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ lowest -= APIC_VECTOR_PER_IPL; dummyirq.airq_mps_intr_index = intr_index; dummyirq.airq_ioapicindex = ioapicindex; dummyirq.airq_intin_no = ipin; if (intr_flagp) dummyirq.airq_iflag = *intr_flagp; apic_record_rdt_entry(&dummyirq, irqno); for (i = lowest; i <= highest; i++) { newirq = apic_vector_to_irq[i]; if (newirq == APIC_RESV_IRQ) continue; irqptr = apic_irq_table[newirq]; if ((dummyirq.airq_rdt_entry & 0xFF00) != (irqptr->airq_rdt_entry & 0xFF00)) /* not compatible */ continue; if (irqptr->airq_share < share) { share = irqptr->airq_share; chosen_irq = newirq; } } if (chosen_irq != -1) { /* * Assign a share id which is free or which is larger * than the largest one. */ share_id = 1; mutex_enter(&airq_mutex); irqptr = apic_irq_table[chosen_irq]; while (irqptr) { if (irqptr->airq_mps_intr_index == FREE_INDEX) { share_id = irqptr->airq_share_id; break; } if (share_id <= irqptr->airq_share_id) share_id = irqptr->airq_share_id + 1; #ifdef DEBUG tmpirqp = irqptr; #endif /* DEBUG */ irqptr = irqptr->airq_next; } if (!irqptr) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_next = apic_irq_table[chosen_irq]->airq_next; apic_irq_table[chosen_irq]->airq_next = irqptr; #ifdef DEBUG tmpirqp = apic_irq_table[chosen_irq]; #endif /* DEBUG */ } irqptr->airq_mps_intr_index = intr_index; irqptr->airq_ioapicindex = ioapicindex; irqptr->airq_intin_no = ipin; if (intr_flagp) irqptr->airq_iflag = *intr_flagp; irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; irqptr->airq_share_id = share_id; apic_record_rdt_entry(irqptr, irqno); *irqptrp = irqptr; #ifdef DEBUG /* shuffle the pointers to test apic_delspl path */ if (tmpirqp) { tmpirqp->airq_next = irqptr->airq_next; irqptr->airq_next = apic_irq_table[chosen_irq]; apic_irq_table[chosen_irq] = irqptr; } #endif /* DEBUG */ mutex_exit(&airq_mutex); return (VIRTIRQ(chosen_irq, share_id)); } return (-1); } /* * */ static int apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, int type) { int origirq = ispec->intrspec_vec; uchar_t ipl = ispec->intrspec_pri; int newirq, intr_index; uchar_t ipin, ioapic, ioapicindex, vector; apic_irq_t *irqptr; major_t major; dev_info_t *sdip; DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); ASSERT(ispec != NULL); major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; if (DDI_INTR_IS_MSI_OR_MSIX(type)) { /* MSI/X doesn't need to setup ioapic stuffs */ ioapicindex = 0xff; ioapic = 0xff; ipin = (uchar_t)0xff; intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : MSIX_INDEX; mutex_enter(&airq_mutex); if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) { mutex_exit(&airq_mutex); /* need an irq for MSI/X to index into autovect[] */ cmn_err(CE_WARN, "No interrupt irq: %s instance %d", ddi_get_name(dip), ddi_get_instance(dip)); return (-1); } mutex_exit(&airq_mutex); } else if (intrp != NULL) { intr_index = (int)(intrp - apic_io_intrp); ioapic = intrp->intr_destid; ipin = intrp->intr_destintin; /* Find ioapicindex. If destid was ALL, we will exit with 0. */ for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) if (apic_io_id[ioapicindex] == ioapic) break; ASSERT((ioapic == apic_io_id[ioapicindex]) || (ioapic == INTR_ALL_APIC)); /* check whether this intin# has been used by another irqno */ if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { return (newirq); } } else if (intr_flagp != NULL) { /* ACPI case */ intr_index = ACPI_INDEX; ioapicindex = acpi_find_ioapic(irqno); ASSERT(ioapicindex != 0xFF); ioapic = apic_io_id[ioapicindex]; ipin = irqno - apic_io_vectbase[ioapicindex]; if (apic_irq_table[irqno] && apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && apic_irq_table[irqno]->airq_ioapicindex == ioapicindex); return (irqno); } } else { /* default configuration */ ioapicindex = 0; ioapic = apic_io_id[ioapicindex]; ipin = (uchar_t)irqno; intr_index = DEFAULT_INDEX; } if (ispec == NULL) { APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", irqno)); } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, ipl, ioapicindex, ipin, &irqptr)) != -1) { irqptr->airq_ipl = ipl; irqptr->airq_origirq = (uchar_t)origirq; irqptr->airq_dip = dip; irqptr->airq_major = major; sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; /* This is OK to do really */ if (sdip == NULL) { cmn_err(CE_WARN, "Sharing vectors: %s" " instance %d and SCI", ddi_get_name(dip), ddi_get_instance(dip)); } else { cmn_err(CE_WARN, "Sharing vectors: %s" " instance %d and %s instance %d", ddi_get_name(sdip), ddi_get_instance(sdip), ddi_get_name(dip), ddi_get_instance(dip)); } return (newirq); } /* try high priority allocation now that share has failed */ if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { cmn_err(CE_WARN, "No interrupt vector: %s instance %d", ddi_get_name(dip), ddi_get_instance(dip)); return (-1); } } mutex_enter(&airq_mutex); if (apic_irq_table[irqno] == NULL) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; apic_irq_table[irqno] = irqptr; } else { irqptr = apic_irq_table[irqno]; if (irqptr->airq_mps_intr_index != FREE_INDEX) { /* * The slot is used by another irqno, so allocate * a free irqno for this interrupt */ newirq = apic_allocate_irq(apic_first_avail_irq); if (newirq == -1) { mutex_exit(&airq_mutex); return (-1); } irqno = newirq; irqptr = apic_irq_table[irqno]; if (irqptr == NULL) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; apic_irq_table[irqno] = irqptr; } vector = apic_modify_vector(vector, newirq); } } apic_max_device_irq = max(irqno, apic_max_device_irq); apic_min_device_irq = min(irqno, apic_min_device_irq); mutex_exit(&airq_mutex); irqptr->airq_ioapicindex = ioapicindex; irqptr->airq_intin_no = ipin; irqptr->airq_ipl = ipl; irqptr->airq_vector = vector; irqptr->airq_origirq = (uchar_t)origirq; irqptr->airq_share_id = 0; irqptr->airq_mps_intr_index = (short)intr_index; irqptr->airq_dip = dip; irqptr->airq_major = major; irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); if (intr_flagp) irqptr->airq_iflag = *intr_flagp; if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { /* setup I/O APIC entry for non-MSI/X interrupts */ apic_record_rdt_entry(irqptr, irqno); } return (irqno); } /* * return the cpu to which this intr should be bound. * Check properties or any other mechanism to see if user wants it * bound to a specific CPU. If so, return the cpu id with high bit set. * If not, use the policy to choose a cpu and return the id. */ ushort_t apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) { int instance, instno, prop_len, bind_cpu, count; uint_t i, rc; ushort_t cpu; major_t major; char *name, *drv_name, *prop_val, *cptr; char prop_name[32]; if (apic_intr_policy == INTR_LOWEST_PRIORITY) return (IRQ_UNBOUND); drv_name = NULL; rc = DDI_PROP_NOT_FOUND; major = (major_t)-1; if (dip != NULL) { name = ddi_get_name(dip); major = ddi_name_to_major(name); drv_name = ddi_major_to_name(major); instance = ddi_get_instance(dip); if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { i = apic_min_device_irq; for (; i <= apic_max_device_irq; i++) { if ((i == irq) || (apic_irq_table[i] == NULL) || (apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX)) continue; if ((apic_irq_table[i]->airq_major == major) && (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) { cpu = apic_irq_table[i]->airq_cpu; cmn_err(CE_CONT, "!%s: %s (%s) instance #%d " "vector 0x%x ioapic 0x%x " "intin 0x%x is bound to cpu %d\n", psm_name, name, drv_name, instance, irq, ioapicid, intin, cpu); return (cpu); } } } /* * search for "drvname"_intpt_bind_cpus property first, the * syntax of the property should be "a[,b,c,...]" where * instance 0 binds to cpu a, instance 1 binds to cpu b, * instance 3 binds to cpu c... * ddi_getlongprop() will search /option first, then / * if "drvname"_intpt_bind_cpus doesn't exist, then find * intpt_bind_cpus property. The syntax is the same, and * it applies to all the devices if its "drvname" specific * property doesn't exist */ (void) strcpy(prop_name, drv_name); (void) strcat(prop_name, "_intpt_bind_cpus"); rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, (caddr_t)&prop_val, &prop_len); if (rc != DDI_PROP_SUCCESS) { rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); } } if (rc == DDI_PROP_SUCCESS) { for (i = count = 0; i < (prop_len - 1); i++) if (prop_val[i] == ',') count++; if (prop_val[i-1] != ',') count++; /* * if somehow the binding instances defined in the * property are not enough for this instno., then * reuse the pattern for the next instance until * it reaches the requested instno */ instno = instance % count; i = 0; cptr = prop_val; while (i < instno) if (*cptr++ == ',') i++; bind_cpu = stoi(&cptr); kmem_free(prop_val, prop_len); /* if specific cpu is bogus, then default to cpu 0 */ if (bind_cpu >= apic_nproc) { cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present", psm_name, prop_name, prop_val, bind_cpu); bind_cpu = 0; } else { /* indicate that we are bound at user request */ bind_cpu |= IRQ_USER_BOUND; } /* * no need to check apic_cpus[].aci_status, if specific cpu is * not up, then post_cpu_start will handle it. */ } else { bind_cpu = apic_next_bind_cpu++; if (bind_cpu >= apic_nproc) { apic_next_bind_cpu = 1; bind_cpu = 0; } } if (drv_name != NULL) cmn_err(CE_CONT, "!%s: %s (%s) instance %d " "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", psm_name, name, drv_name, instance, irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); else cmn_err(CE_CONT, "!%s: " "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", psm_name, irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); return ((ushort_t)bind_cpu); } static struct apic_io_intr * apic_find_io_intr_w_busid(int irqno, int busid) { struct apic_io_intr *intrp; /* * It can have more than 1 entry with same source bus IRQ, * but unique with the source bus id */ intrp = apic_io_intrp; if (intrp != NULL) { while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if (intrp->intr_irq == irqno && intrp->intr_busid == busid && intrp->intr_type == IO_INTR_INT) return (intrp); intrp++; } } APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" "busid %x:%x\n", irqno, busid)); return ((struct apic_io_intr *)NULL); } struct mps_bus_info { char *bus_name; int bus_id; } bus_info_array[] = { "ISA ", BUS_ISA, "PCI ", BUS_PCI, "EISA ", BUS_EISA, "XPRESS", BUS_XPRESS, "PCMCIA", BUS_PCMCIA, "VL ", BUS_VL, "CBUS ", BUS_CBUS, "CBUSII", BUS_CBUSII, "FUTURE", BUS_FUTURE, "INTERN", BUS_INTERN, "MBI ", BUS_MBI, "MBII ", BUS_MBII, "MPI ", BUS_MPI, "MPSA ", BUS_MPSA, "NUBUS ", BUS_NUBUS, "TC ", BUS_TC, "VME ", BUS_VME, "PCI-E ", BUS_PCIE }; static int apic_find_bus_type(char *bus) { int i = 0; for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) if (strncmp(bus, bus_info_array[i].bus_name, strlen(bus_info_array[i].bus_name)) == 0) return (bus_info_array[i].bus_id); APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); return (0); } static int apic_find_bus(int busid) { struct apic_bus *busp; busp = apic_busp; while (busp->bus_entry == APIC_BUS_ENTRY) { if (busp->bus_id == busid) return (apic_find_bus_type((char *)&busp->bus_str1)); busp++; } APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); return (0); } static int apic_find_bus_id(int bustype) { struct apic_bus *busp; busp = apic_busp; while (busp->bus_entry == APIC_BUS_ENTRY) { if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) return (busp->bus_id); busp++; } APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", bustype)); return (-1); } /* * Check if a particular irq need to be reserved for any io_intr */ static struct apic_io_intr * apic_find_io_intr(int irqno) { struct apic_io_intr *intrp; intrp = apic_io_intrp; if (intrp != NULL) { while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if (intrp->intr_irq == irqno && intrp->intr_type == IO_INTR_INT) return (intrp); intrp++; } } return ((struct apic_io_intr *)NULL); } /* * Check if the given ioapicindex intin combination has already been assigned * an irq. If so return irqno. Else -1 */ static int apic_find_intin(uchar_t ioapic, uchar_t intin) { apic_irq_t *irqptr; int i; /* find ioapic and intin in the apic_irq_table[] and return the index */ for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { irqptr = apic_irq_table[i]; while (irqptr) { if ((irqptr->airq_mps_intr_index >= 0) && (irqptr->airq_intin_no == intin) && (irqptr->airq_ioapicindex == ioapic)) { APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " "entry for ioapic:intin %x:%x " "shared interrupts ?", ioapic, intin)); return (i); } irqptr = irqptr->airq_next; } } return (-1); } int apic_allocate_irq(int irq) { int freeirq, i; if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, (irq - 1))) == -1) { /* * if BIOS really defines every single irq in the mps * table, then don't worry about conflicting with * them, just use any free slot in apic_irq_table */ for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { if ((apic_irq_table[i] == NULL) || apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { freeirq = i; break; } } if (freeirq == -1) { /* This shouldn't happen, but just in case */ cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); return (-1); } } if (apic_irq_table[freeirq] == NULL) { apic_irq_table[freeirq] = kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); if (apic_irq_table[freeirq] == NULL) { cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", psm_name); return (-1); } apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; } return (freeirq); } static int apic_find_free_irq(int start, int end) { int i; for (i = start; i <= end; i++) /* Check if any I/O entry needs this IRQ */ if (apic_find_io_intr(i) == NULL) { /* Then see if it is free */ if ((apic_irq_table[i] == NULL) || (apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX)) { return (i); } } return (-1); } /* * Mark vector as being in the process of being deleted. Interrupts * may still come in on some CPU. The moment an interrupt comes with * the new vector, we know we can free the old one. Called only from * addspl and delspl with interrupts disabled. Because an interrupt * can be shared, but no interrupt from either device may come in, * we also use a timeout mechanism, which we arbitrarily set to * apic_revector_timeout microseconds. */ static void apic_mark_vector(uchar_t oldvector, uchar_t newvector) { ulong_t iflag; iflag = intr_clear(); lock_set(&apic_revector_lock); if (!apic_oldvec_to_newvec) { apic_oldvec_to_newvec = kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, KM_NOSLEEP); if (!apic_oldvec_to_newvec) { /* * This failure is not catastrophic. * But, the oldvec will never be freed. */ apic_error |= APIC_ERR_MARK_VECTOR_FAIL; lock_clear(&apic_revector_lock); intr_restore(iflag); return; } apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; } /* See if we already did this for drivers which do double addintrs */ if (apic_oldvec_to_newvec[oldvector] != newvector) { apic_oldvec_to_newvec[oldvector] = newvector; apic_newvec_to_oldvec[newvector] = oldvector; apic_revector_pending++; } lock_clear(&apic_revector_lock); intr_restore(iflag); (void) timeout(apic_xlate_vector_free_timeout_handler, (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); } /* * xlate_vector is called from intr_enter if revector_pending is set. * It will xlate it if needed and mark the old vector as free. */ uchar_t apic_xlate_vector(uchar_t vector) { uchar_t newvector, oldvector = 0; lock_set(&apic_revector_lock); /* Do we really need to do this ? */ if (!apic_revector_pending) { lock_clear(&apic_revector_lock); return (vector); } if ((newvector = apic_oldvec_to_newvec[vector]) != 0) oldvector = vector; else { /* * The incoming vector is new . See if a stale entry is * remaining */ if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) newvector = vector; } if (oldvector) { apic_revector_pending--; apic_oldvec_to_newvec[oldvector] = 0; apic_newvec_to_oldvec[newvector] = 0; apic_free_vector(oldvector); lock_clear(&apic_revector_lock); /* There could have been more than one reprogramming! */ return (apic_xlate_vector(newvector)); } lock_clear(&apic_revector_lock); return (vector); } void apic_xlate_vector_free_timeout_handler(void *arg) { ulong_t iflag; uchar_t oldvector, newvector; oldvector = (uchar_t)(uintptr_t)arg; iflag = intr_clear(); lock_set(&apic_revector_lock); if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { apic_free_vector(oldvector); apic_oldvec_to_newvec[oldvector] = 0; apic_newvec_to_oldvec[newvector] = 0; apic_revector_pending--; } lock_clear(&apic_revector_lock); intr_restore(iflag); } /* * compute the polarity, trigger mode and vector for programming into * the I/O apic and record in airq_rdt_entry. */ static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq) { int ioapicindex, bus_type, vector; short intr_index; uint_t level, po, io_po; struct apic_io_intr *iointrp; intr_index = irqptr->airq_mps_intr_index; DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, (void *)irqptr->airq_dip, irqptr->airq_vector)); if (intr_index == RESERVE_INDEX) { apic_error |= APIC_ERR_INVALID_INDEX; return; } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { return; } vector = irqptr->airq_vector; ioapicindex = irqptr->airq_ioapicindex; /* Assume edge triggered by default */ level = 0; /* Assume active high by default */ po = 0; if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { ASSERT(irq < 16); if (eisa_level_intr_mask & (1 << irq)) level = AV_LEVEL; if (intr_index == FREE_INDEX && apic_defconf == 0) apic_error |= APIC_ERR_INVALID_INDEX; } else if (intr_index == ACPI_INDEX) { bus_type = irqptr->airq_iflag.bustype; if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { if (bus_type == BUS_PCI) level = AV_LEVEL; } else level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level && ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && bus_type == BUS_PCI))) po = AV_ACTIVE_LOW; } else { iointrp = apic_io_intrp + intr_index; bus_type = apic_find_bus(iointrp->intr_busid); if (iointrp->intr_el == INTR_EL_CONFORM) { if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) level = AV_LEVEL; else if (bus_type == BUS_PCI) level = AV_LEVEL; } else level = (iointrp->intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || (iointrp->intr_po == INTR_PO_CONFORM && bus_type == BUS_PCI))) po = AV_ACTIVE_LOW; } if (level) apic_level_intr[irq] = 1; /* * The 82489DX External APIC cannot do active low polarity interrupts. */ if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) io_po = po; else io_po = 0; if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", ioapicindex, irqptr->airq_intin_no, level, io_po, vector); irqptr->airq_rdt_entry = level|io_po|vector; } /* * Bind interrupt corresponding to irq_ptr to bind_cpu. * Must be called with interrupts disabled and apic_ioapic_lock held */ int apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, struct ioapic_reprogram_data *drep) { int ioapicindex, intin_no; ushort_t airq_temp_cpu; apic_cpus_info_t *cpu_infop; uint32_t rdt_entry; int which_irq; which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; intin_no = irq_ptr->airq_intin_no; ioapicindex = irq_ptr->airq_ioapicindex; airq_temp_cpu = irq_ptr->airq_temp_cpu; if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { if (airq_temp_cpu & IRQ_USER_BOUND) /* Mask off high bit so it can be used as array index */ airq_temp_cpu &= ~IRQ_USER_BOUND; ASSERT(airq_temp_cpu < apic_nproc); } /* * Can't bind to a CPU that's not accepting interrupts: */ cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) return (1); /* * If we are about to change the interrupt vector for this interrupt, * and this interrupt is level-triggered, attached to an IOAPIC, * has been delivered to a CPU and that CPU has not handled it * yet, we cannot reprogram the IOAPIC now. */ if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no); if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) && apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) { return (0); } /* * NOTE: We do not unmask the RDT here, as an interrupt MAY * still come in before we have a chance to reprogram it below. * The reprogramming below will simultaneously change and * unmask the RDT entry. */ if ((ushort_t)bind_cpu == IRQ_UNBOUND) { rdt_entry = AV_LDEST | AV_LOPRI | irq_ptr->airq_rdt_entry; /* Write the RDT entry -- no specific CPU binding */ WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, AV_TOALL); if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) apic_cpus[airq_temp_cpu].aci_temp_bound--; /* * Write the vector, trigger, and polarity portion of * the RDT */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, rdt_entry); irq_ptr->airq_temp_cpu = IRQ_UNBOUND; return (0); } } if (bind_cpu & IRQ_USER_BOUND) { cpu_infop->aci_bound++; } else { cpu_infop->aci_temp_bound++; } ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { /* Write the RDT entry -- bind to a specific CPU: */ WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no, cpu_infop->aci_local_id << APIC_ID_BIT_OFFSET); } if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { apic_cpus[airq_temp_cpu].aci_temp_bound--; } if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { rdt_entry = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry; /* Write the vector, trigger, and polarity portion of the RDT */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no, rdt_entry); } else { int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; if (type == DDI_INTR_TYPE_MSI) { if (irq_ptr->airq_ioapicindex == irq_ptr->airq_origirq) { /* first one */ DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " "apic_pci_msi_enable_vector\n")); apic_pci_msi_enable_vector(irq_ptr->airq_dip, type, which_irq, irq_ptr->airq_vector, irq_ptr->airq_intin_no, cpu_infop->aci_local_id); } if ((irq_ptr->airq_ioapicindex + irq_ptr->airq_intin_no - 1) == irq_ptr->airq_origirq) { /* last one */ DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " "apic_pci_msi_enable_mode\n")); apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, which_irq); } } else { /* MSI-X */ apic_pci_msi_enable_vector(irq_ptr->airq_dip, type, irq_ptr->airq_origirq, irq_ptr->airq_vector, 1, cpu_infop->aci_local_id); apic_pci_msi_enable_mode(irq_ptr->airq_dip, type, irq_ptr->airq_origirq); } } irq_ptr->airq_temp_cpu = (ushort_t)bind_cpu; apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); return (0); } static void apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & AV_REMOTE_IRR) != 0) { /* * Trying to clear the bit through normal * channels has failed. So as a last-ditch * effort, try to set the trigger mode to * edge, then to level. This has been * observed to work on many systems. */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & ~AV_LEVEL); WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) | AV_LEVEL); /* * If the bit's STILL set, this interrupt may * be hosed. */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & AV_REMOTE_IRR) != 0) { prom_printf("%s: Remote IRR still " "not clear for IOAPIC %d intin %d.\n" "\tInterrupts to this pin may cease " "functioning.\n", psm_name, ioapic_ix, intin_no); #ifdef DEBUG apic_last_ditch_reprogram_failures++; #endif } } } /* * This function is protected by apic_ioapic_lock coupled with the * fact that interrupts are disabled. */ static void delete_defer_repro_ent(int which_irq) { ASSERT(which_irq >= 0); ASSERT(which_irq <= 255); if (apic_reprogram_info[which_irq].done) return; apic_reprogram_info[which_irq].done = B_TRUE; #ifdef DEBUG apic_defer_repro_total_retries += apic_reprogram_info[which_irq].tries; apic_defer_repro_successes++; #endif if (--apic_reprogram_outstanding == 0) { setlvlx = psm_intr_exit_fn(); } } /* * Interrupts must be disabled during this function to prevent * self-deadlock. Interrupts are disabled because this function * is called from apic_check_stuck_interrupt(), which is called * from apic_rebind(), which requires its caller to disable interrupts. */ static void add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu) { ASSERT(which_irq >= 0); ASSERT(which_irq <= 255); /* * On the off-chance that there's already a deferred * reprogramming on this irq, check, and if so, just update the * CPU and irq pointer to which the interrupt is targeted, then return. */ if (!apic_reprogram_info[which_irq].done) { apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; apic_reprogram_info[which_irq].irqp = irq_ptr; return; } apic_reprogram_info[which_irq].irqp = irq_ptr; apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; apic_reprogram_info[which_irq].tries = 0; /* * This must be the last thing set, since we're not * grabbing any locks, apic_try_deferred_reprogram() will * make its decision about using this entry iff done * is false. */ apic_reprogram_info[which_irq].done = B_FALSE; /* * If there were previously no deferred reprogrammings, change * setlvlx to call apic_try_deferred_reprogram() */ if (++apic_reprogram_outstanding == 1) { setlvlx = apic_try_deferred_reprogram; } } static void apic_try_deferred_reprogram(int prev_ipl, int irq) { int reproirq; ulong_t iflag; struct ioapic_reprogram_data *drep; (*psm_intr_exit_fn())(prev_ipl, irq); if (!lock_try(&apic_defer_reprogram_lock)) { return; } /* * Acquire the apic_ioapic_lock so that any other operations that * may affect the apic_reprogram_info state are serialized. * It's still possible for the last deferred reprogramming to clear * between the time we entered this function and the time we get to * the for loop below. In that case, *setlvlx will have been set * back to *_intr_exit and drep will be NULL. (There's no way to * stop that from happening -- we would need to grab a lock before * calling *setlvlx, which is neither realistic nor prudent). */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); /* * For each deferred RDT entry, try to reprogram it now. Note that * there is no lock acquisition to read apic_reprogram_info because * '.done' is set only after the other fields in the structure are set. */ drep = NULL; for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) { if (apic_reprogram_info[reproirq].done == B_FALSE) { drep = &apic_reprogram_info[reproirq]; break; } } /* * Either we found a deferred action to perform, or * we entered this function spuriously, after *setlvlx * was restored to point to *_intr_exit. Any other * permutation is invalid. */ ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn()); /* * Though we can't really do anything about errors * at this point, keep track of them for reporting. * Note that it is very possible for apic_setup_io_intr * to re-register this very timeout if the Remote IRR bit * has not yet cleared. */ #ifdef DEBUG if (drep != NULL) { if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) { apic_deferred_setup_failures++; } } else { apic_deferred_spurious_enters++; } #else if (drep != NULL) (void) apic_setup_io_intr(drep, reproirq, B_TRUE); #endif lock_clear(&apic_ioapic_lock); intr_restore(iflag); lock_clear(&apic_defer_reprogram_lock); } static void apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no) { int waited; /* * Wait for the delivery pending bit to clear. */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { /* * If we're still waiting on the delivery of this interrupt, * continue to wait here until it is delivered (this should be * a very small amount of time, but include a timeout just in * case). */ for (waited = 0; waited < apic_max_reps_clear_pending; waited++) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & AV_PENDING) == 0) { break; } } } } /* * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR * bit set. Calls functions that modify the function that setlvlx points to, * so that the reprogramming can be retried very shortly. * * This function will mask the RDT entry if the interrupt is level-triggered. * (The caller is responsible for unmasking the RDT entry.) * * Returns non-zero if the caller should defer IOAPIC reprogramming. */ static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq, struct ioapic_reprogram_data *drep) { int32_t rdt_entry; int waited; int reps = 0; /* * Wait for the delivery pending bit to clear. */ do { ++reps; apic_ioapic_wait_pending_clear(ioapic_ix, intin_no); /* * Mask the RDT entry, but only if it's a level-triggered * interrupt */ rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no); if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { /* Mask it */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, AV_MASK | rdt_entry); } if ((rdt_entry & AV_LEVEL) == AV_LEVEL) { /* * If there was a race and an interrupt was injected * just before we masked, check for that case here. * Then, unmask the RDT entry and try again. If we're * on our last try, don't unmask (because we want the * RDT entry to remain masked for the rest of the * function). */ rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no); if ((rdt_entry & AV_PENDING) && (reps < apic_max_reps_clear_pending)) { /* Unmask it */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, rdt_entry & ~AV_MASK); } } } while ((rdt_entry & AV_PENDING) && (reps < apic_max_reps_clear_pending)); #ifdef DEBUG if (rdt_entry & AV_PENDING) apic_intr_deliver_timeouts++; #endif /* * If the remote IRR bit is set, then the interrupt has been sent * to a CPU for processing. We have no choice but to wait for * that CPU to process the interrupt, at which point the remote IRR * bit will be cleared. */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { /* * If the CPU that this RDT is bound to is NOT the current * CPU, wait until that CPU handles the interrupt and ACKs * it. If this interrupt is not bound to any CPU (that is, * if it's bound to the logical destination of "anyone"), it * may have been delivered to the current CPU so handle that * case by deferring the reprogramming (below). */ if ((old_bind_cpu != IRQ_UNBOUND) && (old_bind_cpu != IRQ_UNINIT) && (old_bind_cpu != psm_get_cpu_id())) { for (waited = 0; waited < apic_max_reps_clear_pending; waited++) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & AV_REMOTE_IRR) == 0) { delete_defer_repro_ent(which_irq); /* Remote IRR has cleared! */ return (0); } } } /* * If we waited and the Remote IRR bit is still not cleared, * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS * times for this interrupt, try the last-ditch workaround: */ if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) { apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no); /* Mark this one as reprogrammed: */ delete_defer_repro_ent(which_irq); return (0); } else { #ifdef DEBUG apic_intr_deferrals++; #endif /* * If waiting for the Remote IRR bit (above) didn't * allow it to clear, defer the reprogramming. * Add a new deferred-programming entry if the * caller passed a NULL one (and update the existing one * in case anything changed). */ add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu); if (drep) drep->tries++; /* Inform caller to defer IOAPIC programming: */ return (1); } } /* Remote IRR is clear */ delete_defer_repro_ent(which_irq); return (0); } /* * Called to migrate all interrupts at an irq to another cpu. * Must be called with interrupts disabled and apic_ioapic_lock held */ int apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu) { apic_irq_t *irqptr = irq_ptr; int retval = 0; while (irqptr) { if (irqptr->airq_temp_cpu != IRQ_UNINIT) retval |= apic_rebind(irqptr, bind_cpu, NULL); irqptr = irqptr->airq_next; } return (retval); } /* * apic_intr_redistribute does all the messy computations for identifying * which interrupt to move to which CPU. Currently we do just one interrupt * at a time. This reduces the time we spent doing all this within clock * interrupt. When it is done in idle, we could do more than 1. * First we find the most busy and the most free CPU (time in ISR only) * skipping those CPUs that has been identified as being ineligible (cpu_skip) * Then we look for IRQs which are closest to the difference between the * most busy CPU and the average ISR load. We try to find one whose load * is less than difference.If none exists, then we chose one larger than the * difference, provided it does not make the most idle CPU worse than the * most busy one. In the end, we clear all the busy fields for CPUs. For * IRQs, they are cleared as they are scanned. */ void apic_intr_redistribute() { int busiest_cpu, most_free_cpu; int cpu_free, cpu_busy, max_busy, min_busy; int min_free, diff; int average_busy, cpus_online; int i, busy; ulong_t iflag; apic_cpus_info_t *cpu_infop; apic_irq_t *min_busy_irq = NULL; apic_irq_t *max_busy_irq = NULL; busiest_cpu = most_free_cpu = -1; cpu_free = cpu_busy = max_busy = average_busy = 0; min_free = apic_sample_factor_redistribution; cpus_online = 0; /* * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu * without ioapic_lock. That is OK as we are just doing statistical * sampling anyway and any inaccuracy now will get corrected next time * The call to rebind which actually changes things will make sure * we are consistent. */ for (i = 0; i < apic_nproc; i++) { if (!(apic_redist_cpu_skip & (1 << i)) && (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { cpu_infop = &apic_cpus[i]; /* * If no unbound interrupts or only 1 total on this * CPU, skip */ if (!cpu_infop->aci_temp_bound || (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) == 1) { apic_redist_cpu_skip |= 1 << i; continue; } busy = cpu_infop->aci_busy; average_busy += busy; cpus_online++; if (max_busy < busy) { max_busy = busy; busiest_cpu = i; } if (min_free > busy) { min_free = busy; most_free_cpu = i; } if (busy > apic_int_busy_mark) { cpu_busy |= 1 << i; } else { if (busy < apic_int_free_mark) cpu_free |= 1 << i; } } } if ((cpu_busy && cpu_free) || (max_busy >= (min_free + apic_diff_for_redistribution))) { apic_num_imbalance++; #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf( "redistribute busy=%x free=%x max=%x min=%x", cpu_busy, cpu_free, max_busy, min_free); } #endif /* DEBUG */ average_busy /= cpus_online; diff = max_busy - average_busy; min_busy = max_busy; /* start with the max possible value */ max_busy = 0; min_busy_irq = max_busy_irq = NULL; i = apic_min_device_irq; for (; i < apic_max_device_irq; i++) { apic_irq_t *irq_ptr; /* Change to linked list per CPU ? */ if ((irq_ptr = apic_irq_table[i]) == NULL) continue; /* Check for irq_busy & decide which one to move */ /* Also zero them for next round */ if ((irq_ptr->airq_temp_cpu == busiest_cpu) && irq_ptr->airq_busy) { if (irq_ptr->airq_busy < diff) { /* * Check for least busy CPU, * best fit or what ? */ if (max_busy < irq_ptr->airq_busy) { /* * Most busy within the * required differential */ max_busy = irq_ptr->airq_busy; max_busy_irq = irq_ptr; } } else { if (min_busy > irq_ptr->airq_busy) { /* * least busy, but more than * the reqd diff */ if (min_busy < (diff + average_busy - min_free)) { /* * Making sure new cpu * will not end up * worse */ min_busy = irq_ptr->airq_busy; min_busy_irq = irq_ptr; } } } } irq_ptr->airq_busy = 0; } if (max_busy_irq != NULL) { #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf("rebinding %x to %x", max_busy_irq->airq_vector, most_free_cpu); } #endif /* DEBUG */ iflag = intr_clear(); if (lock_try(&apic_ioapic_lock)) { if (apic_rebind_all(max_busy_irq, most_free_cpu) == 0) { /* Make change permenant */ max_busy_irq->airq_cpu = (ushort_t)most_free_cpu; } lock_clear(&apic_ioapic_lock); } intr_restore(iflag); } else if (min_busy_irq != NULL) { #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf("rebinding %x to %x", min_busy_irq->airq_vector, most_free_cpu); } #endif /* DEBUG */ iflag = intr_clear(); if (lock_try(&apic_ioapic_lock)) { if (apic_rebind_all(min_busy_irq, most_free_cpu) == 0) { /* Make change permenant */ min_busy_irq->airq_cpu = (ushort_t)most_free_cpu; } lock_clear(&apic_ioapic_lock); } intr_restore(iflag); } else { if (cpu_busy != (1 << busiest_cpu)) { apic_redist_cpu_skip |= 1 << busiest_cpu; /* * We leave cpu_skip set so that next time we * can choose another cpu */ } } apic_num_rebind++; } else { /* * found nothing. Could be that we skipped over valid CPUs * or we have balanced everything. If we had a variable * ticks_for_redistribution, it could be increased here. * apic_int_busy, int_free etc would also need to be * changed. */ if (apic_redist_cpu_skip) apic_redist_cpu_skip = 0; } for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_busy = 0; } } void apic_cleanup_busy() { int i; apic_irq_t *irq_ptr; for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_busy = 0; } for (i = apic_min_device_irq; i < apic_max_device_irq; i++) { if ((irq_ptr = apic_irq_table[i]) != NULL) irq_ptr->airq_busy = 0; } } static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, int ipin, int *pci_irqp, iflag_t *intr_flagp) { int status; acpi_psm_lnk_t acpipsmlnk; if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, intr_flagp)) == ACPI_PSM_SUCCESS) { APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " "from cache for device %s, instance #%d\n", psm_name, *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); return (status); } bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, &acpipsmlnk)) == ACPI_PSM_FAILURE) { APIC_VERBOSE_IRQ((CE_WARN, "%s: " " acpi_translate_pci_irq failed for device %s, instance" " #%d", psm_name, ddi_get_name(dip), ddi_get_instance(dip))); return (status); } if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, intr_flagp); if (status != ACPI_PSM_SUCCESS) { status = acpi_get_current_irq_resource(&acpipsmlnk, pci_irqp, intr_flagp); } } if (status == ACPI_PSM_SUCCESS) { acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, intr_flagp, &acpipsmlnk); APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " "new irq %d for device %s, instance #%d\n", psm_name, *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); } return (status); } /* * Adds an entry to the irq list passed in, and returns the new list. * Entries are added in priority order (lower numerical priorities are * placed closer to the head of the list) */ static prs_irq_list_t * acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, iflag_t *iflagp, acpi_prs_private_t *prsprvp) { struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); newent->list_prio = priority; newent->irq = irq; newent->intrflags = *iflagp; newent->prsprv = *prsprvp; /* ->next is NULL from kmem_zalloc */ /* * New list -- return the new entry as the list. */ if (listp == NULL) return (newent); /* * Save original list pointer for return (since we're not modifying * the head) */ origlistp = listp; /* * Insertion sort, with entries with identical keys stored AFTER * existing entries (the less-than-or-equal test of priority does * this for us). */ while (listp != NULL && listp->list_prio <= priority) { prevp = listp; listp = listp->next; } newent->next = listp; if (prevp == NULL) { /* Add at head of list (newent is the new head) */ return (newent); } else { prevp->next = newent; return (origlistp); } } /* * Frees the list passed in, deallocating all memory and leaving *listpp * set to NULL. */ static void acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) { struct prs_irq_list_ent *nextp; ASSERT(listpp != NULL); while (*listpp != NULL) { nextp = (*listpp)->next; kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); *listpp = nextp; } } /* * apic_choose_irqs_from_prs returns a list of irqs selected from the list of * irqs returned by the link device's _PRS method. The irqs are chosen * to minimize contention in situations where the interrupt link device * can be programmed to steer interrupts to different interrupt controller * inputs (some of which may already be in use). The list is sorted in order * of irqs to use, with the highest priority given to interrupt controller * inputs that are not shared. When an interrupt controller input * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the * returned list in the order that minimizes sharing (thereby ensuring lowest * possible latency from interrupt trigger time to ISR execution time). */ static prs_irq_list_t * apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, int crs_irq) { int32_t irq; int i; prs_irq_list_t *prsirqlistp = NULL; iflag_t iflags; while (irqlistent != NULL) { irqlistent->intr_flags.bustype = BUS_PCI; for (i = 0; i < irqlistent->num_irqs; i++) { irq = irqlistent->irqs[i]; if (irq <= 0) { /* invalid irq number */ continue; } if ((irq < 16) && (apic_reserved_irqlist[irq])) continue; if ((apic_irq_table[irq] == NULL) || (apic_irq_table[irq]->airq_dip == dip)) { prsirqlistp = acpi_insert_prs_irq_ent( prsirqlistp, 0 /* Highest priority */, irq, &irqlistent->intr_flags, &irqlistent->acpi_prs_prv); /* * If we do not prefer the current irq from _CRS * or if we do and this irq is the same as the * current irq from _CRS, this is the one * to pick. */ if (!(apic_prefer_crs) || (irq == crs_irq)) { return (prsirqlistp); } continue; } /* * Edge-triggered interrupts cannot be shared */ if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) continue; /* * To work around BIOSes that contain incorrect * interrupt polarity information in interrupt * descriptors returned by _PRS, we assume that * the polarity of the other device sharing this * interrupt controller input is compatible. * If it's not, the caller will catch it when * the caller invokes the link device's _CRS method * (after invoking its _SRS method). */ iflags = irqlistent->intr_flags; iflags.intr_po = apic_irq_table[irq]->airq_iflag.intr_po; if (!acpi_intr_compatible(iflags, apic_irq_table[irq]->airq_iflag)) { APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " "not compatible [%x:%x:%x !~ %x:%x:%x]", psm_name, irq, iflags.intr_po, iflags.intr_el, iflags.bustype, apic_irq_table[irq]->airq_iflag.intr_po, apic_irq_table[irq]->airq_iflag.intr_el, apic_irq_table[irq]->airq_iflag.bustype)); continue; } /* * If we prefer the irq from _CRS, no need * to search any further (and make sure * to add this irq with the highest priority * so it's tried first). */ if (crs_irq == irq && apic_prefer_crs) { return (acpi_insert_prs_irq_ent( prsirqlistp, 0 /* Highest priority */, irq, &iflags, &irqlistent->acpi_prs_prv)); } /* * Priority is equal to the share count (lower * share count is higher priority). Note that * the intr flags passed in here are the ones we * changed above -- if incorrect, it will be * caught by the caller's _CRS flags comparison. */ prsirqlistp = acpi_insert_prs_irq_ent( prsirqlistp, apic_irq_table[irq]->airq_share, irq, &iflags, &irqlistent->acpi_prs_prv); } /* Go to the next irqlist entry */ irqlistent = irqlistent->next; } return (prsirqlistp); } /* * Configures the irq for the interrupt link device identified by * acpipsmlnkp. * * Gets the current and the list of possible irq settings for the * device. If apic_unconditional_srs is not set, and the current * resource setting is in the list of possible irq settings, * current irq resource setting is passed to the caller. * * Otherwise, picks an irq number from the list of possible irq * settings, and sets the irq of the device to this value. * If prefer_crs is set, among a set of irq numbers in the list that have * the least number of devices sharing the interrupt, we pick current irq * resource setting if it is a member of this set. * * Passes the irq number in the value pointed to by pci_irqp, and * polarity and sensitivity in the structure pointed to by dipintrflagp * to the caller. * * Note that if setting the irq resource failed, but successfuly obtained * the current irq resource settings, passes the current irq resources * and considers it a success. * * Returns: * ACPI_PSM_SUCCESS on success. * * ACPI_PSM_FAILURE if an error occured during the configuration or * if a suitable irq was not found for this device, or if setting the * irq resource and obtaining the current resource fails. * */ static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, int *pci_irqp, iflag_t *dipintr_flagp) { int32_t irq; int cur_irq = -1; acpi_irqlist_t *irqlistp; prs_irq_list_t *prs_irq_listp, *prs_irq_entp; boolean_t found_irq = B_FALSE; dipintr_flagp->bustype = BUS_PCI; if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) == ACPI_PSM_FAILURE) { APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " "or assign IRQ for device %s, instance #%d: The system was " "unable to get the list of potential IRQs from ACPI.", psm_name, ddi_get_name(dip), ddi_get_instance(dip))); return (ACPI_PSM_FAILURE); } if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && (cur_irq > 0)) { /* * If an IRQ is set in CRS and that IRQ exists in the set * returned from _PRS, return that IRQ, otherwise print * a warning */ if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) == ACPI_PSM_SUCCESS) { ASSERT(pci_irqp != NULL); *pci_irqp = cur_irq; acpi_free_irqlist(irqlistp); return (ACPI_PSM_SUCCESS); } APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " "current irq %d for device %s, instance #%d in ACPI's " "list of possible irqs for this device. Picking one from " " the latter list.", psm_name, cur_irq, ddi_get_name(dip), ddi_get_instance(dip))); } if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, cur_irq)) == NULL) { APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " "suitable irq from the list of possible irqs for device " "%s, instance #%d in ACPI's list of possible irqs", psm_name, ddi_get_name(dip), ddi_get_instance(dip))); acpi_free_irqlist(irqlistp); return (ACPI_PSM_FAILURE); } acpi_free_irqlist(irqlistp); for (prs_irq_entp = prs_irq_listp; prs_irq_entp != NULL && found_irq == B_FALSE; prs_irq_entp = prs_irq_entp->next) { acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; irq = prs_irq_entp->irq; APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " "device %s instance #%d\n", psm_name, irq, ddi_get_name(dip), ddi_get_instance(dip))); if ((acpi_set_irq_resource(acpipsmlnkp, irq)) == ACPI_PSM_SUCCESS) { /* * setting irq was successful, check to make sure CRS * reflects that. If CRS does not agree with what we * set, return the irq that was set. */ if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, dipintr_flagp) == ACPI_PSM_SUCCESS) { if (cur_irq != irq) APIC_VERBOSE_IRQ((CE_WARN, "!%s: IRQ resource set " "(irqno %d) for device %s " "instance #%d, differs from " "current setting irqno %d", psm_name, irq, ddi_get_name(dip), ddi_get_instance(dip), cur_irq)); } else { /* * On at least one system, there was a bug in * a DSDT method called by _STA, causing _STA to * indicate that the link device was disabled * (when, in fact, it was enabled). Since _SRS * succeeded, assume that _CRS is lying and use * the iflags from this _PRS interrupt choice. * If we're wrong about the flags, the polarity * will be incorrect and we may get an interrupt * storm, but there's not much else we can do * at this point. */ *dipintr_flagp = prs_irq_entp->intrflags; } /* * Return the irq that was set, and not what _CRS * reports, since _CRS has been seen to return * different IRQs than what was passed to _SRS on some * systems (and just not return successfully on others). */ cur_irq = irq; found_irq = B_TRUE; } else { APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " "irq %d failed for device %s instance #%d", psm_name, irq, ddi_get_name(dip), ddi_get_instance(dip))); if (cur_irq == -1) { acpi_destroy_prs_irq_list(&prs_irq_listp); return (ACPI_PSM_FAILURE); } } } acpi_destroy_prs_irq_list(&prs_irq_listp); if (!found_irq) return (ACPI_PSM_FAILURE); ASSERT(pci_irqp != NULL); *pci_irqp = cur_irq; return (ACPI_PSM_SUCCESS); } void ioapic_disable_redirection() { int ioapic_ix; int intin_max; int intin_ix; /* Disable the I/O APIC redirection entries */ for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { /* Bits 23-16 define the maximum redirection entries */ intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) & 0xff; for (intin_ix = 0; intin_ix < intin_max; intin_ix++) { /* * The assumption here is that this is safe, even for * systems with IOAPICs that suffer from the hardware * erratum because all devices have been quiesced before * this function is called from apic_shutdown() * (or equivalent). If that assumption turns out to be * false, this mask operation can induce the same * erratum result we're trying to avoid. */ ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, AV_MASK); } } } /* * Looks for an IOAPIC with the specified physical address in the /ioapics * node in the device tree (created by the PCI enumerator). */ static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr) { /* * Look in /ioapics, for the ioapic with * the physical address given */ dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); dev_info_t *ioapic_child; boolean_t rv = B_FALSE; int vid, did; uint64_t ioapic_paddr; boolean_t done = B_FALSE; if (ioapicsnode == NULL) return (B_FALSE); /* Load first child: */ ioapic_child = ddi_get_child(ioapicsnode); while (!done && ioapic_child != 0) { /* Iterate over children */ if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) != 0 && physaddr == ioapic_paddr) { vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); if (vid == VENID_AMD) { did = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, DDI_PROP_DONTPASS, IOAPICS_PROP_DEVID, 0); if (did == DEVID_8131_IOAPIC || did == DEVID_8132_IOAPIC) { rv = B_TRUE; done = B_TRUE; } } } if (!done) ioapic_child = ddi_get_next_sibling(ioapic_child); } /* The ioapics node was held by ddi_find_devinfo, so release it */ ndi_rele_devi(ioapicsnode); return (rv); } struct apic_state { int32_t as_task_reg; int32_t as_dest_reg; int32_t as_format_reg; int32_t as_local_timer; int32_t as_pcint_vect; int32_t as_int_vect0; int32_t as_int_vect1; int32_t as_err_vect; int32_t as_init_count; int32_t as_divide_reg; int32_t as_spur_int_reg; int32_t as_ioapic[6][24]; /* spec says 23 */ }; static void apic_save_state(struct apic_state *sp) { int i; PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) /* * First the local APIC. */ sp->as_task_reg = apicadr[APIC_TASK_REG]; sp->as_dest_reg = apicadr[APIC_DEST_REG]; sp->as_format_reg = apicadr[APIC_FORMAT_REG]; sp->as_local_timer = apicadr[APIC_LOCAL_TIMER]; sp->as_pcint_vect = apicadr[APIC_PCINT_VECT]; sp->as_int_vect0 = apicadr[APIC_INT_VECT0]; sp->as_int_vect1 = apicadr[APIC_INT_VECT1]; sp->as_err_vect = apicadr[APIC_ERR_VECT]; sp->as_init_count = apicadr[APIC_INIT_COUNT]; sp->as_divide_reg = apicadr[APIC_DIVIDE_REG]; sp->as_spur_int_reg = apicadr[APIC_SPUR_INT_REG]; /* * if on the boot processor then save the IO APICs. */ if (psm_get_cpu_id() == 0) { for (i = 0; i < apic_io_max; i++) { volatile uint32_t *ioapic = apicioadr[i]; int intin_max, j; /* Bits 23-16 define the maximum redirection entries */ ioapic[APIC_IO_REG] = APIC_VERS_CMD; intin_max = (ioapic[APIC_IO_DATA] >> 16) & 0xff; #if 0 /* debug */ prom_printf("\nIOAPIC %d (%d redirs):\n", i, intin_max+1); #endif /* debug */ for (j = 0; j <= intin_max; j++) { ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2*j; sp->as_ioapic[i][j] = ioapic[APIC_IO_DATA]; #if 0 /* debug */ prom_printf("\t%d: %x\n", j, as_ioapic[i][j]); #endif /* debug */ } } } } static void apic_restore_state(struct apic_state *sp) { int i; ulong_t iflag; apic_irq_t *irqp; int rv; int retval = 0; /* * First the local APIC. */ apicadr[APIC_TASK_REG] = sp->as_task_reg; apicadr[APIC_DEST_REG] = sp->as_dest_reg; apicadr[APIC_FORMAT_REG] = sp->as_format_reg; apicadr[APIC_LOCAL_TIMER] = sp->as_local_timer; apicadr[APIC_PCINT_VECT] = sp->as_pcint_vect; apicadr[APIC_INT_VECT0] = sp->as_int_vect0; apicadr[APIC_INT_VECT1] = sp->as_int_vect1; apicadr[APIC_ERR_VECT] = sp->as_err_vect; apicadr[APIC_INIT_COUNT] = sp->as_init_count; apicadr[APIC_DIVIDE_REG] = sp->as_divide_reg; apicadr[APIC_SPUR_INT_REG] = sp->as_spur_int_reg; /* * the following only needs to be done once, so we do it on the * boot processor, since we know that we only have one of those */ if (psm_get_cpu_id() == 0) { /* * regenerate the IO APICs. */ iflag = intr_clear(); lock_set(&apic_ioapic_lock); for (i = apic_min_device_irq; i < apic_max_device_irq; i++) { if ((irqp = apic_irq_table[i]) == NULL) continue; for (; irqp; irqp = irqp->airq_next) { if (irqp->airq_mps_intr_index == FREE_INDEX) continue; if (irqp->airq_temp_cpu != IRQ_UNINIT) { rv = apic_setup_io_intr(irqp, i, B_FALSE); if (rv) { PMD(PMD_SX, ("apic_setup_io_intr(%p, " "%d) %d\n", (void *)irqp, i, rv)); } retval |= rv; } } } PMD(PMD_SX, ("apic_restore_state retval %x\n", retval)) lock_clear(&apic_ioapic_lock); intr_restore(iflag); /* * restore acpi link device mappings */ acpi_restore_link_devices(); } } /* * Returns 0 on success */ int apic_state(psm_state_request_t *rp) { PMD(PMD_SX, ("apic_state ")) switch (rp->psr_cmd) { case PSM_STATE_ALLOC: rp->req.psm_state_req.psr_state = kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); if (rp->req.psm_state_req.psr_state == NULL) return (ENOMEM); rp->req.psm_state_req.psr_state_size = sizeof (struct apic_state); PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", rp->req.psm_state_req.psr_state, rp->req.psm_state_req.psr_state_size)) return (0); case PSM_STATE_FREE: kmem_free(rp->req.psm_state_req.psr_state, rp->req.psm_state_req.psr_state_size); PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", rp->req.psm_state_req.psr_state, rp->req.psm_state_req.psr_state_size)) return (0); case PSM_STATE_SAVE: PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", rp->req.psm_state_req.psr_state, rp->req.psm_state_req.psr_state_size)) apic_save_state(rp->req.psm_state_req.psr_state); return (0); case PSM_STATE_RESTORE: apic_restore_state(rp->req.psm_state_req.psr_state); PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", rp->req.psm_state_req.psr_state, rp->req.psm_state_req.psr_state_size)) return (0); default: return (EINVAL); } }