/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gfx_private.h" /* * Create a kva mapping for a pa (start..start+size) with * the specified cache attributes (mode). */ gfxp_kva_t gfxp_map_kernel_space(uint64_t start, size_t size, uint32_t mode) { uint_t pgoffset; uint64_t base; pgcnt_t npages; caddr_t cvaddr; int hat_flags; uint_t hat_attr; if (size == 0) return (0); if (mode == GFXP_MEMORY_CACHED) hat_attr = HAT_STORECACHING_OK; else if (mode == GFXP_MEMORY_WRITECOMBINED) hat_attr = HAT_MERGING_OK | HAT_PLAT_NOCACHE; else /* GFXP_MEMORY_UNCACHED */ hat_attr = HAT_STRICTORDER | HAT_PLAT_NOCACHE; hat_flags = HAT_LOAD_LOCK; pgoffset = start & PAGEOFFSET; base = start - pgoffset; npages = btopr(size + pgoffset); cvaddr = vmem_alloc(heap_arena, ptob(npages), VM_NOSLEEP); if (cvaddr == NULL) return (NULL); hat_devload(kas.a_hat, cvaddr, ptob(npages), btop(base), PROT_READ|PROT_WRITE|hat_attr, hat_flags); return (cvaddr + pgoffset); } /* * Destroy the mapping created by gfxp_map_kernel_space(). * Physical memory is not reclaimed. */ void gfxp_unmap_kernel_space(gfxp_kva_t address, size_t size) { uint_t pgoffset; caddr_t base; pgcnt_t npages; if (size == 0 || address == NULL) return; pgoffset = (uintptr_t)address & PAGEOFFSET; base = (caddr_t)address - pgoffset; npages = btopr(size + pgoffset); hat_unload(kas.a_hat, base, ptob(npages), HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, base, ptob(npages)); } /* * For a VA return the pfn */ int gfxp_va2pa(struct as *as, caddr_t addr, uint64_t *pa) { *pa = (uint64_t)(hat_getpfnum(as->a_hat, addr) << PAGESHIFT); return (0); } /* * The KVA returned from ddi_dma_mem_alloc() always has WB/cached PTEs. * This causes severe coherency problems when the pages are exported to * user space with uncached/UC/WC PTEs. Fix the cache attributes for * each page, until ddi_dma_mem_alloc() returns KVAs with the correct * cache attributes. */ void gfxp_fix_mem_cache_attrs(caddr_t kva_start, size_t length, int cache_attr) { struct hat *hat = kas.a_hat; uint_t hat_attr; uint_t hat_flags; pfn_t pfnum; caddr_t kva; caddr_t kva_max; if (hat_getattr(hat, kva_start, &hat_attr) == -1) return; if (cache_attr == GFXP_MEMORY_UNCACHED) { hat_attr &= ~HAT_ORDER_MASK; hat_attr |= HAT_STRICTORDER | HAT_PLAT_NOCACHE; } else if (cache_attr == GFXP_MEMORY_WRITECOMBINED) { hat_attr &= ~HAT_ORDER_MASK; hat_attr |= HAT_MERGING_OK | HAT_PLAT_NOCACHE; } else return; hat_attr |= HAT_NOSYNC; hat_flags = HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; kva = (caddr_t)((uintptr_t)kva_start & (uintptr_t)PAGEMASK); kva_max = (caddr_t)((uintptr_t)(kva_start + length + PAGEOFFSET) & (uintptr_t)PAGEMASK); for (; kva < kva_max; kva += PAGESIZE) { pfnum = hat_getpfnum(hat, kva); hat_unload(hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); hat_devload(hat, kva, PAGESIZE, pfnum, hat_attr, hat_flags); } } int gfxp_ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, ddi_device_acc_attr_t *accattrp, uint_t flags, int (*waitfp) (caddr_t), caddr_t arg, caddr_t *kaddrp, size_t *real_length, ddi_acc_handle_t *handlep) { int cache_attr; if (ddi_dma_mem_alloc(handle, length, accattrp, flags, waitfp, arg, kaddrp, real_length, handlep) == DDI_FAILURE) { return (DDI_FAILURE); } if (accattrp == NULL) return (DDI_SUCCESS); if (accattrp->devacc_attr_dataorder == DDI_STRICTORDER_ACC) cache_attr = GFXP_MEMORY_UNCACHED; else if (accattrp->devacc_attr_dataorder == DDI_MERGING_OK_ACC) cache_attr = GFXP_MEMORY_WRITECOMBINED; else return (DDI_SUCCESS); gfxp_fix_mem_cache_attrs(*kaddrp, *real_length, cache_attr); return (DDI_SUCCESS); } int gfxp_mlock_user_memory(caddr_t address, size_t length) { struct as *as = ttoproc(curthread)->p_as; int error = 0; if (((uintptr_t)address & PAGEOFFSET) != 0 || length == 0) return (set_errno(EINVAL)); if (valid_usr_range(address, length, 0, as, as->a_userlimit) != RANGE_OKAY) return (set_errno(ENOMEM)); error = as_ctl(as, address, length, MC_LOCK, 0, 0, NULL, 0); if (error) (void) set_errno(error); return (error); } int gfxp_munlock_user_memory(caddr_t address, size_t length) { struct as *as = ttoproc(curthread)->p_as; int error = 0; if (((uintptr_t)address & PAGEOFFSET) != 0 || length == 0) return (set_errno(EINVAL)); if (valid_usr_range(address, length, 0, as, as->a_userlimit) != RANGE_OKAY) return (set_errno(ENOMEM)); error = as_ctl(as, address, length, MC_UNLOCK, 0, 0, NULL, 0); if (error) (void) set_errno(error); return (error); }